1
|
Wu H, Weng R, Li J, Huang Z, Tie X, Li J, Chen K. Self-Assembling protein nanoparticle platform for multivalent antigen delivery in vaccine development. Int J Pharm 2025; 676:125597. [PMID: 40233885 DOI: 10.1016/j.ijpharm.2025.125597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/07/2025] [Accepted: 04/12/2025] [Indexed: 04/17/2025]
Abstract
Nanoparticle vaccines can efficiently and repeatedly display multivalent antigens, thereby improving the targeted delivery of antigens and inducing more durable immune responses, making them an important representative of novel vaccines. The global COVID-19 pandemic has accelerated the development of nanoparticle vaccines, offering a promising solution for the prevention and control of infectious diseases. Currently, the development of nanoparticle vaccines involves the use of various types of nanoparticles, including liposomes, polymers, inorganic materials, and emulsions. Protein nanoparticles candidate vaccines are attracting increasing attention because of their unique antigen presentation methods and self-assembly characteristics during their development, leading to a broad consensus on their promising future. Naturally self-assembling protein nanoparticles, such as ferritin, enhance antigen presentation, which aids in the activation of both humoral and cellular immune responses. This has led to significant advancements in the study of hepatitis B virus. Meanwhile, some synthetically engineered protein nanoparticles, such as mi3, and I53-50, can induce higher antibody titers through chemical conjugation with the SpyTag-SpyCatcher system, thereby providing better immunoprotection and showing promising prospects in the prevention of H1N1 and H3N2 influenza virus infections. This article reviews the unique advantages of protein nanoparticles as antigen delivery platforms, progress made in immunological design mechanisms, advances in the application of related adjuvants in preclinical and clinical trials, and the performance of commonly used computationally designed protein nanoparticles in preclinical trials, with a particular emphasis on the progress in the application of cationic nanoparticle vaccines. The aim is to provide future researchers with effective adjuvant strategies and high-quality selections for computationally designed protein nanoparticles, thereby promoting the clinical trial process of protein nanoparticles vaccines.
Collapse
Affiliation(s)
- Hao Wu
- Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Ruiqi Weng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Jiaxuan Li
- Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Zhiwei Huang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Xiaotian Tie
- Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Jianhua Li
- Zhejiang Key Laboratory of Public Health Detection and Pathogenesis Research, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, PR China.
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China.
| |
Collapse
|
2
|
Nourani L, Lotfi A, Vand-Rajabpour H, Pourhashem Z, Nemati F, Mehrizi AA. Optimized Refolding Buffers Oriented Humoral Immune Responses Versus PfGCS1 Self-Assembled Peptide Nanoparticle. Mol Biotechnol 2024; 66:2648-2664. [PMID: 38267696 DOI: 10.1007/s12033-023-01044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024]
Abstract
Developing a novel class of vaccine is pivotal for eliminating and eradicating malaria. Preceding investigations demonstrated partial blocking activity in malaria transmission against recombinant vaccine PfHAP2-GCS1 and conserved region of the cd loop. The effectiveness of immune response varies with the size and shape of the self-assembly of peptide nanoparticles (SAPNs) displaying antigen, affected by different components in refolding buffers. Plasmodium falciparum Generative Cell Specific 1 (PfGCS1), a promising malaria transmission-blocking vaccine (TBV) candidate, was expressed, purified, and followed by a four-step refolding process to form nanoparticles (PfGCS1-SAPNs). The influence of buffer components on the size and shape of SAPNs was investigated by DLS and FESEM. Furthermore, the immunogenicity of nanostructures was assessed in different mouse groups. The results showed that PfGCS1-SAPN was immunogenic and its administration with Poly (I:C), stimulated humoral and cellular responses in the mouse model. In the immunized mice groups, the level of IgG antibodies against PfGCS1-SAPN was significantly increased in different time points (second and third boost) and heterogeneous boosters. The various IgG-subclasses profile shifted to Th1, Th2, or Th1/Th2 mix responses in mice immunized with PfGCS1-SAPN refolded in different buffers, indicating a prerequisite for further investigations to optimize vaccine formulation to enhance and modulate Th1/cellular responses. Such studies pave the way to improve biophysical features related to the nanoparticles' size, shape, and conformational epitopes of candidate antigens and T- and B-cells presented on the superficial structure to elicit robust immune responses.
Collapse
Affiliation(s)
- Leila Nourani
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O. Box: 1316943551, Tehran, Iran
| | - Anita Lotfi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O. Box: 1316943551, Tehran, Iran
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hediye Vand-Rajabpour
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O. Box: 1316943551, Tehran, Iran
| | - Zeinab Pourhashem
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O. Box: 1316943551, Tehran, Iran
| | - Fahimeh Nemati
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Akram Abouie Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O. Box: 1316943551, Tehran, Iran.
| |
Collapse
|
3
|
Malik S, Waheed Y. Recent advances on vaccines against malaria: A review. ASIAN PAC J TROP MED 2024; 17:143-159. [DOI: 10.4103/apjtm.apjtm_678_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 04/21/2024] [Indexed: 12/06/2024] Open
Abstract
This review aims to summarize the currently viable vaccine strategies including the approved vaccines and the those in trials for next-generation malaria vaccines. Data on malaria vaccine development was collected through a comprehensive review. The literature search was performed using databases including Google Scholar, PubMed, NIH, and Web of Science. Various novel approaches of vaccination are being developed, including those based on radiation-attenuated strategies, monoclonal antibodies, targeted immunogenic peptides, RNA and DNA vaccines, nanoparticle-based vaccines, protein-based vaccination protocols, and whole organism-based vaccination strategies. Trials on RTS, S have entered phase III testing, and those based on blood-stage vaccines and vaccines to interrupt malarial transmission have advanced to higher stages of trials. Mathematical modeling, combined drug and vaccine strategies, mass drug administration, polyvalent vaccine formulations, and targeted vaccination campaigns is playing an important role in malarial prevention. Furthermore, assessing coverage, accessibility, acceptability, deployment, compilation, and adherence to specific vaccination strategies in endemic regions is essential for vaccination drives against malaria.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi 46000, Pakistan
| | - Yasir Waheed
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
- MEU Research Unit, Middle East University, Amman, 11831, Jordan
| |
Collapse
|
4
|
Pourhashem Z, Nourani L, Sani JJ, Yousefi H, Pirahmadi S, Sabouri M, Raz A, Djadid ND, Zakeri S, Mehrizi AA. Evaluation of a new fusion antigen, cd loop and HAP2-GCS1 domain (cd-HAP) of Plasmodium falciparum Generative Cell Specific 1 antigen formulated with various adjuvants, as a transmission blocking vaccine. Malar J 2023; 22:374. [PMID: 38071314 PMCID: PMC10710725 DOI: 10.1186/s12936-023-04798-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Malaria is a major global health challenge, and for the elimination and eradication of this disease, transmission-blocking vaccines (TBVs) are a priority. Plasmodium falciparum Generative Cell Specific 1 (PfGCS1), a promising TBV candidate, is essential for gamete fertilization. The HAP2-GCS1 domain of this antigen as well as its cd loop could induce antibodies that partially inhibit transmission of P. falciparum. METHODS In the current study, a new synthetic fusion antigen containing cd loop and HAP2-GCS1 domain (cd-HAP) of PfGCS1 was evaluated as a transmission blocking vaccine candidate. Initially, the profile of naturally acquired IgG antibodies to the cd-HAP antigen was analysed in Iranian individuals infected with P. falciparum, to confirm that this new fusion protein has the appropriate structure containing common epitopes with the native form of PfGCS1. Then, the immunogenicity of cd-HAP was evaluated in BALB/c mice, using different adjuvant systems such as CpG, MPL, QS-21, and a combination of them (CMQ). Furthermore, the blocking efficacy of polyclonal antibodies induced against these formulations was also assessed by oocyst intensity and infection prevalence in the Standard Membrane Feeding Assay (SMFA). RESULTS The naturally acquired antibodies (dominantly IgG1 and IgG3 subclasses) induced in P. falciparum-infected individuals could recognize the cd-HAP antigen which implies that the new fusion protein has a proper conformation that mimics the native structure of PfGCS1. Concerning the immunogenicity of cd-HAP antigen, the highest IgG levels and titers, by a Th1-type immune profile, and elevated antibody avidity were induced in mice immunized with the cd-HAP antigen formulated with a combination of adjuvants (P < 0.0001). Additionally, cytokine profiling of the immunized mice displayed that a high level of IFN-γ response, a Th1-type immune response, was produced by splenocytes from immunized mice that received cd-HAP antigen in combination with CMQ adjuvants (P < 0.0001). This formulation of cd-HAP antigen with CMQ adjuvants could reduce oocyst intensity and infection prevalence by 82%, evidenced by the SMFA and hold significant implications for future malaria vaccine development. CONCLUSION Altogether, the results showed that cd-HAP antigen formulated with a combination of the adjuvants (CMQ), could be a promising formulation to develop a PfGCS1-based transmission-blocking vaccine.
Collapse
Affiliation(s)
- Zeinab Pourhashem
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Leila Nourani
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Jafar J Sani
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Hemn Yousefi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Sakineh Pirahmadi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Mobina Sabouri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Abbasali Raz
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Navid Dinparast Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| | - Akram Abouie Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
5
|
Varijakshi G, Divya M, Ware AP, Paul B, Saadi AV. Transcriptomic approaches for identifying potential transmission blocking vaccine candidates in Plasmodium falciparum: a review of current knowledge and future directions. 3 Biotech 2023; 13:344. [PMID: 37711230 PMCID: PMC10497465 DOI: 10.1007/s13205-023-03752-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023] Open
Abstract
Utilizing transcriptomics, promising methods for identifying unique genes associated with Plasmodium gametocyte development offer a potential avenue for novel candidate targets in transmission blocking vaccine development. In this review, we identified 40 publicly available transcriptomic datasets related to parasite factors linked with sexual stage transmission, from which we analyzed two RNA-Seq datasets to identify potential genes crucial for the transmission of P. falciparum from humans to mosquito vectors. Differential expression analysis revealed 3500 (2489 upregulated and 1011 downregulated) common genes differentially expressed throughout sexual stage development of P. falciparum occurring in both humans (gametocyte stage II, V) and mosquitoes (ookinete). Among which 1283 (914 upregulated and 369 downregulated) and 826 (719 upregulated and 107 downregulated) genes were specific to female and male gametocytes, respectively. Also, 830 potential transition associated genes were identified that may be involved in the adaptation and survival of the parasite in between human and mosquito stages. Additionally, we reviewed the functional aspects of important genes highly expressed throughout the sexual stage pathway and evaluated their suitability as vaccine candidates. The review provides researchers with insight into the importance of publicly available transcriptomic datasets for identifying critical and novel gametocyte markers that may aid in the development of rational transmission blocking strategies. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03752-3.
Collapse
Affiliation(s)
- Gutthedhar Varijakshi
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Mallya Divya
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Akshay Pramod Ware
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Bobby Paul
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Abdul Vahab Saadi
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| |
Collapse
|
6
|
Nourani L, Mehrizi AA, Pirahmadi S, Pourhashem Z, Asadollahi E, Jahangiri B. CRISPR/Cas advancements for genome editing, diagnosis, therapeutics, and vaccine development for Plasmodium parasites, and genetic engineering of Anopheles mosquito vector. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 109:105419. [PMID: 36842543 DOI: 10.1016/j.meegid.2023.105419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/30/2023] [Accepted: 02/21/2023] [Indexed: 02/28/2023]
Abstract
Malaria as vector-borne disease remains important health concern with over 200 million cases globally. Novel antimalarial medicines and more effective vaccines must be developed to eliminate and eradicate malaria. Appraisal of preceding genome editing approaches confirmed the CRISPR/Cas nuclease system as a novel proficient genome editing system and a tool for species-specific diagnosis, and drug resistance researches for Plasmodium species, and gene drive to control Anopheles population. CRISPR/Cas technology, as a handy tool for genome editing can be justified for the production of transgenic malaria parasites like Plasmodium transgenic lines expressing Cas9, chimeric Plasmodium transgenic lines, knockdown and knockout transgenic parasites, and transgenic parasites expressing alternative alleles, and also mutant strains of Anopheles such as only male mosquito populations, generation of wingless mosquitoes, and creation of knock-out/ knock-in mutants. Though, the incorporation of traditional methods and novel molecular techniques could noticeably enhance the quality of results. The striking development of a CRISPR/Cas-based diagnostic kit that can specifically diagnose the Plasmodium species or drug resistance markers is highly required in malaria settings with affordable cost and high-speed detection. Furthermore, the advancement of genome modifications by CRISPR/Cas technologies resolves contemporary restrictions to culturing, maintaining, and analyzing these parasites, and the aptitude to investigate parasite genome functions opens up new vistas in the better understanding of pathogenesis.
Collapse
Affiliation(s)
- Leila Nourani
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Akram Abouie Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| | - Sakineh Pirahmadi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Zeinab Pourhashem
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Elahe Asadollahi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Babak Jahangiri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|