1
|
Kehl MS, Mackay S, Ohla K, Schneider M, Borger V, Surges R, Spehr M, Mormann F. Single-neuron representations of odours in the human brain. Nature 2024; 634:626-634. [PMID: 39385026 PMCID: PMC11485236 DOI: 10.1038/s41586-024-08016-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/04/2024] [Indexed: 10/11/2024]
Abstract
Olfaction is a fundamental sensory modality that guides animal and human behaviour1,2. However, the underlying neural processes of human olfaction are still poorly understood at the fundamental-that is, the single-neuron-level. Here we report recordings of single-neuron activity in the piriform cortex and medial temporal lobe in awake humans performing an odour rating and identification task. We identified odour-modulated neurons within the piriform cortex, amygdala, entorhinal cortex and hippocampus. In each of these regions, neuronal firing accurately encodes odour identity. Notably, repeated odour presentations reduce response firing rates, demonstrating central repetition suppression and habituation. Different medial temporal lobe regions have distinct roles in odour processing, with amygdala neurons encoding subjective odour valence, and hippocampal neurons predicting behavioural odour identification performance. Whereas piriform neurons preferably encode chemical odour identity, hippocampal activity reflects subjective odour perception. Critically, we identify that piriform cortex neurons reliably encode odour-related images, supporting a multimodal role of the human piriform cortex. We also observe marked cross-modal coding of both odours and images, especially in the amygdala and piriform cortex. Moreover, we identify neurons that respond to semantically coherent odour and image information, demonstrating conceptual coding schemes in olfaction. Our results bridge the long-standing gap between animal models and non-invasive human studies and advance our understanding of odour processing in the human brain by identifying neuronal odour-coding principles, regional functional differences and cross-modal integration.
Collapse
Affiliation(s)
- Marcel S Kehl
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Sina Mackay
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Kathrin Ohla
- Science & Research, dsm-firmenich, Satigny, Switzerland
| | | | - Valeri Borger
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany.
| | - Florian Mormann
- Department of Epileptology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
2
|
Tiihonen M, Haumann NT, Shtyrov Y, Vuust P, Jacobsen T, Brattico E. The impact of crossmodal predictions on the neural processing of aesthetic stimuli. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220418. [PMID: 38104610 PMCID: PMC10725772 DOI: 10.1098/rstb.2022.0418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023] Open
Abstract
Neuroaesthetic research has focused on neural predictive processes involved in the encounter with art stimuli or the related evaluative judgements, and it has been mainly conducted unimodally. Here, with electroencephalography, magnetoencephalography and an affective priming protocol, we investigated whether and how the neural responses to non-representational aesthetic stimuli are top-down modulated by affective representational (i.e. semantically meaningful) predictions between audition and vision. Also, the neural chronometry of affect processing of these aesthetic stimuli was investigated. We hypothesized that the early affective components of crossmodal aesthetic responses are dependent on the affective and representational predictions formed in another sensory modality resulting in differentiated brain responses, and that audition and vision indicate different processing latencies for affect. The target stimuli were aesthetic visual patterns and musical chords, and they were preceded by a prime from the opposing sensory modality. We found that early auditory-cortex responses to chords were more affected by valence than the corresponding visual-cortex ones. Furthermore, the assessments of visual targets were more facilitated by affective congruency of crossmodal primes than the acoustic targets. These results indicate, first, that the brain uses early affective information for predictively guiding aesthetic responses; second, that an affective transfer of information takes place crossmodally, mainly from audition to vision, impacting the aesthetic assessment. This article is part of the theme issue 'Art, aesthetics and predictive processing: theoretical and empirical perspectives'.
Collapse
Affiliation(s)
- Marianne Tiihonen
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Midtjylland, 8200, Denmark
- Institute of Clinical Neuroscience and Medical Psychology, Medial Faculty, Heinrich Heine University Düsseldorf, Dusseldorf, Nordrhein-Westfalen, 40225, Germany
| | - Niels Trusbak Haumann
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Midtjylland, 8200, Denmark
| | - Yury Shtyrov
- Center for Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus, Midtjylland, 8200, Denmark
| | - Peter Vuust
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Midtjylland, 8200, Denmark
| | - Thomas Jacobsen
- Helmut Schmidt University / University of the Federal Armed Forces Hamburg, Hamburg, 22043, Germany
| | - Elvira Brattico
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Midtjylland, 8200, Denmark
- Department of Educational Sciences, Psychology, Communication, University of Bari Aldo Moro, Bari, Puglia, 70121, Italy
| |
Collapse
|