1
|
Costa MM, Corbel V, Ben Hamouda R, Almeras L. MALDI-TOF MS Profiling and Its Contribution to Mosquito-Borne Diseases: A Systematic Review. INSECTS 2024; 15:651. [PMID: 39336619 PMCID: PMC11432722 DOI: 10.3390/insects15090651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024]
Abstract
Mosquito-borne diseases are responsible for hundreds of thousands of deaths per year. The identification and control of the vectors that transmit pathogens to humans are crucial for disease prevention and management. Currently, morphological classification and molecular analyses via DNA barcoding are the standard methods used for vector identification. However, these approaches have several limitations. In the last decade, matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) profiling has emerged as an innovative technology in biological sciences and is now considered as a relevant tool for the identification of pathogens and arthropods. Beyond species identification, this tool is also valuable for determining various life traits of arthropod vectors. The purpose of the present systematic review was to highlight the contribution of MALDI-TOF MS to the surveillance and control of mosquito-borne diseases. Published articles from January 2003 to August 2024 were retrieved, focusing on different aspects of mosquito life traits that could be determinants in disease transmission and vector management. The screening of the scientific literature resulted in the selection of 54 published articles that assessed MALDI-TOF MS profiling to study various mosquito biological factors, such species identification, life expectancy, gender, trophic preferences, microbiota, and insecticide resistance. Although a large majority of the selected articles focused on species identification, the present review shows that MALDI-TOF MS profiling is promising for rapidly identifying various mosquito life traits, with high-throughput capacity, reliability, and low cost. The strengths and weaknesses of this proteomic tool for vector control and surveillance are discussed.
Collapse
Affiliation(s)
- Monique Melo Costa
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (M.M.C.); (R.B.H.)
- Aix Marseille Univ, SSA, AP-HM, RITMES, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Vincent Corbel
- Institut de Recherche pour le Développement (IRD), MIVEGEC, Univ. Montpellier, CNRS, IRD, 911 Av. Agropolis, 34394 Montpellier, France;
- Laboratório de Fisiologia e Controle de Artrópodes Vetores (Laficave), Fundação Oswaldo Cruz (FIOCRUZ), Instituto Oswaldo Cruz (IOC), Avenida Brasil, 4365 Manguinhos, Rio de Janeiro 21040-360, Brazil
| | - Refka Ben Hamouda
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (M.M.C.); (R.B.H.)
- Aix Marseille Univ, SSA, AP-HM, RITMES, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Lionel Almeras
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (M.M.C.); (R.B.H.)
- Aix Marseille Univ, SSA, AP-HM, RITMES, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| |
Collapse
|
2
|
Rakotonirina A, Dauga C, Pol M, Hide M, Vuth L, Ballan V, Kilama S, Russet S, Marcombe S, Boyer S, Pocquet N. Speciation patterns of Aedes mosquitoes in the Scutellaris Group: a mitochondrial perspective. Sci Rep 2024; 14:10930. [PMID: 38740928 DOI: 10.1038/s41598-024-61573-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
The Scutellaris Group of Aedes comprises 47 mosquito species, including Aedes albopictus. While Ae. albopictus is widely distributed, the other species are mostly found in the Asia-Pacific region. Evolutionary history researches of Aedes species within the Scutellaris Group have mainly focused on Ae. albopictus, a species that raises significant public health concerns, neglecting the other species. In this study, we aimed to assess genetic diversity and estimate speciation times of several species within the Scutellaris Group. Mosquitoes were therefore collected from various Asia-Pacific countries. Their mitochondrial cytochrome c oxidase subunit 1 (cox1) and subunit 3 (cox3) sequences were analyzed alongside those of other Scutellaris Group species available in the GenBank database. To estimate the divergence time, we analyzed 1849 cox1 gene sequences from 21 species, using three species (Aedes aegypti, Aedes notoscriptus and Aedes vigilax) as outgroups. We found that most of the speciation dates occurred during the Paleogene and the Neogene periods. A separation between the Scutellaris Subgroup and the Albopictus Subgroup occurred approximately 64-61 million years ago (MYA). We also identified a split between species found in Asia/Micronesia and those collected in Melanesia/Polynesia approximately 36-35 MYA. Our findings suggest that the speciation of Aedes species within the Scutellaris Group may be driven by diversity in mammalian hosts, climate and environmental changes, and geological dynamics rather than human migration.
Collapse
Affiliation(s)
- Antsa Rakotonirina
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.
- Unité de Recherche et d'Expertise en Entomologie Médicale, Institut Pasteur de Nouvelle-Calédonie, Nouméa, Nouvelle-Calédonie.
| | - Catherine Dauga
- Arboriruses and Insect Vectors Laboratory, Institut Pasteur Paris, Paris, France
| | - Morgane Pol
- Unité de Recherche et d'Expertise en Entomologie Médicale, Institut Pasteur de Nouvelle-Calédonie, Nouméa, Nouvelle-Calédonie
| | - Mallorie Hide
- Maladies Infectieuses et Vecteurs: écologie, génétique, évolution et contrôle (MIVEGEC), Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Linavin Vuth
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Valentine Ballan
- Unité de Recherche et d'Expertise en Entomologie Médicale, Institut Pasteur de Nouvelle-Calédonie, Nouméa, Nouvelle-Calédonie
| | - Sosiasi Kilama
- Unité de Recherche et d'Expertise en Entomologie Médicale, Institut Pasteur de Nouvelle-Calédonie, Nouméa, Nouvelle-Calédonie
| | - Sylvie Russet
- Unité de Recherche et d'Expertise en Entomologie Médicale, Institut Pasteur de Nouvelle-Calédonie, Nouméa, Nouvelle-Calédonie
| | - Sébastien Marcombe
- Vector Borne Disease Laboratory, Institut Pasteur du Laos, Vientiane, Laos
- Vector Control Consulting-South East Asia SOLE CO., LTD., Vientiane, Lao PDR
| | - Sébastien Boyer
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
- Ecology and Emergence of Arthropod-Borne Pathogens Unit, Department of Global Health, Institut Pasteur, CNRS UMR2000, Paris, France
| | - Nicolas Pocquet
- Unité de Recherche et d'Expertise en Entomologie Médicale, Institut Pasteur de Nouvelle-Calédonie, Nouméa, Nouvelle-Calédonie
| |
Collapse
|
3
|
Rossel S, Peters J, Charzinski N, Eichsteller A, Laakmann S, Neumann H, Martínez Arbizu P. A universal tool for marine metazoan species identification: towards best practices in proteomic fingerprinting. Sci Rep 2024; 14:1280. [PMID: 38218969 PMCID: PMC10787734 DOI: 10.1038/s41598-024-51235-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024] Open
Abstract
Proteomic fingerprinting using MALDI-TOF mass spectrometry is a well-established tool for identifying microorganisms and has shown promising results for identification of animal species, particularly disease vectors and marine organisms. And thus can be a vital tool for biodiversity assessments in ecological studies. However, few studies have tested species identification across different orders and classes. In this study, we collected data from 1246 specimens and 198 species to test species identification in a diverse dataset. We also evaluated different specimen preparation and data processing approaches for machine learning and developed a workflow to optimize classification using random forest. Our results showed high success rates of over 90%, but we also found that the size of the reference library affects classification error. Additionally, we demonstrated the ability of the method to differentiate marine cryptic-species complexes and to distinguish sexes within species.
Collapse
Affiliation(s)
- Sven Rossel
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), 26382, Wilhelmshaven, Germany.
| | - Janna Peters
- German Centre for Marine Biodiversity Research (DZMB), Senckenberg am Meer, 20146, Hamburg, Germany
| | - Nele Charzinski
- Marine Biodiversity Research, Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Angelina Eichsteller
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), 26382, Wilhelmshaven, Germany
- Marine Biodiversity Research, Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Silke Laakmann
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), 26129, Oldenburg, Germany
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Hermann Neumann
- Institute for Sea Fisheries, Thuenen Institute, 27572, Bremerhaven, Germany
| | - Pedro Martínez Arbizu
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), 26382, Wilhelmshaven, Germany
- Marine Biodiversity Research, Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| |
Collapse
|
4
|
Cannet A, Simon-Chane C, Histace A, Akhoundi M, Romain O, Souchaud M, Jacob P, Sereno D, Gouagna LC, Bousses P, Mathieu-Daude F, Sereno D. Wing Interferential Patterns (WIPs) and machine learning for the classification of some Aedes species of medical interest. Sci Rep 2023; 13:17628. [PMID: 37848666 PMCID: PMC10582169 DOI: 10.1038/s41598-023-44945-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023] Open
Abstract
Hematophagous insects belonging to the Aedes genus are proven vectors of viral and filarial pathogens of medical interest. Aedes albopictus is an increasingly important vector because of its rapid worldwide expansion. In the context of global climate change and the emergence of zoonotic infectious diseases, identification tools with field application are required to strengthen efforts in the entomological survey of arthropods with medical interest. Large scales and proactive entomological surveys of Aedes mosquitoes need skilled technicians and/or costly technical equipment, further puzzled by the vast amount of named species. In this study, we developed an automatic classification system of Aedes species by taking advantage of the species-specific marker displayed by Wing Interferential Patterns. A database holding 494 photomicrographs of 24 Aedes spp. from which those documented with more than ten pictures have undergone a deep learning methodology to train a convolutional neural network and test its accuracy to classify samples at the genus, subgenus, and species taxonomic levels. We recorded an accuracy of 95% at the genus level and > 85% for two (Ochlerotatus and Stegomyia) out of three subgenera tested. Lastly, eight were accurately classified among the 10 Aedes sp. that have undergone a training process with an overall accuracy of > 70%. Altogether, these results demonstrate the potential of this methodology for Aedes species identification and will represent a tool for the future implementation of large-scale entomological surveys.
Collapse
Affiliation(s)
- Arnaud Cannet
- Direction des affaires sanitaires et sociales de la Nouvelle-Calédonie, Nouméa, France
| | | | - Aymeric Histace
- ETIS UMR 8051, Cergy Paris University, ENSEA, CNRS, 95000, Cergy, France
| | | | | | - Marc Souchaud
- ETIS UMR 8051, Cergy Paris University, ENSEA, CNRS, 95000, Cergy, France
| | - Pierre Jacob
- ETIS UMR 8051, Cergy Paris University, ENSEA, CNRS, 95000, Cergy, France
- Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, 33400, Talence, France
| | - Darian Sereno
- InterTryp, Univ Montpellier, IRD-CIRAD, Infectiology Medical Entomology and One Health Research Group, Montpellier, France
| | | | | | - Françoise Mathieu-Daude
- MIVEGEC, Univ Montpellier, CNRS, IRD, Montpellier, France
- Institut Louis Malardé, Tahiti, French Polynesia
| | - Denis Sereno
- InterTryp, Univ Montpellier, IRD-CIRAD, Infectiology Medical Entomology and One Health Research Group, Montpellier, France.
- MIVEGEC, Univ Montpellier, CNRS, IRD, Montpellier, France.
| |
Collapse
|
5
|
Rossel S, Peters J, Laakmann S, Martínez Arbizu P, Holst S. Potential of MALDI-TOF MS-based proteomic fingerprinting for species identification of Cnidaria across classes, species, regions and developmental stages. Mol Ecol Resour 2023; 23:1620-1631. [PMID: 37417794 DOI: 10.1111/1755-0998.13832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/01/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023]
Abstract
Morphological identification of cnidarian species can be difficult throughout all life stages due to the lack of distinct morphological characters. Moreover, in some cnidarian taxa genetic markers are not fully informative, and in these cases combinations of different markers or additional morphological verifications may be required. Proteomic fingerprinting based on MALDI-TOF mass spectra was previously shown to provide reliable species identification in different metazoans including some cnidarian taxa. For the first time, we tested the method across four cnidarian classes (Staurozoa, Scyphozoa, Anthozoa, Hydrozoa) and included different scyphozoan life-history stages (polyp, ephyra, medusa) in our dataset. Our results revealed reliable species identification based on MALDI-TOF mass spectra across all taxa with species-specific clusters for all 23 analysed species. In addition, proteomic fingerprinting was successful for distinguishing developmental stages, still by retaining a species specific signal. Furthermore, we identified the impact of different salinities in different regions (North Sea and Baltic Sea) on proteomic fingerprints to be negligible. In conclusion, the effects of environmental factors and developmental stages on proteomic fingerprints seem to be low in cnidarians. This would allow using reference libraries built up entirely of adult or cultured cnidarian specimens for the identification of their juvenile stages or specimens from different geographic regions in future biodiversity assessment studies.
Collapse
Affiliation(s)
- Sven Rossel
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Wilhelmshaven, Germany
| | - Janna Peters
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Hamburg, Germany
| | - Silke Laakmann
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
- Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research (AWI), Bremerhaven, Germany
| | - Pedro Martínez Arbizu
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Wilhelmshaven, Germany
| | - Sabine Holst
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Hamburg, Germany
| |
Collapse
|