1
|
Aaronson PI. The Role of Hydrogen Sulfide in the Regulation of the Pulmonary Vasculature in Health and Disease. Antioxidants (Basel) 2025; 14:341. [PMID: 40227402 PMCID: PMC11939758 DOI: 10.3390/antiox14030341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
The gasotransmitter hydrogen sulfide (H2S; also termed sulfide) generally acts as a vasodilator in the systemic vasculature but causes a paradoxical constriction of pulmonary arteries (PAs). In light of evidence that a fall in the partial pressure in oxygen (pO2) increases cellular sulfide levels, it was proposed that a rise in sulfide in pulmonary artery smooth muscle cells (PASMCs) is responsible for hypoxic pulmonary vasoconstriction, the contraction of PAs which develops rapidly in lung regions undergoing alveolar hypoxia. In contrast, pulmonary hypertension (PH), a sustained elevation of pulmonary artery pressure (PAP) which can develop in the presence of a diverse array of pathological stimuli, including chronic hypoxia, is associated with a decrease in the expression of sulfide -producing enzymes in PASMCs and a corresponding fall in sulfide production by the lung. Evidence that PAP in animal models of PH can be lowered by administration of exogenous sulfide has led to an interest in using sulfide-donating agents for treating this condition in humans. Notably, intracellular H2S exists in equilibrium with other sulfur-containing species such as polysulfides and persulfides, and it is these reactive sulfur species which are thought to mediate most of its effects on cells through persulfidation of cysteine thiols on proteins, leading to changes in function in a manner similar to thiol oxidation by reactive oxygen species. This review sets out what is currently known about the mechanisms by which H2S and related sulfur species exert their actions on pulmonary vascular tone, both acutely and chronically, and discusses the potential of sulfide-releasing drugs as treatments for the different types of PH which arise in humans.
Collapse
Affiliation(s)
- Philip I Aaronson
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, UK
| |
Collapse
|
2
|
Kana Veedu A, Panthalattu Parambil A, Manheri MK. Sequential Release of Ibuprofen and the Gasotransmitter Hydrogen sulfide using Oxanorbornane-Based Synthetic Lipids as Carriers. Chempluschem 2024; 89:e202400323. [PMID: 39235160 DOI: 10.1002/cplu.202400323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
After understanding the biological signaling roles of hydrogen sulfide and its involvement in various physiological processes, there has been enormous interest in exploring its therapeutic utility in areas such as cancer, inflammation, cardiovascular diseases, etc. There is also growing interest in using suitable H2S donors in combination with other drugs to improve the treatment outcome through the modulation of multiple pathways. The premature release of H2S from small molecule donors and the difficulty in controlling its spatio-temporal distribution are the major challenges during these efforts. Hence the development of appropriate carriers that can release this gasotransmitter along with the therapeutic entity of interest in a controlled manner has high significance. In this regard, this report presents a novel drug delivery system from oxanorbornane-based synthetic lipids that carries a H2S-releasing 1,2-dithiole-3-thione moiety as part of the head group. Nanoaggregates of the resulting conjugate are not only capable of efficiently entrapping a non-steroidal anti-inflammatory drug such as ibuprofen, but also release this drug and H2S in a controlled and sequential manner.
Collapse
Affiliation(s)
- Akshaya Kana Veedu
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
| | | | - Muraleedharan K Manheri
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
| |
Collapse
|
3
|
Jiang G, Hong J, Sun L, Wei H, Gong W, Wang S, Zhu J. Glycolysis regulation in tumor-associated macrophages: Its role in tumor development and cancer treatment. Int J Cancer 2024; 154:412-424. [PMID: 37688376 DOI: 10.1002/ijc.34711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/27/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023]
Abstract
Tumor-associated macrophages constitute the main cell population in the tumor microenvironment and play a crucial role in regulating the microenvironment composition. Emerging evidence has revealed that the metabolic profile determines the tumor-associated macrophage phenotype. Tumor-associated macrophage function is highly dependent on glucose metabolism, with glycolysis being the major metabolic pathway. Recent reports have demonstrated diversity in glucose flux of tumor-associated macrophages and complex substance communication with cancer cells. However, how the glucose flux in tumor-associated macrophages connects with glycolysis to influence tumor progression and the tumor microenvironment is still obscure. Moreover, while the development of single-cell sequencing technology allows a clearer and more accurate classification of tumor-associated macrophages, the metabolic profiles of tumor-associated macrophages from the perspective of single-cell omics has not been well summarized. Here, we review the current state of knowledge on glucose metabolism in tumor-associated macrophages and summarize the metabolic profiles of different tumor-associated macrophage subtypes from the perspective of single-cell omics. Additionally, we describe the current strategies targeting glycolysis in tumor-associated macrophages for cancer therapy.
Collapse
Affiliation(s)
- Guangyi Jiang
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, Hangzhou, China
| | - Junjie Hong
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, Hangzhou, China
| | - Lu Sun
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, Hangzhou, China
| | - Haibin Wei
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, Hangzhou, China
| | - Wangang Gong
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, Hangzhou, China
| | - Shu Wang
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, Hangzhou, China
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Jianqing Zhu
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, Hangzhou, China
| |
Collapse
|
4
|
Yang F, Zhong W, Pan S, Wang Y, Xiao Q, Gao X. Recent advances in the mechanism of hydrogen sulfide in wound healing in diabetes. Biochem Biophys Res Commun 2024; 692:149343. [PMID: 38065000 DOI: 10.1016/j.bbrc.2023.149343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024]
Abstract
Wound healing difficulties in diabetes continue to be a clinical challenge, posing a considerable burden to patients and society. Recently, exploration of the mechanism of wound healing and associated treatment options in diabetes has become topical. Of note, the positive role of hydrogen sulfide in promoting wound healing has been demonstrated in recent studies. Hydrogen sulfide is a confirmed gas transmitter in mammals, playing an essential role in pathology and physiology. This review describes the mechanism underlying the role of hydrogen sulfide in the promotion of diabetic wound healing and the potential for hydrogen sulfide supplementation as a therapeutic application.
Collapse
Affiliation(s)
- Fengze Yang
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China.
| | - Wenjie Zhong
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China.
| | - Shengyuan Pan
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China.
| | - Yue Wang
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China.
| | - Qingyue Xiao
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China.
| | - Xiang Gao
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China.
| |
Collapse
|
5
|
Qiao S, Zhao R, He S, Fu X, An J, Xia T. Quercitrin attenuates the progression of osteoarthritis via inhibiting NF-κB signaling pathways and enhance glucose transport capacity. Exp Cell Res 2023; 433:113854. [PMID: 37952573 DOI: 10.1016/j.yexcr.2023.113854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Osteoarthritis (OA) is a common musculoskeletal disorder that impairs function and reduces the quality of life. Extracellular matrix (ECM) degradation and inflammatory mechanisms are crucial to the progression of OA. In this study, we aimed to investigate the anti-inflammatory activity, anti-ECM degradation property, and glucose transport capacity of quercitrin (QCT) on IL-1β-treated rat primary chondrocytes. Rat primary chondrocytes were treated with IL-1β to simulate inflammatory environmental conditions and OA in vitro. We examined the effects of QCT at concentrations ranging from 0 to 200 μM on the viability of rat chondrocytes and selected 5 μM for further study. Using qRT-PCR, immunofluorescent, immunocytochemistry, and western blotting techniques, we identified the potential molecular mechanisms and signaling pathways that are responsible for these effects. We established an OA rat model through anterior cruciate ligament transection (ACLT). The animals were then periodically injected with QCT into the knee articular cavity. Our in vivo and in vitro study showed that QCT could inhibit IL-1β-activated inflammation and ECM degradation in chondrocyte. Furthermore, QCT could inhibit the NF-κB signal pathway and enhance glucose transport capacity in the IL-1β-stimulated chondrocytes. In vivo study proved that QCT attenuates OA progression in rats. Overall, QCT inhibited the activation of NF-κB and enhanced glucose transport capacity to alleviate the progression of OA.
Collapse
Affiliation(s)
- Shigang Qiao
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Runze Zhao
- Department of Orthopedic Surgery, The First Affiliated Hospital, Orthopedic Institure, Medical College, Soochow University, Suzhou, China
| | - Shuangjian He
- Department of orthopedics, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Xuejie Fu
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Jianzhong An
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Tingting Xia
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China.
| |
Collapse
|
6
|
Munteanu C, Turnea MA, Rotariu M. Hydrogen Sulfide: An Emerging Regulator of Oxidative Stress and Cellular Homeostasis-A Comprehensive One-Year Review. Antioxidants (Basel) 2023; 12:1737. [PMID: 37760041 PMCID: PMC10526107 DOI: 10.3390/antiox12091737] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Hydrogen sulfide (H2S), traditionally recognized as a toxic gas, has emerged as a critical regulator in many biological processes, including oxidative stress and cellular homeostasis. This review presents an exhaustive overview of the current understanding of H2S and its multifaceted role in mammalian cellular functioning and oxidative stress management. We delve into the biological sources and function of H2S, mechanisms underlying oxidative stress and cellular homeostasis, and the intricate relationships between these processes. We explore evidence from recent experimental and clinical studies, unraveling the intricate biochemical and molecular mechanisms dictating H2S's roles in modulating oxidative stress responses and maintaining cellular homeostasis. The clinical implications and therapeutic potential of H2S in conditions characterized by oxidative stress dysregulation and disrupted homeostasis are discussed, highlighting the emerging significance of H2S in health and disease. Finally, this review underscores current challenges, controversies, and future directions in the field, emphasizing the need for further research to harness H2S's potential as a therapeutic agent for diseases associated with oxidative stress and homeostatic imbalance. Through this review, we aim to emphasize H2S's pivotal role in cellular function, encouraging further exploration into this burgeoning area of research.
Collapse
Affiliation(s)
- Constantin Munteanu
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700454 Iași, Romania;
| | - Marius Alexandru Turnea
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700454 Iași, Romania;
| | - Mariana Rotariu
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700454 Iași, Romania;
| |
Collapse
|
7
|
Cornwell A, Badiei A. The role of hydrogen sulfide in the retina. Exp Eye Res 2023; 234:109568. [PMID: 37460081 DOI: 10.1016/j.exer.2023.109568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023]
Abstract
The discovery of the hydrogen sulfide (H2S) and the transsulfuration pathway (TSP) responsible for its synthesis in the mammalian retina has highlighted this molecule's wide range of physiological processes that influence cellular signaling, redox homeostasis, and cellular metabolism. The multi-level regulatory program that influences H2S levels in the retina depends on the relative expression and activity of TSP enzymes, which regulate the abundance of competitive substrates that support or abrogate H2S synthesis. In addition, and apart from TSP, intracellular H2S levels are regulated by mitochondrial sulfide oxidizing pathways. Retinal layers natively express differing levels of TSP enzymes, which highlight the differences in the metabolite and substrate requirement. Recent studies indicate that these systems are susceptible to pathophysiologies affecting the retina. Dysregulation at any level can upset the balance of redox and signaling processes and possibly upset oxidative stress, apoptotic signaling, ion channels, and immune response within this sensitive tissue. H2S donors are a potential therapeutic in such cases and have been demonstrated to bridge the gap, positively impacting the damaged retina. Here, we review the recent findings of H2S, how its multi-level regulation impacts the retina, and how its dysregulation is implicated in retinal pathologies.
Collapse
Affiliation(s)
- Alex Cornwell
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, 99775, AK, USA
| | - Alireza Badiei
- Department of Veterinary Medicine, University of Alaska Fairbanks, Fairbanks, 99775, AK, USA.
| |
Collapse
|
8
|
Cornwell A, Ziółkowski H, Badiei A. Glucose Transporter Glut1-Dependent Metabolic Reprogramming Regulates Lipopolysaccharide-Induced Inflammation in RAW264.7 Macrophages. Biomolecules 2023; 13:770. [PMID: 37238640 PMCID: PMC10216519 DOI: 10.3390/biom13050770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
This study investigated the critical role of Glut1-mediated glucose metabolism in the inflammatory response of macrophages, which are energy-intensive cells within the innate immune system. Inflammation leads to increased Glut1 expression, ensuring sufficient glucose uptake to support macrophage functions. We demonstrated that using siRNA to knock down Glut1 reduces the expression of various pro-inflammatory cytokines and markers, such as IL-6, iNOS, MHC II/CD40, reactive oxygen species, and the hydrogen sulfide (H2S)-producing enzyme cystathionine γ-lyase (CSE). Glut1 activates a pro-inflammatory profile through a nuclear factor (NF)-κB, while silencing Glut1 can prevent lipopolysaccharide (LPS)-induced IκB degradation, blocking NF-κB activation. Glut1's role in autophagy, an essential process for macrophage functions such as antigen presentation, phagocytosis, and cytokine secretion, was also measured. The findings show that LPS stimulation decreases autophagosome formation, but Glut1 knockdown reverses this effect, increasing autophagy beyond control levels. The study highlights Glut1's importance in macrophage immune responses and its regulation of apoptosis during LPS stimulation. Knocking down Glut1 negatively impacts cell viability and mitochondrial intrinsic pathway signaling. These findings collectively suggest that targeting macrophage glucose metabolism through Glut1 could potentially serve as a target for controlling inflammation.
Collapse
Affiliation(s)
- Alex Cornwell
- Department of Biology and Wildlife, College of Natural Science and Mathematics, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Hubert Ziółkowski
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland
| | - Alireza Badiei
- Department of Veterinary Medicine, College of Natural Science and Mathematics, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| |
Collapse
|
9
|
Cornwell A, Badiei A. From Gasotransmitter to Immunomodulator: The Emerging Role of Hydrogen Sulfide in Macrophage Biology. Antioxidants (Basel) 2023; 12:935. [PMID: 37107310 PMCID: PMC10135606 DOI: 10.3390/antiox12040935] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Hydrogen sulfide (H2S) has been increasingly recognized as a crucial inflammatory mediator in immune cells, particularly macrophages, due to its direct and indirect effects on cellular signaling, redox homeostasis, and energy metabolism. The intricate regulation of endogenous H2S production and metabolism involves the coordination of transsulfuration pathway (TSP) enzymes and sulfide oxidizing enzymes, with TSP's role at the intersection of the methionine pathway and glutathione synthesis reactions. Additionally, H2S oxidation mediated by sulfide quinone oxidoreductase (SQR) in mammalian cells may partially control cellular concentrations of this gasotransmitter to induce signaling. H2S is hypothesized to signal through the posttranslational modification known as persulfidation, with recent research highlighting the significance of reactive polysulfides, a derivative of sulfide metabolism. Overall, sulfides have been identified as having promising therapeutic potential to alleviate proinflammatory macrophage phenotypes, which are linked to the exacerbation of disease outcomes in various inflammatory conditions. H2S is now acknowledged to have a significant influence on cellular energy metabolism by affecting the redox environment, gene expression, and transcription factor activity, resulting in changes to both mitochondrial and cytosolic energy metabolism processes. This review covers recent discoveries pertaining to the involvement of H2S in macrophage cellular energy metabolism and redox regulation, and the potential implications for the inflammatory response of these cells in the broader framework of inflammatory diseases.
Collapse
Affiliation(s)
- Alex Cornwell
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, USA;
| | - Alireza Badiei
- Department of Veterinary Medicine, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| |
Collapse
|