1
|
Hubiernatorova A, Novak J, Vaskovicova M, Sekac D, Kropyvko S, Hodny Z. Tristetraprolin affects invasion-associated genes expression and cell motility in triple-negative breast cancer model. Cytoskeleton (Hoboken) 2025; 82:311-326. [PMID: 39319680 PMCID: PMC12063522 DOI: 10.1002/cm.21934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
Tristetraprolin (TTP) is an RNA-binding protein that negatively regulates its target mRNAs and has been shown to inhibit tumor progression and invasion. Tumor invasion requires precise regulation of cytoskeletal components, and dysregulation of cytoskeleton-associated genes can significantly alter cell motility and invasive capability. Several genes, including SH3PXD2A, SH3PXD2B, CTTN, WIPF1, and WASL, are crucial components of the cytoskeleton reorganization machinery and are essential for adequate cell motility. These genes are also involved in invasion processes, with SH3PXD2A, SH3PXD2B, WIPF1, and CTTN being key components of invadopodia-specialized structures that facilitate invasion. However, the regulation of these genes is not well understood. This study demonstrates that ectopic expression of TTP in MDA-MB-231 cells leads to decreased mRNA levels of CTTN and SH3PXD2A, as well as defects in cell motility and actin filament organization. Additionally, doxorubicin significantly increases TTP expression and reduces the mRNA levels of cytoskeleton-associated genes, enhancing our understanding of how doxorubicin may affect the transcriptional profile of cells. However, doxorubicin affects target mRNAs differently than TTP ectopic expression, suggesting it may not be the primary mechanism of doxorubicin in breast cancer (BC) treatment. High TTP expression is considered as a positive prognostic marker in multiple cancers, including BC. Given that doxorubicin is a commonly used drug for treating triple-negative BC, using TTP as a prognostic marker in this cohort of patients might be limited since it might be challenging to understand if high TTP expression occurred due to the favorable physiological state of the patient or as a consequence of treatment.
Collapse
Affiliation(s)
- Anastasiia Hubiernatorova
- Department of Functional GenomicsInstitute of Molecular Biology and Genetics NAS of UkraineKyivUkraine
- Laboratory of Cell Regeneration and PlasticityInstitute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Josef Novak
- Laboratory of Genome IntegrityInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Michaela Vaskovicova
- Department of Cell Biology, Faculty of ScienceCharles UniversityPragueCzech Republic
- Laboratory of DNA IntegrityInstitute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - David Sekac
- Laboratory of Cell Regeneration and PlasticityInstitute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
- Department of Cell Biology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Serhii Kropyvko
- Department of Functional GenomicsInstitute of Molecular Biology and Genetics NAS of UkraineKyivUkraine
| | - Zdenek Hodny
- Laboratory of Genome IntegrityInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| |
Collapse
|
2
|
Borah D, Blacharczyk O, Szafranska K, Czyzynska-Cichon I, Metwally S, Szymanowski K, Hübner W, Kotlinowski J, Dobosz E, McCourt P, Huser T, Lekka M, Zapotoczny B. Mimicking the Liver Sinusoidal Endothelial Cell Niche In Vitro to Enhance Fenestration in a Genetic Model of Systemic Inflammation. Cells 2025; 14:621. [PMID: 40277946 PMCID: PMC12025456 DOI: 10.3390/cells14080621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/26/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) play a crucial role in hepatic homeostasis, clearance, and microcirculatory regulation. Their fenestrations-patent transcellular pores-are essential for proper liver function, yet disappear in pathological conditions such as liver fibrosis and inflammation through a process known as defenestration. Defenestrated sinusoids are often linked to the liver stiffening that occurs through mechanotransduction-regulated processes. We performed a detailed characterization of polyacrylamide (PAA) hydrogels using atomic force microscopy (AFM), rheometry, scanning electron microscopy, and fluorescence microscopy to assess their potential as biomimetic substrates for LSECs. We additionally implemented AFM; quantitative fluorescence microscopy, including high-resolution structured illumination microscopy (HR-SIM); and an endocytosis assay to characterize the morphology and function of LSECs. Our results revealed significant local variations in hydrogel stiffness and differences in pore sizes. The primary LSECs cultured on these substrates had a range of stiffnesses and were analyzed with regard to their number of fenestrations, cytoskeletal organization, and endocytic function. To explore mechanotransduction in inflammatory liver disease, we investigated LSECs from a genetic model of systemic inflammation triggered by the deletion of Mcpip1 in myeloid leukocytes and examined their ability to restore their fenestrations on soft substrates. Our study demonstrates the beneficial effect of soft hydrogels on LSECs. Control cells exhibited a similar fenestrated morphology and function compared to cells cultured on plastic substrates. However, the pathological LSECs from the genetic model of systemic inflammation regained their fenestrations when cultured on soft hydrogels. This observation supports previous findings on the beneficial effects of soft substrates on LSEC fenestration status.
Collapse
Affiliation(s)
- Dibakar Borah
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 142, 31-342 Krakow, Poland; (D.B.); (S.M.); (M.L.)
| | - Oliwia Blacharczyk
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 142, 31-342 Krakow, Poland; (D.B.); (S.M.); (M.L.)
| | - Karolina Szafranska
- Vascular Biology Research Group, Department of Medical Biology University of Tromsø—The Arctic University of Norway, 9019 Tromsø, Norway; (K.S.); (P.M.)
| | - Izabela Czyzynska-Cichon
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland;
| | - Sara Metwally
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 142, 31-342 Krakow, Poland; (D.B.); (S.M.); (M.L.)
| | - Konrad Szymanowski
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 142, 31-342 Krakow, Poland; (D.B.); (S.M.); (M.L.)
| | - Wolfgang Hübner
- Biomolecular Photonics, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany; (W.H.); (T.H.)
| | - Jerzy Kotlinowski
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland;
| | - Ewelina Dobosz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland;
| | - Peter McCourt
- Vascular Biology Research Group, Department of Medical Biology University of Tromsø—The Arctic University of Norway, 9019 Tromsø, Norway; (K.S.); (P.M.)
| | - Thomas Huser
- Biomolecular Photonics, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany; (W.H.); (T.H.)
| | - Malgorzata Lekka
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 142, 31-342 Krakow, Poland; (D.B.); (S.M.); (M.L.)
| | - Bartlomiej Zapotoczny
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 142, 31-342 Krakow, Poland; (D.B.); (S.M.); (M.L.)
| |
Collapse
|
3
|
Ansarizadeh M, Nguyen HT, Lazovic B, Kettunen J, De Silva L, Sivakumar R, Junttila P, Rissanen SL, Hicks R, Singh P, Eklund L. Microfluidic vessel-on-chip platform for investigation of cellular defects in venous malformations and responses to various shear stress and flow conditions. LAB ON A CHIP 2025; 25:613-630. [PMID: 39847008 DOI: 10.1039/d4lc00824c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
A novel microfluidic platform was designed to study the cellular architecture of endothelial cells (ECs) in an environment replicating the 3D organization and flow of blood vessels. In particular, the platform was constructed to investigate EC defects in slow-flow venous malformations (VMs) under varying shear stress and flow conditions. The platform featured a standard microtiter plate footprint containing 32 microfluidic units capable of replicating wall shear stress (WSS) in normal veins and enabling precise control of shear stress and flow directionality without the need for complex pumping systems. Using genetically engineered human umbilical vein endothelial cells (HUVECs) and induced pluripotent stem cell (iPSC)-derived ECs (iECs) to express the recurrent TIE2L914F VM mutation we assessed responses on EC orientation and area, actin organization, and Golgi polarization to uni- and bidirectional flow and varying WSS. Comparison of control and TIE2L914F expressing ECs showed differential cellular responses to flow and WSS in terms of cell shape elongation, orientation of F-actin, and Golgi polarization, indicating altered mechanosensory or mechanotransduction signaling pathways in the presence of the VM causative mutation. The data also revealed significant differences in how the primary and iPSC-derived iECs responded to flow. As a conclusion, the developed microfluidic platform allowed simulation of multiple flow conditions in a scalable and pumpless format. The design made it a desirable tool for studying different EC types as well as cellular changes in vascular disease. The platform should offer new opportunities for biomechanical research by providing a controlled environment to analyze the flow-dependent mechanosensory pathways in ECs.
Collapse
Affiliation(s)
- Mohammadhassan Ansarizadeh
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland.
| | - Hoang-Tuan Nguyen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland.
- Finnadvance Ltd., Oulu, Finland
| | - Bojana Lazovic
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland.
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Laknee De Silva
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland.
| | | | | | | | - Ryan Hicks
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
| | | | - Lauri Eklund
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland.
| |
Collapse
|
4
|
Kruse LD, Holte C, Zapotoczny B, Struck EC, Schürstedt J, Hübner W, Huser T, Szafranska K. Hydrogen peroxide damage to rat liver sinusoidal endothelial cells is prevented by n-acetyl-cysteine but not GSH. Hepatol Commun 2025; 9:e0617. [PMID: 40163767 PMCID: PMC11737494 DOI: 10.1097/hc9.0000000000000617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/01/2024] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Reactive oxygen species (ROS) are prevalent in the liver during intoxication, infection, inflammation, and aging. Changes in liver sinusoidal endothelial cells (LSEC) are associated with various liver diseases. METHODS Isolated rat LSEC were studied under oxidative stress induced by H2O2 at different concentrations (0.5-1000 µM) and exposure times (10-120 min). LSEC functions were tested in a dose-dependent and time-dependent manner. RESULTS (1) Cell viability, reducing potential, and scavenging function decreased as H2O2 concentration and exposure time increased; (2) intracellular ROS levels rose with higher H2O2 concentrations; (3) fenestrations exhibited a dynamic response, initially closing but partially reopening at H2O2 concentrations above 100 µM after about 1 hour; (4) scavenging function was affected after just 10 minutes of exposure, with the impact being irreversible and primarily affecting degradation rather than receptor-mediated uptake; (5) the tubulin network was disrupted in high H2O2 concentration while the actin cytoskeleton appears to remain largely intact. Finally, we found that reducing agents and thiol donors such as n-acetyl cysteine and glutathione (GSH) could protect cells from ROS-induced damage but could not reverse existing damage as pretreatment with n-acetyl cysteine, but not GSH, reduced the negative effects of ROS exposure. CONCLUSIONS The results suggest that LSEC does not store an excess amount of GSH but rather can readily produce it in the occurrence of oxidative stress conditions. Moreover, the observed thresholds in dose-dependent and time-dependent changes, as well as the treatments with n-acetyl cysteine/GSH, confirm the existence of a ROS-depleting system in LSEC.
Collapse
Affiliation(s)
- Larissa D. Kruse
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø—The Arctic University of Norway, Tromsø, Norway
| | - Christopher Holte
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø—The Arctic University of Norway, Tromsø, Norway
| | | | - Eike C. Struck
- Translational Vascular Research Group, Department of Clinical Medicine, University of Tromsø—The Arctic University of Norway, Tromsø, Norway
| | - Jasmin Schürstedt
- Biomolecular Photonics Research Group, Department of Physics, Bielefeld University, Bielefeld, Germany
| | - Wolfgang Hübner
- Biomolecular Photonics Research Group, Department of Physics, Bielefeld University, Bielefeld, Germany
| | - Thomas Huser
- Biomolecular Photonics Research Group, Department of Physics, Bielefeld University, Bielefeld, Germany
| | - Karolina Szafranska
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø—The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
5
|
Czyzynska-Cichon I, Kotlinowski J, Blacharczyk O, Giergiel M, Szymanowski K, Metwally S, Wojnar-Lason K, Dobosz E, Koziel J, Lekka M, Chlopicki S, Zapotoczny B. Early and late phases of liver sinusoidal endothelial cell (LSEC) defenestration in mouse model of systemic inflammation. Cell Mol Biol Lett 2024; 29:139. [PMID: 39528938 PMCID: PMC11556108 DOI: 10.1186/s11658-024-00655-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Liver sinusoidal endothelial cells (LSECs) have transcellular pores, called fenestrations, participating in the bidirectional transport between the vascular system and liver parenchyma. Fenestrated LSECs indicate a healthy phenotype of liver while loss of fenestrations (defenestration) in LSECs is associated with liver pathologies. METHODS We introduce a unique model of systemic inflammation triggered by the deletion of Mcpip1 in myeloid leukocytes (Mcpip1fl/flLysMCre) characterised by progressive alterations in LSEC phenotype. We implement multiparametric characterisation of LSECs by using novel real-time atomic force microscopy supported with scanning electron microscopy and quantitative fluorescence microscopy. In addition, we provide genetic profiling, searching for characteristic genes encoding proteins that might be connected with the structure of fenestrations. RESULTS We demonstrate that LSECs in Mcpip1fl/flLysMCre display two phases of defenestration: the early phase, with modest defenestration that was fully reversible using cytochalasin B and the late phase, with severe defenestration that is mostly irreversible. By thorough analysis of LSEC porosity, elastic modulus and actin abundance in Mcpip1fl/flLysMCre and in response to cytochalasin B, we demonstrate that proteins other than actin must be additionally responsible for inducing open fenestrations. We highlight several genes that were severely affected in the late but not in the early phase of LSEC defenestration shedding a light on complex structure of individual fenestrations. CONCLUSIONS The presented model of LSEC derived from Mcpip1fl/flLysMCre provides a valuable reference for developing novel strategies for LSEC refenestration in the early and late phases of liver pathology.
Collapse
Affiliation(s)
- Izabela Czyzynska-Cichon
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Jerzy Kotlinowski
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Oliwia Blacharczyk
- Institute of Nuclear Physics Polish Academy of Sciences, 31342, Krakow, Poland
| | - Magdalena Giergiel
- Centre for Nanometer-Scale Science and Advanced Materials (NANOSAM), Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Konrad Szymanowski
- Institute of Nuclear Physics Polish Academy of Sciences, 31342, Krakow, Poland
| | - Sara Metwally
- Institute of Nuclear Physics Polish Academy of Sciences, 31342, Krakow, Poland
| | - Kamila Wojnar-Lason
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland
- Department of Pharmacology, Jagiellonian University Medical College, Grzegorzecka 16, 31-531, Krakow, Poland
| | - Ewelina Dobosz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Malgorzata Lekka
- Institute of Nuclear Physics Polish Academy of Sciences, 31342, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland
- Department of Pharmacology, Jagiellonian University Medical College, Grzegorzecka 16, 31-531, Krakow, Poland
| | | |
Collapse
|
6
|
Luty M, Szydlak R, Pabijan J, Zemła J, Oevreeide IH, Prot VE, Stokke BT, Lekka M, Zapotoczny B. Tubulin-Targeted Therapy in Melanoma Increases the Cell Migration Potential by Activation of the Actomyosin Cytoskeleton─An In Vitro Study. ACS Biomater Sci Eng 2024; 10:7155-7166. [PMID: 39436192 PMCID: PMC11558564 DOI: 10.1021/acsbiomaterials.4c01226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024]
Abstract
One of the most dangerous aspects of cancers is their ability to metastasize, which is the leading cause of death. Hence, it holds significance to develop therapies targeting the eradication of cancer cells in parallel, inhibiting metastases in cells surviving the applied therapy. Here, we focused on two melanoma cell lines─WM35 and WM266-4─representing the less and more invasive melanomas. We investigated the mechanisms of cellular processes regulating the activation of actomyosin as an effect of colchicine treatment. Additionally, we investigated the biophysical aspects of supplement therapy using Rho-associated protein kinase (ROCK) inhibitor (Y-27632) and myosin II inhibitor ((-)-blebbistatin), focusing on the microtubules and actin filaments. We analyzed their effect on the proliferation, migration, and invasiveness of melanoma cells, supported by studies on cytoskeletal architecture using confocal fluorescence microscopy and nanomechanics using atomic force microscopy (AFM) and microconstriction channels. Our results showed that colchicine inhibits the migration of most melanoma cells, while for a small cell population, it paradoxically increases their migration and invasiveness. These changes are also accompanied by the formation of stress fibers, compensating for the loss of microtubules. Simultaneous administration of selected agents led to the inhibition of this compensatory effect. Collectively, our results highlighted that colchicine led to actomyosin activation and increased the level of cancer cell invasiveness. We emphasized that a cellular pathway of Rho-ROCK-dependent actomyosin contraction is responsible for the increased invasive potential of melanoma cells in tubulin-targeted therapy.
Collapse
Affiliation(s)
- Marcin Luty
- Institute
of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | - Renata Szydlak
- Institute
of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | - Joanna Pabijan
- Institute
of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | - Joanna Zemła
- Institute
of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | - Ingrid H. Oevreeide
- Biophysics
and Medical Technology, Department of Physics, NTNU The Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Victorien E. Prot
- Biomechanics,
Department of Structural Engineering, NTNU
The Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Bjørn T. Stokke
- Biophysics
and Medical Technology, Department of Physics, NTNU The Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Malgorzata Lekka
- Institute
of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | | |
Collapse
|
7
|
Bohovyk R, Kravtsova O, Levchenko V, Klemens CA, Palygin O, Staruschenko A. Effects of zinc in podocytes and cortical collecting duct in vitro and Dahl salt-sensitive rats in vivo. J Biol Chem 2024; 300:107781. [PMID: 39276935 PMCID: PMC11736004 DOI: 10.1016/j.jbc.2024.107781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024] Open
Abstract
Zinc is one of the essential divalent cations in the human body and a fundamental microelement involved in the regulation of many cellular and subcellular functions. Experimental studies reported that zinc deficiency is associated with renal damage and could increase blood pressure. It was proposed that zinc dietary supplementation plays a renoprotective role. Our study aimed to investigate the effects of zinc on intracellular signaling in renal cells and explore the correlation between dietary zinc and the progression of salt-induced hypertension. The impact of extracellular zinc concentrations on two different kidney epithelial cell types, podocytes and principal cells of the cortical collecting duct (CCD), was tested. In podocytes, a rise in extracellular zinc promotes TRPC6 channel-mediated calcium entry but not altered intracellular zinc levels. However, we observe the opposite effect in CCD cells with no alteration in calcium levels and steady-state elevation in intracellular zinc. Moreover, prolonged extracellular zinc exposure leads to cytotoxic insults in CCD cells but not in podocytes, characterized by increased cell death and disrupted cytoskeletal organization. Next, we tested if dietary zinc plays a role in the development of hypertension in Dahl salt-sensitive rats. Neither zinc-rich nor deficient diets impact the regular development of salt-sensitive hypertension. These results suggest specialized roles for zinc in renal function, implicating its involvement in proliferation and apoptosis in CCD cells and calcium signaling and cytoskeletal dynamics modulation in podocytes. Further research is required to elucidate the detailed mechanisms of zinc action and its implications in renal health and disease.
Collapse
Affiliation(s)
- Ruslan Bohovyk
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
| | - Olha Kravtsova
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
| | - Vladislav Levchenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
| | - Christine A Klemens
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA; Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida, USA
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA; Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida, USA; James A. Haley Veterans' Hospital, Tampa, Florida, USA.
| |
Collapse
|
8
|
Flormann DAD, Kainka L, Montalvo G, Anton C, Rheinlaender J, Thalla D, Vesperini D, Pohland MO, Kaub KH, Schu M, Pezzano F, Ruprecht V, Terriac E, Hawkins RJ, Lautenschläger F. The structure and mechanics of the cell cortex depend on the location and adhesion state. Proc Natl Acad Sci U S A 2024; 121:e2320372121. [PMID: 39042691 PMCID: PMC11295003 DOI: 10.1073/pnas.2320372121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/16/2024] [Indexed: 07/25/2024] Open
Abstract
Cells exist in different phenotypes and can transition between them. A phenotype may be characterized by many different aspects. Here, we focus on the example of whether the cell is adhered or suspended and choose particular parameters related to the structure and mechanics of the actin cortex. The cortex is essential to cell mechanics, morphology, and function, such as for adhesion, migration, and division of animal cells. To predict and control cellular functions and prevent malfunctioning, it is necessary to understand the actin cortex. The structure of the cortex governs cell mechanics; however, the relationship between the architecture and mechanics of the cortex is not yet well enough understood to be able to predict one from the other. Therefore, we quantitatively measured structural and mechanical cortex parameters, including cortical thickness, cortex mesh size, actin bundling, and cortex stiffness. These measurements required developing a combination of measurement techniques in scanning electron, expansion, confocal, and atomic force microscopy. We found that the structure and mechanics of the cortex of cells in interphase are different depending on whether the cell is suspended or adhered. We deduced general correlations between structural and mechanical properties and show how these findings can be explained within the framework of semiflexible polymer network theory. We tested the model predictions by perturbing the properties of the actin within the cortex using compounds. Our work provides an important step toward predictions of cell mechanics from cortical structures and suggests how cortex remodeling between different phenotypes impacts the mechanical properties of cells.
Collapse
Affiliation(s)
- D. A. D. Flormann
- Department of Physics, Saarland University, Saarbrücken 66123, Germany
| | - L. Kainka
- Department of Physics, Saarland University, Saarbrücken 66123, Germany
| | - G. Montalvo
- Department of Physics, Saarland University, Saarbrücken 66123, Germany
| | - C. Anton
- Department of Physics, Saarland University, Saarbrücken 66123, Germany
| | - J. Rheinlaender
- Faculty of Science, Institute of Applied Physics, University of Tübingen, Tübingen72076, Germany
| | - D. Thalla
- Department of Physics, Saarland University, Saarbrücken 66123, Germany
| | - D. Vesperini
- Department of Physics, Saarland University, Saarbrücken 66123, Germany
| | - M. O. Pohland
- Department of Physics, Saarland University, Saarbrücken 66123, Germany
| | - K. H. Kaub
- Department of Physics, Saarland University, Saarbrücken 66123, Germany
- Department of Biophysical Chemistry, Georg-August-University, Göttingen37077, Germany
| | - M. Schu
- Department of Physics, Saarland University, Saarbrücken 66123, Germany
| | - F. Pezzano
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona08003, Spain
| | - V. Ruprecht
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona08003, Spain
- Universitat Pompeu Fabra, Barcelona08002, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona08010, Spain
| | - E. Terriac
- Department of Physics, Saarland University, Saarbrücken 66123, Germany
| | - R. J. Hawkins
- Department of Physics and Astronomy, University of Sheffield, SheffieldS3 7RH, United Kingdom
- African Institute for Mathematical Sciences, Accra20046, Ghana
| | - F. Lautenschläger
- Department of Physics, Saarland University, Saarbrücken 66123, Germany
- Center for Biophysics, Saarland University, Saarbrücken66123, Germany
| |
Collapse
|
9
|
Bowser RM, Farman GP, Gregorio CC. Philament: A filament tracking program to quickly and accurately analyze in vitro motility assays. BIOPHYSICAL REPORTS 2024; 4:100147. [PMID: 38404534 PMCID: PMC10884813 DOI: 10.1016/j.bpr.2024.100147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/25/2024] [Indexed: 02/27/2024]
Abstract
In vitro motility (IVM) assays allow for the examination of the basic interaction between cytoskeletal filaments with molecular motors and the influence many physiological factors have on this interaction. Examples of factors that can be studied include changes in ADP and pH that emulate fatigue, altered phosphorylation that can occur with disease, and mutations within myofilament proteins that cause disease. While IVM assays can be analyzed manually, the main limitation is the ability to extract accurate data rapidly from videos collected without individual bias. While programs have been created in the past to enable data extraction, many are now out of date or require the use of proprietary software. Here, we report the generation of a Python-based tracking program, Philament, which automatically extracts data on instantaneous and average velocities, and allows for fully automated analysis of IVM recordings. The data generated are presented in an easily accessible spreadsheet-based, comma-separated values file. Philament also contains a novel method of quantifying the smoothness of filament motion. By fitting curves to standard deviations of velocity and average velocities, the influence of different experimental conditions can be compared relative to one another. This comparison provides a qualitative measure of protein interactions where steeper slopes indicate more unstable interactions and shallower slopes indicate more stable interactions within the myofilament. Overall, Philament's automation of IVM analysis provides easier entry into the field of cardiovascular mechanics and enables users to create a truly high-throughput experimental data analysis.
Collapse
Affiliation(s)
- Ryan M. Bowser
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona
| | - Gerrie P. Farman
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona
| | - Carol C. Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona
- Cardiovascular Research Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
10
|
Zelená A, Blumberg J, Probst D, Gerasimaitė R, Lukinavičius G, Schwarz US, Köster S. Force generation in human blood platelets by filamentous actomyosin structures. Biophys J 2023; 122:3340-3353. [PMID: 37475214 PMCID: PMC10465724 DOI: 10.1016/j.bpj.2023.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/11/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023] Open
Abstract
Blood platelets are central elements of the blood clotting response after wounding. Upon vessel damage, they bind to the surrounding matrix and contract the forming thrombus, thus helping to restore normal blood circulation. The hemostatic function of platelets is directly connected to their mechanics and cytoskeletal organization. The reorganization of the platelet cytoskeleton during spreading occurs within minutes and leads to the formation of contractile actomyosin bundles, but it is not known if there is a direct correlation between the emerging actin structures and the force field that is exerted to the environment. In this study, we combine fluorescence imaging of the actin structures with simultaneous traction force measurements in a time-resolved manner. In addition, we image the final states with superresolution microscopy. We find that both the force fields and the cell shapes have clear geometrical patterns defined by stress fibers. Force generation is localized in a few hotspots, which appear early during spreading, and, in the mature state, anchor stress fibers in focal adhesions. Moreover, we show that, for a gel stiffness in the physiological range, force generation is a very robust mechanism and we observe no systematic dependence on the amount of added thrombin in solution or fibrinogen coverage on the substrate, suggesting that force generation after platelet activation is a threshold phenomenon that ensures reliable thrombus contraction in diverse environments.
Collapse
Affiliation(s)
- Anna Zelená
- Institute for X-Ray Physics, University of Göttingen, Göttingen, Germany
| | - Johannes Blumberg
- Institute for Theoretical Physics, University of Heidelberg, Heidelberg, Germany; BioQuant-Center for Quantitative Biology, University of Heidelberg, Heidelberg, Germany
| | - Dimitri Probst
- Institute for Theoretical Physics, University of Heidelberg, Heidelberg, Germany; BioQuant-Center for Quantitative Biology, University of Heidelberg, Heidelberg, Germany
| | - Rūta Gerasimaitė
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | - Ulrich S Schwarz
- Institute for Theoretical Physics, University of Heidelberg, Heidelberg, Germany; BioQuant-Center for Quantitative Biology, University of Heidelberg, Heidelberg, Germany.
| | - Sarah Köster
- Institute for X-Ray Physics, University of Göttingen, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|