1
|
Shin SY, Kang IS, Kim C. ERK inhibits osteoclast differentiation in RAW 264.7 cells through the osteoprotegerin-mediated autophagy. Bone 2025; 193:117424. [PMID: 39947572 DOI: 10.1016/j.bone.2025.117424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/22/2025] [Accepted: 02/09/2025] [Indexed: 02/25/2025]
Abstract
Osteoclasts (OCs) are bone-resorbing cells derived from the monocyte/macrophage lineage. The extracellular signal-regulated kinase (ERK) pathway controls cellular responses such as proliferation, differentiation, and survival, including those of OCs. In the present study, ERK inhibitors reduced the proliferation of bone marrow-derived macrophages (BMMs) and RAW 264.7 cells. However, ERK inhibitors decreased OC differentiation in BMMs but increased it in RAW 264.7 cells. ERK downregulation using small interfering RNA transfection also increased the OC differentiation and the expression of receptor activator of nuclear factor-κB, OC-specific markers, and OC-associated transcription factors in RAW 264.7 cells. These findings suggest ERK regulates OC differentiation in RAW 264.7 cells differently than in BMMs. Thus, we further investigated the mechanism by which ERK negatively regulates OC differentiation in RAW 264.7 cells. ERK inhibition decreased the expression of osteoprotegerin (OPG), a negative regulator of OC differentiation. OPG knockdown increased OC formation. ERK inhibitors activated the Akt/mammalian target of the rapamycin (mTOR) signaling pathway while inhibiting unc-51-like autophagy activating kinase 1 (ULK1). This resulted in decreased levels of microtubule-associated protein 1A/1B-light chain 3-II (LC3-II) and increased levels of p62, thereby reducing autophagy. In addition, OPG knockdown reduced autophagy by activating Akt/mTOR and inhibiting ULK1, resulting in decreased LC3-II and accumulated p62. Therefore, ERK inhibition promoted OC differentiation by downregulating OPG-mediated inhibition of osteoclastogenesis and autophagy in RAW 264.7 cells. These findings highlight ERK's complex role in OC differentiation and suggest that understanding ERK's dual impact on OC differentiation can provide insights into novel treatment strategies for bone-related disorders.
Collapse
Affiliation(s)
- Soo-Young Shin
- Laboratory of Leukocyte Signaling Research, Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Republic of Korea; BK21, Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - In-Soon Kang
- Laboratory of Leukocyte Signaling Research, Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Chaekyun Kim
- Laboratory of Leukocyte Signaling Research, Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Republic of Korea; BK21, Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
2
|
Li L, Zhao C, Zhang R, Wei W, Liu B, Dong J, Gao X, Zhang D, Wang X, Lu M, Zhang Y, Yu Y, Yuan N, Xu Y, Wang J, Fang Y. Beclin 1 of megakaryocytic lineage cells is locally dispensable for platelet hemostasis but functions distally in bone homeostasis. Bone Res 2025; 13:32. [PMID: 40032858 PMCID: PMC11876339 DOI: 10.1038/s41413-025-00410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 01/15/2025] [Accepted: 01/21/2025] [Indexed: 03/05/2025] Open
Abstract
The crosstalk between megakaryocytic lineage cells and the skeletal system has just begun to be explored but remains largely elusive. Using conditional gene knockout mouse models, we demonstrated that loss of Beclin 1 (Becn1), a major regulator of mammalian autophagy, exclusively in the megakaryocytic lineage disrupted autophagy in platelets but did not compromise megakaryopoiesis or the formation and function of platelets. Unexpectedly, conditional Becn1 deletion in male mice led to a remarkable increase in bone mass with improved bone quality, in association with a decrease in sex hormone binding globulin (SHBG) and an increase in free testosterone (FT). In vivo Becn1 overexpression in megakaryocytic lineage-specific cells reduced bone mass and quality, along with an increase in SHBG and a decrease in FT. Transplantation of wild-type bone marrow cells into megakaryocytic lineage Becn1-deficient male mice restored bone mass and normalized SHBG and FT. Furthermore, bilateral orchiectomy of Becn1f/f;Pf4-iCre mice, which are crippled with the production of testosterone, resulted in a reduction in bone mass and quality, whereas in vivo overexpression of SHBG, specifically in the liver of Becn1f/f;Pf4-iCre mice, decreased FT and reduced bone mass and quality. In addition, metformin treatment, which induces SHBG expression, reduced FT and normalized bone mass in Becn1f/f;Pf4-iCre mice. We thus concluded that Becn1 of the megakaryocytic lineage is dispensable locally for platelet hemostasis but limits bone mass by increasing SHBG, which in turn reduces the FT of male mice. Our findings highlight a mechanism by which Becn1 from megakaryocytic lineage cells distally balances bone growth.
Collapse
Affiliation(s)
- Lei Li
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- The Affiliated Ninth Suzhou Hospital of Soochow University, Suzhou, China
| | - Chen Zhao
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ruizhi Zhang
- Osteoporosis Institute, Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wen Wei
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- The Affiliated Ninth Suzhou Hospital of Soochow University, Suzhou, China
| | - Bowen Liu
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin Dong
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xueqin Gao
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Di Zhang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xueqing Wang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Meilin Lu
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yumu Zhang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yao Yu
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Na Yuan
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- The Affiliated Ninth Suzhou Hospital of Soochow University, Suzhou, China
| | - Youjia Xu
- Osteoporosis Institute, Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Jianrong Wang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China.
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- The Affiliated Ninth Suzhou Hospital of Soochow University, Suzhou, China.
| | - Yixuan Fang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China.
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- The Affiliated Ninth Suzhou Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Lin J, Zhang W, Wang S, Wang C, Zhang R, Yang Y, Zhou C, Zhang L, Tang P, Liu J, Jin X, Ma Y. Astragalin inhibits neuronal excitability and activates neuronal autophagy in the ACC and LH of CFA mice to alleviate inflammatory pain and pain-related emotions. Int Immunopharmacol 2025; 148:114115. [PMID: 39842140 DOI: 10.1016/j.intimp.2025.114115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/02/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Astragalin (AST), a natural flavonoid, exhibits anti-inflammatory, anti-cancer, and antioxidant properties. However, its effects and molecular mechanisms in inflammatory pain remain unclear. Therefore, this study aims to investigate the impact of AST on a Complete Freund's Adjuvant (CFA)-induced inflammatory pain mouse model and to elucidate its potential mechanisms. We employed behavioral tests, including the paw withdrawal test (PWT) and open field test (OFT), to assess pain thresholds and emotional changes in mice, while ELISA was utilized to measure the expression of inflammatory factors. Western blot analysis was performed to evaluate the expression of autophagy-related proteins, c-Fos, and pathway-related proteins. Additionally, immunofluorescence staining was conducted to assess the co-localization of neurons with autophagy-related factors and c-Fos. Our findings indicate that AST significantly reduces pain sensitivity and anxiety-like behaviors in CFA mice, similar to the analgesic Naproxen (NAP). AST treatment inhibited the expression of c-Fos, a neuronal excitability marker, in the ACC and LH of CFA mice, while upregulating the expression of autophagy-related proteins. Furthermore,AST modulates the expression of proteins associated with the CXCR4-Beclin1/VPS34 signaling pathway. In conclusion, these results suggest that AST inhibits neuronal excitability and enhances autophagy by modulating the CXCR4-Beclin1/VPS34 signaling pathway in the ACC and LH of CFA mice, leading to a reduction in pain sensitivity and anxiety-like behaviors, thereby producing analgesic effects. This study reveals a novel mechanism for the potential use of AST in the treatment of inflammatory pain and pain-related emotions, offering a promising strategy for clinical applications.
Collapse
Affiliation(s)
- Jiahong Lin
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Weishan Zhang
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shuhan Wang
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Can Wang
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Runheng Zhang
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yaqi Yang
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chang Zhou
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Li Zhang
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Pei Tang
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jing Liu
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaobao Jin
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuxin Ma
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
4
|
Burgan J, Rahmati M, Lee M, Saiz AM. Innate immune response to bone fracture healing. Bone 2025; 190:117327. [PMID: 39522707 DOI: 10.1016/j.bone.2024.117327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The field of osteoimmunology has primarily focused on fracture healing in isolated musculoskeletal injuries. The innate immune system is the initial response to fracture, with inflammatory macrophages, cytokines, and neutrophils arriving first at the fracture hematoma, followed by an anti-inflammatory phase to begin the process of new bone formation. This review aims to first discuss the current literature and knowledge gaps on the immune responses governing single fracture healing by encompassing the individual role of macrophages, neutrophils, cytokines, mesenchymal stem cells, bone cells, and other immune cells. This paper discusses the interactive effects of these cellular responses underscoring the field of osteoimmunology. The critical role of the metabolic environment in guiding the immune system properties will be highlighted along with some effective therapeutics for fracture healing in the context of osteoimmunology. However, compared to isolated fractures, which frequently heal well, long bone fractures in over 30 % of polytrauma patients exhibit impaired healing. Clinical evidence suggests there may be distinct physiologic and inflammatory pathways altered in polytrauma resulting in nonunion. Nonunion is associated with worse patient outcomes and increased societal healthcare costs. The dysregulated immunomodulatory/inflammatory response seen in polytrauma may lead to this increased nonunion rate. This paper will investigate the differences in immune response between isolated and polytrauma fractures. Finally, future directions for fracture studies are explored with consideration of the emerging roles of newly discovered immune cell functions in fracture healing, the existing challenges and conflicting results in the field, the translational potential of these studies in clinic, and the more complex nature of polytrauma fractures that can alter cell functions in different tissues.
Collapse
Affiliation(s)
- Jane Burgan
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA; Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maryam Rahmati
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA; Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, PO Box 1109, Blindern, NO-0317 Oslo, Norway
| | - Mark Lee
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA
| | - Augustine Mark Saiz
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA.
| |
Collapse
|
5
|
Dong Q, Zhou J, Feng M, Kong L, Fang B, Zhang Z. A review of bacterial and osteoclast differentiation in bone infection. Microb Pathog 2024; 197:107102. [PMID: 39505086 DOI: 10.1016/j.micpath.2024.107102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/18/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Bone infections are characterized by bacterial invasion of the bone microenvironment and subsequent bone structure deterioration. This holds significance because osteoclasts, which are the only cells responsible for bone resorption, are abnormally stimulated during bone infections. Multiple communication factors secreted by bone stromal cells regulate the membrane of osteoclast progenitor cells, thereby maintaining bone homeostasis through the expression of many types of receptors. During infection, the immunoinflammatory response triggered by bacterial invasion and multiple virulence factors of bacterial origin can disrupt osteoclast homeostasis. Therefore, clarifying the pathways through which bacteria affect osteoclasts can offer a theoretical basis for preventing and treating bone infections. This review summarizes studies investigating bone destruction caused by different bacterial infections. In conclusion, bacteria can affect osteoclast metabolic activity through multiple pathways, including direct contact, release of virulence factors, induction of immunoinflammatory responses, influence on bone stromal cell metabolism, and intracellular infections.
Collapse
Affiliation(s)
- Qi Dong
- Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jiuqin Zhou
- Department of Infectious Disease of Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Mingzhe Feng
- Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Lingqiang Kong
- Department of Orthopedics, the Central Hospital Affiliated to Shaoxing University, Shaoxing, 312030, China.
| | - Bin Fang
- Department of Orthopedics, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310000, China.
| | - Zhen Zhang
- Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
6
|
Jiang J, Ren R, Fang W, Miao J, Wen Z, Wang X, Xu J, Jin H. Lysosomal biogenesis and function in osteoclasts: a comprehensive review. Front Cell Dev Biol 2024; 12:1431566. [PMID: 39170917 PMCID: PMC11335558 DOI: 10.3389/fcell.2024.1431566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024] Open
Abstract
Lysosomes serve as catabolic centers and signaling hubs in cells, regulating a multitude of cellular processes such as intracellular environment homeostasis, macromolecule degradation, intracellular vesicle trafficking and autophagy. Alterations in lysosomal level and function are crucial for cellular adaptation to external stimuli, with lysosome dysfunction being implicated in the pathogenesis of numerous diseases. Osteoclasts (OCs), as multinucleated cells responsible for bone resorption and maintaining bone homeostasis, have a complex relationship with lysosomes that is not fully understood. Dysregulated function of OCs can disrupt bone homeostasis leading to the development of various bone disorders. The regulation of OC differentiation and bone resorption for the treatment of bone disease have received considerable attention in recent years, yet the role and regulation of lysosomes in OCs, as well as the potential therapeutic implications of intervening in lysosomal biologic behavior for the treatment of bone diseases, remain relatively understudied. This review aims to elucidate the mechanisms involved in lysosomal biogenesis and to discuss the functions of lysosomes in OCs, specifically in relation to differentiation, bone resorption, and autophagy. Finally, we explore the potential therapeutic implication of targeting lysosomes in the treatment of bone metabolic disorders.
Collapse
Affiliation(s)
- Junchen Jiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Rufeng Ren
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Weiyuan Fang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jiansen Miao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zijun Wen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haiming Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Dawalibi A, Alosaimi AA, Mohammad KS. Balancing the Scales: The Dual Role of Interleukins in Bone Metastatic Microenvironments. Int J Mol Sci 2024; 25:8163. [PMID: 39125732 PMCID: PMC11311339 DOI: 10.3390/ijms25158163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Bone metastases, a common and debilitating consequence of advanced cancers, involve a complex interplay between malignant cells and the bone microenvironment. Central to this interaction are interleukins (ILs), a group of cytokines with critical roles in immune modulation and inflammation. This review explores the dualistic nature of pro-inflammatory and anti-inflammatory interleukins in bone metastases, emphasizing their molecular mechanisms, pathological impacts, and therapeutic potential. Pro-inflammatory interleukins, such as IL-1, IL-6, and IL-8, have been identified as key drivers in promoting osteoclastogenesis, tumor proliferation, and angiogenesis. These cytokines create a favorable environment for cancer cell survival and bone degradation, contributing to the progression of metastatic lesions. Conversely, anti-inflammatory interleukins, including IL-4, IL-10, and IL-13, exhibit protective roles by modulating immune responses and inhibiting osteoclast activity. Understanding these opposing effects is crucial for developing targeted therapies aimed at disrupting the pathological processes in bone metastases. Key signaling pathways, including NF-κB, JAK/STAT, and MAPK, mediate the actions of these interleukins, influencing tumor cell survival, immune cell recruitment, and bone remodeling. Targeting these pathways presents promising therapeutic avenues. Current treatment strategies, such as the use of denosumab, tocilizumab, and emerging agents like bimekizumab and ANV419, highlight the potential of interleukin-targeted therapies in mitigating bone metastases. However, challenges such as therapeutic resistance, side effects, and long-term efficacy remain significant hurdles. This review also addresses the potential of interleukins as diagnostic and prognostic biomarkers, offering insights into patient stratification and personalized treatment approaches. Interleukins have multifaceted roles that depend on the context, including the environment, cell types, and cellular interactions. Despite substantial progress, gaps in research persist, particularly regarding the precise mechanisms by which interleukins influence the bone metastatic niche and their broader clinical implications. While not exhaustive, this overview underscores the critical roles of interleukins in bone metastases and highlights the need for continued research to fully elucidate their complex interactions and therapeutic potential. Addressing these gaps will be essential for advancing our understanding and treatment of bone metastases in cancer patients.
Collapse
Affiliation(s)
- Ahmad Dawalibi
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Amal Ahmed Alosaimi
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia;
| | - Khalid S. Mohammad
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| |
Collapse
|
8
|
Zhao Z, Du Y, Yan K, Zhang L, Guo Q. Exercise and osteoimmunology in bone remodeling. FASEB J 2024; 38:e23554. [PMID: 38588175 DOI: 10.1096/fj.202301508rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 04/10/2024]
Abstract
Bones can form the scaffolding of the body, support the organism, coordinate somatic movements, and control mineral homeostasis and hematopoiesis. The immune system plays immune supervisory, defensive, and regulatory roles in the organism, which mainly consists of immune organs (spleen, bone marrow, tonsils, lymph nodes, etc.), immune cells (granulocytes, platelets, lymphocytes, etc.), and immune molecules (immune factors, interferons, interleukins, tumor necrosis factors, etc.). Bone and the immune system have long been considered two distinct fields of study, and the bone marrow, as a shared microenvironment between the bone and the immune system, closely links the two. Osteoimmunology organically combines bone and the immune system, elucidates the role of the immune system in bone, and creatively emphasizes its interdisciplinary characteristics and the function of immune cells and factors in maintaining bone homeostasis, providing new perspectives for skeletal-related field research. In recent years, bone immunology has gradually become a hot spot in the study of bone-related diseases. As a new branch of immunology, bone immunology emphasizes that the immune system can directly or indirectly affect bones through the RANKL/RANK/OPG signaling pathway, IL family, TNF-α, TGF-β, and IFN-γ. These effects are of great significance for understanding inflammatory bone loss caused by various autoimmune or infectious diseases. In addition, as an external environment that plays an important role in immunity and bone, this study pays attention to the role of exercise-mediated bone immunity in bone reconstruction.
Collapse
Affiliation(s)
- Zhonghan Zhao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yuxiang Du
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Kai Yan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Lingli Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Qiang Guo
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Wang H, Tang H, Yuan S, Liang C, Li Y, Zhu S, Chen K. IL-17A deficiency inhibits lung cancer-induced osteoclastogenesis by promoting apoptosis of osteoclast precursor cells. PLoS One 2024; 19:e0299028. [PMID: 38394046 PMCID: PMC10889641 DOI: 10.1371/journal.pone.0299028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Osteoclasts are crucial in the events leading to bone metastasis of lung cancer. Interleukin-17A (IL-17A) affects osteogenesis by regulating the survival of osteoclast precursors (OCPs) and is enriched in lung cancer cells. However, how factors derived from tumor cells that metastasize to bone affect osteoclastogenesis remains poorly understood. We examined whether IL-17A derived from lung cancer cells affects osteoclast differentiation by regulating OCP apoptosis. IL-17A expression was inhibited in A549 non-small cell lung cancer cells using RNA interference. Compared with conditioned medium (CM) from A549 cells (A549-CM), CM from IL-17A-deficient A549 cells (A549-si-CM) suppressed osteoclastogenesis. The mRNA expression of osteoclast-specific genes was downregulated following A549-si-CM treatment. Furthermore, A549-si-CM promoted osteoclast precursor apoptosis at an early stage of osteoclastogenesis, which was related to the promotion of caspase-3 expression by A549-si-CM during osteoclast differentiation. In vivo experiments also showed that inhibition of IL-17A expression in A549 cells reduced osteoclast activation and bone tissue destruction. Collectively, our results indicate that IL-17A deficiency inhibits lung cancer-induced osteoclast differentiation by promoting apoptosis of osteoclast precursors in the early stage of osteoclast formation and that IL-17A is a potential therapeutic target for cancer-associated bone resorption in patients with lung cancer.
Collapse
Affiliation(s)
- Hongkai Wang
- Department of Orthopedics, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Hao Tang
- Department of Orthopedics, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Shujie Yuan
- Department of Orthopedics, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Chuntao Liang
- Department of Orthopedics, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Yuanxin Li
- Department of Orthopedics, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Shida Zhu
- Department of Orthopedics, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Kai Chen
- Department of Orthopedics, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
10
|
Torres HM, Arnold KM, Oviedo M, Westendorf JJ, Weaver SR. Inflammatory Processes Affecting Bone Health and Repair. Curr Osteoporos Rep 2023; 21:842-853. [PMID: 37759135 PMCID: PMC10842967 DOI: 10.1007/s11914-023-00824-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE OF REVIEW The purpose of this article is to review the current understanding of inflammatory processes on bone, including direct impacts of inflammatory factors on bone cells, the effect of senescence on inflamed bone, and the critical role of inflammation in bone pain and healing. RECENT FINDINGS Advances in osteoimmunology have provided new perspectives on inflammatory bone loss in recent years. Characterization of so-called inflammatory osteoclasts has revealed insights into physiological and pathological bone loss. The identification of inflammation-associated senescent markers in bone cells indicates that therapies that reduce senescent cell burden may reverse bone loss caused by inflammatory processes. Finally, novel studies have refined the role of inflammation in bone healing, including cross talk between nerves and bone cells. Except for the initial stages of fracture healing, inflammation has predominately negative effects on bone and increases fracture risk. Eliminating senescent cells, priming the osteo-immune axis in bone cells, and alleviating pro-inflammatory cytokine burden may ameliorate the negative effects of inflammation on bone.
Collapse
Affiliation(s)
- Haydee M Torres
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Katherine M Arnold
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Biomedical Engineering and Physiology Track/Regenerative Sciences Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Manuela Oviedo
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Samantha R Weaver
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA.
| |
Collapse
|