1
|
Nicolas L, Mandl H, Schrader F, Long JL. Immunocytochemistry assessment of vocal fold regeneration after cell-based implant in rabbits. Laryngoscope Investig Otolaryngol 2024; 9:e70007. [PMID: 39386157 PMCID: PMC11462588 DOI: 10.1002/lio2.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/11/2024] [Indexed: 10/12/2024] Open
Abstract
Objective Cell-based outer vocal fold replacement (COVR) offers a potential treatment for severe vocal fold scarring or cancer reconstruction. Previous work in rabbits using human adipose-derived stem cells (ASC) in fibrin suggested that a hybrid structure emerged within 2 months, containing both implanted and host cells. This project uses immunocytochemistry to better define the phenotypic fate of implanted cells and features of the extracellular environment. Methods Immunocytochemistry was performed on sections collected from rabbits 2 months after COVR implantation or scar surgery. Cellular targets included human leukocyte antigen (HLA), CD31, and smooth muscle actin (SMA). Results HLA was present in all implanted sections and was used to identify human cells. In adjacent sections, HLA-positive cells were identified expressing CD31. SMA was not identified in the same cells as HLA. These markers were also present in injured vocal folds not receiving COVR. SMA protein content did not differ according to treatment. Conclusions Implanted human ASC persist in rabbit vocal folds. Some appear to express CD31, an endothelial marker. Smooth muscle actin, a marker of myofibroblast phenotype, was present in all sections regardless of treatment, and was not identified in hASC. Host cells also infiltrate the structure, producing a hybrid host-graft vocal fold.
Collapse
Affiliation(s)
- Larissa Nicolas
- David Geffen School of Medicine at University of California‐Los AngelesLos AngelesCaliforniaUSA
| | - Hanna Mandl
- David Geffen School of Medicine at University of California‐Los AngelesLos AngelesCaliforniaUSA
| | - Feng Schrader
- Research ServiceGreater Los Angeles VAHSLos AngelesCaliforniaUSA
| | - Jennifer L. Long
- Research ServiceGreater Los Angeles VAHSLos AngelesCaliforniaUSA
- Department of Head and Neck SurgeryDavid Geffen School of Medicine at University of California‐Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
2
|
Kot A, Chun C, Martin JH, Wachtell D, Hudson D, Weis M, Marks H, Srivastava S, Eyre DR, Duran I, Zieba J, Krakow D. Loss of the long form of Plod2 phenocopies contractures of Bruck syndrome-osteogenesis imperfecta. J Bone Miner Res 2024; 39:1240-1252. [PMID: 39088537 PMCID: PMC11371901 DOI: 10.1093/jbmr/zjae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/03/2024]
Abstract
Bruck syndrome is an autosomal recessive form of osteogenesis imperfecta caused by biallelic variants in PLOD2 or FKBP10 and is characterized by joint contractures, bone fragility, short stature, and scoliosis. PLOD2 encodes LH2, which hydroxylates type I collagen telopeptide lysines, a critical step for collagen crosslinking. The Plod2 global knockout mouse model is limited by early embryonic lethality, and thus, the role of PLOD2 in skeletogenesis is not well understood. We generated a novel Plod2 mouse line modeling a variant identified in two unrelated individuals with Bruck syndrome: PLOD2 c.1559dupC, predicting a frameshift and loss of the long isoform LH2b. In the mouse, the duplication led to loss of LH2b mRNA as well as significantly reduced total LH2 protein. This model, Plod2fs/fs, survived up to E18.5 although in non-Mendelian genotype frequencies. The homozygous frameshift model recapitulated the joint contractures seen in Bruck syndrome and had indications of absent type I collagen telopeptide lysine hydroxylation in bone. Genetically labeling tendons with Scleraxis-GFP in Plod2fs/fs mice revealed the loss of extensor tendons in the forelimb by E18.5, and developmental studies showed extensor tendons developed through E14.5 but were absent starting at E16.5. Second harmonic generation showed abnormal tendon type I collagen fiber organization, suggesting structurally abnormal tendons. Characterization of the skeleton by μCT and Raman spectroscopy showed normal bone mineralization levels. This work highlights the importance of properly crosslinked type I collagen in tendon and bone, providing a promising new mouse model to further our understanding of Bruck syndrome.
Collapse
Affiliation(s)
- Alexander Kot
- Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, United States
- Human Genetics, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Cora Chun
- Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Jorge H Martin
- Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Davis Wachtell
- Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - David Hudson
- Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98195, United States
| | - MaryAnn Weis
- Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98195, United States
| | - Haley Marks
- California NanoSystems Institute, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Siddharth Srivastava
- Materials Science and Engineering, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - David R Eyre
- Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98195, United States
| | - Ivan Duran
- Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, United States
- Laboratory of Skeletal Biomedicine, IBIMA Plataforma BIONAND and Department of Cell Biology, Genetics and Physiology, University of Málaga, Málaga, 29071, Spain
| | - Jennifer Zieba
- Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Deborah Krakow
- Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, United States
- Human Genetics, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, United States
- Pediatrics, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, United States
- Obstetrics and Gynecology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, United States
| |
Collapse
|
3
|
Shi BY, Sriram V, Wu SY, Huang D, Cheney A, Metzger MF, Sundberg O, Lyons KM, McKenna CE, Nishimura I, Kremen TJ. Novel bisphosphonate-based cathepsin K-triggered compound targets the enthesis without impairing soft tissue-to-bone healing. Front Bioeng Biotechnol 2024; 12:1308161. [PMID: 38433822 PMCID: PMC10905384 DOI: 10.3389/fbioe.2024.1308161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
Background: Osteoadsorptive fluorogenic sentinel 3 (OFS-3) is a recently described compound that contains a bone-targeting bisphosphonate (BP) and cathepsin K (Ctsk)-triggered fluorescence signal. A prior study in a murine Achilles repair model demonstrated its effectiveness at targeting the site of tendon-to-bone repair, but the intrinsic effect of this novel bisphosphonate chaperone on tendon-to-bone healing has not been previously explored. We hypothesized that application of this bisphosphonate-fluorophore cargo conjugate would not affect the biomechanical properties or histologic appearance of tendon-bone repairs. Materials and Methods: Right hindlimb Achilles tendon-to-bone repair was performed on 12-week old male mice. Animals were divided into 2 groups of 18 each: 1) Achilles repair with OFS-3 applied directly to the repair site prior to closure, and 2) Achilles repair with saline applied prior to closure. Repaired hindlimbs from 12 animals per group were harvested at 6 weeks for biomechanical analysis with a custom 3D-printed jig. At 4 and 6 weeks, repaired hindlimbs from the remaining animals were assessed histologically using H&E, immunohistochemistry (IHC) staining for the presence of Ctsk, and second harmonic generation (SHG) imaging to evaluate collagen fibers. Results: At 6 weeks, there was no significant difference in failure load, stiffness, toughness, or displacement to failure between repaired hindlimbs that received OFS-3 versus saline. There was no difference in tissue healing on H&E or Ctsk staining on immunohistochemistry between animals that received OFS-3 versus saline. Finally, second harmonic generation imaging demonstrated no difference in collagen fiber parameters between the two groups. Conclusion: OFS-3 did not significantly affect the biomechanical properties or histologic appearance of murine Achilles tendon-to-bone repairs. This study demonstrates that OFS-3 can target the site of tendon-to-bone repair without causing intrinsic negative effects on healing. Further development of this drug delivery platform to target growth factors to the site of tendon-bone repair is warranted.
Collapse
Affiliation(s)
- Brendan Y. Shi
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States
| | - Varun Sriram
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States
| | - Shannon Y. Wu
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States
| | - Dave Huang
- Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Alexis Cheney
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States
| | - Melodie F. Metzger
- Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Oskar Sundberg
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Karen M. Lyons
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States
- Department of Molecular, Cellular, and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, United States
| | - Charles E. McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Ichiro Nishimura
- Weintraub Center for Reconstructive Biotechnology, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, United States
| | - Thomas J. Kremen
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States
| |
Collapse
|