1
|
Douglas FL, Cyril C, Marc W, Athena D, Torsten ST. Classification Schemes of Altered States of Consciousness. Neurosci Biobehav Rev 2025:106178. [PMID: 40294668 DOI: 10.1016/j.neubiorev.2025.106178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 04/30/2025]
Abstract
In recent years, there has been a renewed interest in the conceptual and empirical study of altered states of consciousness (ASCs) induced pharmacologically or otherwise, driven by their potential clinical applications. To draw attention to the rich history of research in this domain, we review prominent classification schemes that have been proposed to introduce systematicity in the scientific study of ASCs. The reviewed ASC classification schemes fall into three groups according to the criteria they use for categorization: (1) based on the nature, variety, and intensity of subjective experiences (state-based), including conceptual descriptions and psychometric assessments, (2) based on the technique of induction (method-based), and (3) descriptions of neurophysiological mechanisms of ASCs (neuro/physio-based). By comparing and extending existing classification schemes, we can enhance efforts to identify neural correlates of consciousness, particularly when examining mechanisms of ASC induction and the resulting subjective experience. Furthermore, an overview of what defining ASC characteristics different authors have proposed can inform future research in the conceptualization and quantification of ASC subjective effects, including the identification of those that might be relevant in clinical research. This review concludes by clustering the concepts from the state-based schemes, which are suggested for classifying ASC experiences. The resulting clusters can inspire future approaches to formulate and quantify the core phenomenology of ASC experiences to assist in basic and clinical research.
Collapse
Affiliation(s)
- Fort Larry Douglas
- Physiology of Cognition Lab, GIGA Research, CRC Human Imaging Research Unit, University of Liège, Liège, Belgium
| | - Costines Cyril
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Institute for Frontier Areas of Psychology and Mental Health (IGPP), Freiburg, Germany; CIRCE - Collaboration for Interdisciplinary Research on Conscious Experience, Teupitz, Germany
| | - Wittmann Marc
- Institute for Frontier Areas of Psychology and Mental Health (IGPP), Freiburg, Germany
| | - Demertzi Athena
- Physiology of Cognition Lab, GIGA Research, CRC Human Imaging Research Unit, University of Liège, Liège, Belgium; Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium
| | - Schmidt Timo Torsten
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany; CIRCE - Collaboration for Interdisciplinary Research on Conscious Experience, Teupitz, Germany.
| |
Collapse
|
2
|
Amaya IA, Nierhaus T, Schmidt TT. Thalamocortical interactions reflecting the intensity of flicker light-induced visual hallucinatory phenomena. Netw Neurosci 2025; 9:1-17. [PMID: 40161990 PMCID: PMC11949548 DOI: 10.1162/netn_a_00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/11/2024] [Indexed: 04/02/2025] Open
Abstract
Aberrant thalamocortical connectivity occurs together with visual hallucinations in various pathologies and drug-induced states, highlighting the need to better understand how thalamocortical interactions may contribute to hallucinatory phenomena. Flicker light stimulation (FLS) at 10-Hz reliably and selectively induces transient visual hallucinations in healthy participants. Arrhythmic flicker elicits fewer hallucinatory effects while delivering equal amounts of visual stimulation, together facilitating a well-controlled experimental setup to investigate the neural correlates of visual hallucinations driven by flicker rhythmicity. Using rhythmic and arrhythmic FLS during fMRI scanning, we found that rhythmic FLS elicited stronger activation in higher order visual cortices compared with arrhythmic control. Consistently, we found that rhythmic flicker selectively increased connectivity between ventroanterior thalamic nuclei and higher order visual cortices, which was also positively associated with the subjective intensity of visual hallucinatory effects. As these thalamic and cortical areas do not receive primary visual inputs, it suggests that the thalamocortical connectivity changes relate to a higher order function of the thalamus, such as in the coordination of cortical activity. In sum, we present novel evidence for the role of specific thalamocortical interactions with ventroanterior nuclei within visual hallucinatory experiences. Importantly, this can inform future clinical research into the mechanistic underpinnings of pathologic hallucinations.
Collapse
Affiliation(s)
- Ioanna A. Amaya
- Neurocomputation and Neuroimaging Unit, Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin School of Mind and Brain, Berlin, Germany
| | - Till Nierhaus
- Neurocomputation and Neuroimaging Unit, Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| | - Timo T. Schmidt
- Neurocomputation and Neuroimaging Unit, Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
3
|
Alotaibi AM, Alosaimi MH, Alshammari NS, Orfali RS, Alwatban AZ, Alsharif RA, Meyer GF, Bentall RP. Exploring the relationship between hallucination proneness and brain morphology. Neuroimage 2024; 304:120942. [PMID: 39586342 DOI: 10.1016/j.neuroimage.2024.120942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Hallucinations, including both auditory and visual forms, are often associated with alterations in brain structure, particularly in specific language-related cortical areas. Existing models propose different frameworks for understanding the relationship between brain volume and hallucination proneness, but practical evidence supporting these models is limited. METHODS This study investigated the relationship between hallucination proneness and brain volume in language-related cortical regions, specifically the superior temporal gyrus and Broca's area. A total of 68 participants, primarily university students, completed the Launay-Slade Hallucination Scale (LSHS) to assess hallucination proneness for both auditory and visual experiences. Structural MRI scans were used to measure brain volume in the targeted regions. RESULTS The results indicated significant positive correlations between LSHS scores and brain volume in the superior temporal gyrus and Broca's area regions previously linked to volume reductions in patients with clinically diagnosed hallucinations. Participants reporting high hallucination proneness for both auditory and visual hallucinations exhibited higher brain volumes in these language areas compared to those experiencing hallucinations rarely or never. CONCLUSIONS These findings challenge existing models by suggesting that higher brain volumes in language-related cortical areas may be associated with increased proneness to both auditory and visual hallucinations in non-clinical populations. This contrasts with the volume reductions seen in patients with clinical hallucinations and highlights the need for further research into the complex interplay between brain structure and hallucinatory experiences.
Collapse
Affiliation(s)
- Abdullah M Alotaibi
- Research Centre, King Fahad Medical City, Riyadh, 12231, Saudi Arabia; Clinical and Cognitive Neuroscience Group, Department of Experimental Psychology, Liverpool University, L69 7ZA, Liverpool, L69 7ZX, UK.
| | - Manal H Alosaimi
- Radiological Science Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | - Razan S Orfali
- Research Centre, King Fahad Medical City, Riyadh, 12231, Saudi Arabia
| | - Adnan Z Alwatban
- Research Centre, King Fahad Medical City, Riyadh, 12231, Saudi Arabia
| | - Roaa A Alsharif
- Research Centre, King Fahad Medical City, Riyadh, 12231, Saudi Arabia
| | - Georg F Meyer
- Clinical and Cognitive Neuroscience Group, Department of Experimental Psychology, Liverpool University, L69 7ZA, Liverpool, L69 7ZX, UK.
| | - Richard P Bentall
- Department of Psychology, University of Sheffield, Cathedral Court, 1 Vicar Lane, Sheffield, S1 2LT, UK.
| |
Collapse
|
4
|
Montgomery C, Amaya IA, Schmidt TT. Flicker light stimulation enhances the emotional response to music: a comparison study to the effects of psychedelics. Front Psychol 2024; 15:1325499. [PMID: 38420171 PMCID: PMC10901288 DOI: 10.3389/fpsyg.2024.1325499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/17/2024] [Indexed: 03/02/2024] Open
Abstract
Flicker light stimulation (FLS) is a non-pharmacological method of inducing altered states of consciousness (ASCs), producing hallucination-like phenomena as well as effects extending beyond the visual modality, including emotional effects. Research into the psychological and neural mechanisms of FLS is still in its infancy, but can be informed by research into other methods of inducing ASCs. For instance, research on classic psychedelics has reported enhancement of emotional responses to music. Here, we test to what degree FLS might also enhance the emotional response to music, using a study protocol designed to resemble a previous study on the effects of LSD as closely as possible, to allow for comparison of effect sizes across modalities and inform future research into FLS as an ASC-induction method. Twenty participants listened to emotionally evocative music in two conditions - with and without FLS - and reported on their emotional response to the music. FLS showed a significant enhancing effect on reported music-evoked emotion, especially emotions relating to "Joyful Activation"; additionally, we found that the experienced intensity of FLS correlated with reports of higher levels of emotional arousal. These findings motivate further research into FLS as a method for inducing ASCs and into the interactions between visual phenomena and music-evoked emotion.
Collapse
Affiliation(s)
- Caspar Montgomery
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ioanna Alicia Amaya
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Einstein Center for Neurosciences, Berlin, Germany
- Neurocomputation and Neuroimaging Unit, Freie Universität Berlin, Berlin, Germany
| | - Timo Torsten Schmidt
- Neurocomputation and Neuroimaging Unit, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
5
|
Shenyan O, Lisi M, Greenwood JA, Skipper JI, Dekker TM. Visual hallucinations induced by Ganzflicker and Ganzfeld differ in frequency, complexity, and content. Sci Rep 2024; 14:2353. [PMID: 38287084 PMCID: PMC10825158 DOI: 10.1038/s41598-024-52372-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/17/2024] [Indexed: 01/31/2024] Open
Abstract
Visual hallucinations can be phenomenologically divided into those of a simple or complex nature. Both simple and complex hallucinations can occur in pathological and non-pathological states, and can also be induced experimentally by visual stimulation or deprivation-for example using a high-frequency, eyes-open flicker (Ganzflicker) and perceptual deprivation (Ganzfeld). Here we leverage the differences in visual stimulation that these two techniques involve to investigate the role of bottom-up and top-down processes in shifting the complexity of visual hallucinations, and to assess whether these techniques involve a shared underlying hallucinatory mechanism despite their differences. For each technique, we measured the frequency and complexity of the hallucinations produced, utilising button presses, retrospective drawing, interviews, and questionnaires. For both experimental techniques, simple hallucinations were more common than complex hallucinations. Crucially, we found that Ganzflicker was more effective than Ganzfeld at eliciting simple hallucinations, while complex hallucinations remained equivalent across the two conditions. As a result, the likelihood that an experienced hallucination was complex was higher during Ganzfeld. Despite these differences, we found a correlation between the frequency and total time spent hallucinating in Ganzflicker and Ganzfeld conditions, suggesting some shared mechanisms between the two methodologies. We attribute the tendency to experience frequent simple hallucinations in both conditions to a shared low-level core hallucinatory mechanism, such as excitability of visual cortex, potentially amplified in Ganzflicker compared to Ganzfeld due to heightened bottom-up input. The tendency to experience complex hallucinations, in contrast, may be related to top-down processes less affected by visual stimulation.
Collapse
Affiliation(s)
- Oris Shenyan
- Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK.
- Institute of Ophthalmology, University College London, London, UK.
| | - Matteo Lisi
- Department of Psychology, Royal Holloway University, London, UK
| | - John A Greenwood
- Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK
| | - Jeremy I Skipper
- Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK
| | - Tessa M Dekker
- Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK
- Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|