1
|
Zhang X, Tseo Y, Bai Y, Chen F, Uhler C. Prediction of protein subcellular localization in single cells. Nat Methods 2025:10.1038/s41592-025-02696-1. [PMID: 40360932 DOI: 10.1038/s41592-025-02696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 04/09/2025] [Indexed: 05/15/2025]
Abstract
The subcellular localization of a protein is important for its function, and its mislocalization is linked to numerous diseases. Existing datasets capture limited pairs of proteins and cell lines, and existing protein localization prediction models either miss cell-type specificity or cannot generalize to unseen proteins. Here we present a method for Prediction of Unseen Proteins' Subcellular localization (PUPS). PUPS combines a protein language model and an image inpainting model to utilize both protein sequence and cellular images. We demonstrate that the protein sequence input enables generalization to unseen proteins, and the cellular image input captures single-cell variability, enabling cell-type-specific predictions. Experimental validation shows that PUPS can predict protein localization in newly performed experiments outside the Human Protein Atlas used for training. Collectively, PUPS provides a framework for predicting differential protein localization across cell lines and single cells within a cell line, including changes in protein localization driven by mutations.
Collapse
Affiliation(s)
- Xinyi Zhang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yitong Tseo
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yunhao Bai
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Fei Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| | - Caroline Uhler
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
2
|
Bhoir K, Hemavathi KJ, Prakash G. Advancing Yarrowia lipolytica sub-organelle engineering with endogenous mitochondrial targeting sequence. Biotechnol Lett 2025; 47:53. [PMID: 40338364 DOI: 10.1007/s10529-025-03590-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025]
Abstract
OBJECTIVE The aim of the study was identification and validation of an endogenous mitochondrial targeting signal (MTS) sequence of Yarrowia lipolytica, for efficient compartmentalization of a target protein to mitochondria. RESULTS MTS from citrate synthase of Y. lipolytica (YlCISY-MTS) was identified, isolated and fused with green fluorescent protein (GFP) to direct it to the mitochondrial matrix. The efficiency of localization of GFP to mitochondrial matrix with YlCISY-MTS was compared with currently used MTS from Saccharomyces cerevisiae's cytochrome oxidase subunit IV. Confocal microscopy confirmed the targeted and greater GFP localization, underlining the potential of endogenous YlCISY-MTS for mitochondrial engineering in Y. lipolytica. The availability of endogenous MTS will evade the need of codon optimization of S. cerevisiae MTS for mitochondrial engineering in Y. lipolytica. This is the first report of an endogenous MTS of Y. lipolytica. CONCLUSION An endogenous MTS of Y. lipolytica has been identified to facilitate the targeted delivery of a protein in the mitochondria enabling future advancements through leveraging the unique subcellular environment for metabolic engineering applications.
Collapse
Affiliation(s)
- Krutika Bhoir
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, 400019, India
| | - K J Hemavathi
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, 400019, India
| | - Gunjan Prakash
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
3
|
Kim J, Weidberg H. Protocol for assessing the clogging of the mitochondrial translocase of the outer membrane by precursor proteins in human cells. STAR Protoc 2025; 6:103617. [PMID: 39891917 PMCID: PMC11835637 DOI: 10.1016/j.xpro.2025.103617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/06/2024] [Accepted: 01/10/2025] [Indexed: 02/03/2025] Open
Abstract
Protein import into the mitochondria is required for organellar function. Inefficient import can result in the stalling of mitochondrial precursors inside the translocase of the outer membrane (TOM) and blockage of the mitochondrial entry gate. Here, we present a protocol to assess the clogging of TOM by mitochondrial precursors in human cell lines. We describe how the localization of mitochondrial precursors can be determined by cellular fractionation. We then show how co-immunoprecipitation can be used to test the stalling of precursors inside TOM. For complete details on the use and execution of this protocol, please refer to Kim et al.1.
Collapse
Affiliation(s)
- John Kim
- Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Hilla Weidberg
- Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
4
|
Yoshinori F, Imai K, Horton P. Prediction of mitochondrial targeting signals and their cleavage sites. Methods Enzymol 2024; 706:161-192. [PMID: 39455214 DOI: 10.1016/bs.mie.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
In this chapter we survey prediction tools and computational methods for the prediction of amino acid sequence elements which target proteins to the mitochondria. We will primarily focus on the prediction of N-terminal mitochondrial targeting signals (MTSs) and their N-terminal cleavage sites by mitochondrial peptidases. We first give practical details useful for using and installing some prediction tools. Then we describe procedures for preparing datasets of MTS containing proteins for statistical analysis or development of new prediction methods. Following that we lightly survey some of the computational techniques used by prediction tools. Finally, after discussing some caveats regarding the reliability of such methods to predict the effects of mutations on MTS function; we close with a discussion of possible future directions of computer prediction methods related to mitochondrial proteins.
Collapse
Affiliation(s)
- Fukasawa Yoshinori
- Center for Bioscience Research and Education, Utsunomiya University, Japan
| | - Kenichiro Imai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Japan
| | - Paul Horton
- Department of Computer Science and Information Engineering, National Cheng Kung University, Taiwan.
| |
Collapse
|
5
|
Bernard DJ, Pangilinan F, Mendina C, Desporte T, Wincovitch SM, Walsh DJ, Porter RK, Molloy AM, Shane B, Brody LC. SLC25A48 influences plasma levels of choline and localizes to the inner mitochondrial membrane. Mol Genet Metab 2024; 143:108518. [PMID: 39047301 DOI: 10.1016/j.ymgme.2024.108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
Choline contributes to the biogenesis of methyl groups, neurotransmitters, and cell membranes. Our genome-wide association study (GWAS) of circulating choline in 2228 college students found that alleles in SLC25A48 (rs6596270) influence choline concentrations in men (p = 9.6 × 10-8), but not women. Previously, the subcellular location and function of SLC25A48 were unknown. Using super-resolution immunofluorescence microscopy, we localized SLC25A48 to the inner mitochondrial membrane. Our results suggest that SLC25A48 transports choline across the inner mitochondrial membrane.
Collapse
Affiliation(s)
- David J Bernard
- Gene and Environment Interaction Section, SBRB, NHGRI, NIH, Bethsda, Maryland, USA
| | - Faith Pangilinan
- Gene and Environment Interaction Section, SBRB, NHGRI, NIH, Bethsda, Maryland, USA
| | - Caitlin Mendina
- Gene and Environment Interaction Section, SBRB, NHGRI, NIH, Bethsda, Maryland, USA
| | - Tara Desporte
- Gene and Environment Interaction Section, SBRB, NHGRI, NIH, Bethsda, Maryland, USA
| | | | - Darren J Walsh
- Gene and Environment Interaction Section, SBRB, NHGRI, NIH, Bethsda, Maryland, USA
| | - Richard K Porter
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Anne M Molloy
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Barry Shane
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Lawrence C Brody
- Gene and Environment Interaction Section, SBRB, NHGRI, NIH, Bethsda, Maryland, USA.
| |
Collapse
|
6
|
Kim J, Goldstein M, Zecchel L, Ghorayeb R, Maxwell CA, Weidberg H. ATAD1 prevents clogging of TOM and damage caused by un-imported mitochondrial proteins. Cell Rep 2024; 43:114473. [PMID: 39024102 DOI: 10.1016/j.celrep.2024.114473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/26/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
Mitochondria require the constant import of nuclear-encoded proteins for proper functioning. Impaired protein import not only depletes mitochondria of essential factors but also leads to toxic accumulation of un-imported proteins outside the organelle. Here, we investigate the consequences of impaired mitochondrial protein import in human cells. We demonstrate that un-imported proteins can clog the mitochondrial translocase of the outer membrane (TOM). ATAD1, a mitochondrial ATPase, removes clogged proteins from TOM to clear the entry gate into the mitochondria. ATAD1 interacts with both TOM and stalled proteins, and its knockout results in extensive accumulation of mitochondrial precursors as well as decreased protein import. Increased ATAD1 expression contributes to improved fitness of cells with inefficient mitochondrial protein import. Overall, we demonstrate the importance of the ATAD1 quality control pathway in surveilling protein import and its contribution to cellular health.
Collapse
Affiliation(s)
- John Kim
- Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Madeleine Goldstein
- Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Lauren Zecchel
- Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ryan Ghorayeb
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Christopher A Maxwell
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada; Michael Cuccione Childhood Cancer Research Program, British Columbia Children's Hospital, Vancouver, BC, Canada
| | - Hilla Weidberg
- Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
7
|
Carlström A, Ott M. Insights into conformational changes in cytochrome b during the early steps of its maturation. FEBS Lett 2024; 598:1438-1448. [PMID: 38664235 DOI: 10.1002/1873-3468.14888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/18/2024] [Accepted: 04/03/2024] [Indexed: 06/12/2024]
Abstract
Membrane proteins carrying redox cofactors are key subunits of respiratory chain complexes, yet the exact path of their folding and maturation remains poorly understood. Here, using cryo-EM and structure prediction via Alphafold2, we generated models of early assembly intermediates of cytochrome b (Cytb), a central subunit of complex III. The predicted structure of the first assembly intermediate suggests how the binding of Cytb to the assembly factor Cbp3-Cbp6 imposes an open configuration to facilitate the acquisition of its heme cofactors. Moreover, structure predictions of the second intermediate indicate how hemes get stabilized by binding of the assembly factor Cbp4, with a concomitant weakening of the contact between Cbp3-Cbp6 and Cytb, preparing for the release of the fully hemylated protein from the assembly factors.
Collapse
Affiliation(s)
- Andreas Carlström
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Sweden
| |
Collapse
|
8
|
Pegoraro C, Domingo-Ortí I, Conejos-Sánchez I, Vicent MJ. Unlocking the Mitochondria for Nanomedicine-based Treatments: Overcoming Biological Barriers, Improving Designs, and Selecting Verification Techniques. Adv Drug Deliv Rev 2024; 207:115195. [PMID: 38325562 DOI: 10.1016/j.addr.2024.115195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/13/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Enhanced targeting approaches will support the treatment of diseases associated with dysfunctional mitochondria, which play critical roles in energy generation and cell survival. Obstacles to mitochondria-specific targeting include the presence of distinct biological barriers and the need to pass through (or avoid) various cell internalization mechanisms. A range of studies have reported the design of mitochondrially-targeted nanomedicines that navigate the complex routes required to influence mitochondrial function; nonetheless, a significant journey lies ahead before mitochondrially-targeted nanomedicines become suitable for clinical use. Moving swiftly forward will require safety studies, in vivo assays confirming effectiveness, and methodologies to validate mitochondria-targeted nanomedicines' subcellular location/activity. From a nanomedicine standpoint, we describe the biological routes involved (from administration to arrival within the mitochondria), the features influencing rational design, and the techniques used to identify/validate successful targeting. Overall, rationally-designed mitochondria-targeted-based nanomedicines hold great promise for precise subcellular therapeutic delivery.
Collapse
Affiliation(s)
- Camilla Pegoraro
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Inés Domingo-Ortí
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Inmaculada Conejos-Sánchez
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - María J Vicent
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| |
Collapse
|