1
|
Östenson B, Ostenfeld E, Edlund J, Heiberg E, Arheden H, Steding-Ehrenborg K. Correction: Endurance-trained subjects and sedentary controls increase ventricular contractility and efficiency during exercise: Feasibility of hemodynamics assessed by non-invasive pressure-volume loops. PLoS One 2025; 20:e0321568. [PMID: 40168307 PMCID: PMC11960943 DOI: 10.1371/journal.pone.0321568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0285592.].
Collapse
|
2
|
Arvidsson PM, Berg J, Carlsson M, Arheden H. Noninvasive Pressure-Volume Loops Predict Major Adverse Cardiac Events in Heart Failure With Reduced Ejection Fraction. JACC. ADVANCES 2024; 3:100946. [PMID: 38938852 PMCID: PMC11198266 DOI: 10.1016/j.jacadv.2024.100946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/05/2024] [Accepted: 03/06/2024] [Indexed: 06/29/2024]
Abstract
Background Heart failure with reduced ejection fraction (HFrEF) is characterized by ventricular remodeling and impaired myocardial energetics. Left ventricular pressure-volume (PV) loop analysis can be performed noninvasively using cardiovascular magnetic resonance (CMR) imaging to assess cardiac thermodynamic efficiency. Objectives The aim of the study was to investigate whether noninvasive PV loop parameters, derived from CMR, could predict major adverse cardiac events (MACE) in HFrEF patients. Methods PV loop parameters (stroke work, ventricular efficiency, external power, contractility, and energy per ejected volume) were computed from CMR cine images and brachial blood pressure. The primary end point was MACE (cardiovascular death, heart failure (HF) hospitalization, myocardial infarction, revascularization, ventricular tachycardia/fibrillation, heart transplantation, or left ventricular assist device implantation within 5 years). Associations between PV loop parameters and MACE were evaluated using multivariable Cox regression. Results One hundred and sixty-four HFrEF patients (left ventricular ejection fraction ≤40%, age 63 [IQR: 55-70] years, 79% male) who underwent clinical CMR examination between 2004 and 2014 were included. Eighty-eight patients (54%) experienced at least one MACE after an average of 2.8 years. Unadjusted models demonstrated a significant association between MACE and all PV loop parameters (P < 0.05 for all), HF etiology (P < 0.001), left ventricular ejection fraction (P = 0.003), global longitudinal strain (P < 0.001), and N-terminal prohormone of brain natriuretic peptide level (P = 0.001). In the multivariable Cox regression analysis adjusted for age, sex, hypertension, diabetes, and HF etiology, ventricular efficiency was associated with MACE (HR: 1.04 (95% CI: 1.01-1.08) per-% decrease, P = 0.01). Conclusions Ventricular efficiency, derived from noninvasive PV loop analysis from standard CMR scans, is associated with MACE in patients with HFrEF.
Collapse
Affiliation(s)
- Per M. Arvidsson
- Department of Clinical Sciences Lund, Clinical Physiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Jonathan Berg
- Department of Clinical Sciences Lund, Clinical Physiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Marcus Carlsson
- Department of Clinical Sciences Lund, Clinical Physiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Håkan Arheden
- Department of Clinical Sciences Lund, Clinical Physiology, Skåne University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Seemann F, Heiberg E, Bruce CG, Khan JM, Potersnak A, Ramasawmy R, Carlsson M, Arheden H, Lederman RJ, Campbell-Washburn AE. Non-invasive pressure-volume loops using the elastance model and CMR: a porcine validation at transient pre-loads. EUROPEAN HEART JOURNAL. IMAGING METHODS AND PRACTICE 2024; 2:qyae016. [PMID: 38645798 PMCID: PMC11026081 DOI: 10.1093/ehjimp/qyae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/28/2024] [Indexed: 04/23/2024]
Abstract
Aims Pressure-volume (PV) loops have utility in the evaluation of cardiac pathophysiology but require invasive measurements. Recently, a time-varying elastance model to derive PV loops non-invasively was proposed, using left ventricular (LV) volume by cardiovascular magnetic resonance (CMR) and brachial cuff pressure as inputs. Validation was performed using CMR and pressure measurements acquired on the same day, but not simultaneously, and without varying pre-loads. This study validates the non-invasive elastance model used to estimate PV loops at varying pre-loads, compared with simultaneous measurements of invasive pressure and volume from real-time CMR, acquired concurrent to an inferior vena cava (IVC) occlusion. Methods and results We performed dynamic PV loop experiments under CMR guidance in 15 pigs (n = 7 naïve, n = 8 with ischaemic cardiomyopathy). Pre-load was altered by IVC occlusion, while simultaneously acquiring invasive LV pressures and volumes from real-time CMR. Pairing pressure and volume signals yielded invasive PV loops, and model-based PV loops were derived using real-time LV volumes. Haemodynamic parameters derived from invasive and model-based PV loops were compared. Across 15 pigs, 297 PV loops were recorded. Intra-class correlation coefficient (ICC) agreement was excellent between model-based and invasive parameters: stroke work (bias = 0.007 ± 0.03 J, ICC = 0.98), potential energy (bias = 0.02 ± 0.03 J, ICC = 0.99), ventricular energy efficiency (bias = -0.7 ± 2.7%, ICC = 0.98), contractility (bias = 0.04 ± 0.1 mmHg/mL, ICC = 0.97), and ventriculoarterial coupling (bias = 0.07 ± 0.15, ICC = 0.99). All haemodynamic parameters differed between naïve and cardiomyopathy animals (P < 0.05). The invasive vs. model-based PV loop dice similarity coefficient was 0.88 ± 0.04. Conclusion An elastance model-based estimation of PV loops and associated haemodynamic parameters provided accurate measurements at transient loading conditions compared with invasive PV loops.
Collapse
Affiliation(s)
- Felicia Seemann
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Building 10 Rm B1D219, Bethesda, MD 20892, USA
| | - Einar Heiberg
- Department of Clinical Sciences Lund, Clinical Physiology, Skane University Hospital, Lund University, Entrégatan 7, 221 85 Lund, Sweden
| | - Christopher G Bruce
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Building 10 Rm B1D219, Bethesda, MD 20892, USA
| | - Jaffar M Khan
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Building 10 Rm B1D219, Bethesda, MD 20892, USA
| | - Amanda Potersnak
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Building 10 Rm B1D219, Bethesda, MD 20892, USA
| | - Rajiv Ramasawmy
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Building 10 Rm B1D219, Bethesda, MD 20892, USA
| | - Marcus Carlsson
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Building 10 Rm B1D219, Bethesda, MD 20892, USA
| | - Håkan Arheden
- Department of Clinical Sciences Lund, Clinical Physiology, Skane University Hospital, Lund University, Entrégatan 7, 221 85 Lund, Sweden
| | - Robert J Lederman
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Building 10 Rm B1D219, Bethesda, MD 20892, USA
| | - Adrienne E Campbell-Washburn
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Building 10 Rm B1D219, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Carrick-Ranson G, Howden EJ, Brazile TL, Levine BD, Reading SA. Effects of aging and endurance exercise training on cardiorespiratory fitness and cardiac structure and function in healthy midlife and older women. J Appl Physiol (1985) 2023; 135:1215-1235. [PMID: 37855034 PMCID: PMC11918309 DOI: 10.1152/japplphysiol.00798.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/20/2023] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality in women in developed societies. Unfavorable structural and functional adaptations within the heart and central blood vessels with sedentary aging in women can act as the substrate for the development of debilitating CVD conditions such as heart failure with preserved ejection fraction (HFpEF). The large decline in cardiorespiratory fitness, as indicated by maximal or peak oxygen uptake (V̇o2max and V̇o2peak, respectively), that occurs in women as they age significantly affects their health and chronic disease status, as well as the risk of cardiovascular and all-cause mortality. Midlife and older women who have performed structured endurance exercise training for several years or decades of their adult lives exhibit a V̇o2max and cardiac and vascular structure and function that are on par or even superior to much younger sedentary women. Therefore, regular endurance exercise training appears to be an effective preventative strategy for mitigating the adverse physiological cardiovascular adaptations associated with sedentary aging in women. Herein, we narratively describe the aging and short- and long-term endurance exercise training adaptations in V̇o2max, cardiac structure, and left ventricular systolic and diastolic function at rest and exercise in midlife and older women. The role of circulating estrogens on cardiac structure and function is described for consideration in the timing of exercise interventions to maximize beneficial adaptations. Current research gaps and potential areas for future investigation to advance our understanding in this critical knowledge area are highlighted.
Collapse
Affiliation(s)
- Graeme Carrick-Ranson
- Department of Surgery, the University of Auckland, Auckland, New Zealand
- Department of Exercise Sciences, the University of Auckland, Auckland, New Zealand
| | - Erin J Howden
- Human Integrative Physiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Tiffany L Brazile
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas, United States
- University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Benjamin D Levine
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas, United States
- University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Stacey A Reading
- Department of Exercise Sciences, the University of Auckland, Auckland, New Zealand
| |
Collapse
|