1
|
Xu H, Yin L, Zou L, Zhang E, Cheng Y, Zhang W, Liu Y, Han J, Zhao Y. Lysozyme modulates inflammatory responses to exacerbate the severity of rheumatoid arthritis. Int Immunopharmacol 2025; 152:114427. [PMID: 40056513 DOI: 10.1016/j.intimp.2025.114427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
BACKGROUND The mechanisms underlying Rheumatoid Arthritis (RA) remain unclear. Despite having relatively well-defined treatment strategies, current therapeutic approaches only achieve a remission rate of 70 %-80 %, with poor prognosis and no clear diagnostic criteria for early RA. Therefore, there is a need for new therapeutic targets or biomarkers to improve the treatment of RA. METHODS Firstly, we identified the expression characteristics of lysozyme (LYZ) in early RA patients through plasma proteomics and synovial fluid single-cell sequencing analysis. Secondly, we constructed Lyz1 cKO mice to investigate the role of Lyz1 in RA pathogenesis using the Collagen Antibody-Induced Arthritis (CAIA) mouse model. Thirdly, we silenced LYZ to clarify its impact on TNF-α-induced inflammatory cytokine release and other inflammatory phenotypes in MH7A cells. Finally, we explored the cellular pathways involving LYZ in fibroblast-like synoviocytes (FLSs) and changes in RA-related genes through RNA sequencing (RNA-Seq). RESULTS LYZ was highly expressed in the plasma and synovial macrophages of early RA patients. The absence of Lyz1 reduced the arthritis course and joint damage in CAIA mice. Silencing LYZ promoted the proliferation and apoptosis of MH7A cells and improved their inflammatory phenotypes, possibly through the regulation of the TNF signaling pathway. CONCLUSION LYZ is highly expressed in the plasma and synovial fluid macrophages of early RA patients and exacerbates RA progression by modulating inflammation-related pathways, demonstrating potential as a biomarker for early RA diagnosis or a therapeutic target.
Collapse
Affiliation(s)
- Hao Xu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Luxu Yin
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China; Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Liang Zou
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China; Bone Biomechanics Engineering Laboratory of Shandong Province, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Enshui Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China; Department of Joint Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yang Cheng
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wenyue Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yihong Liu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinxiang Han
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Yan Zhao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
2
|
Li W, Cao D, Shi M, Yang X. BIRC3 RNA Editing Modulates Lipopolysaccharide-Induced Liver Inflammation: Potential Implications for Animal Health. Int J Mol Sci 2025; 26:2941. [PMID: 40243536 PMCID: PMC11988743 DOI: 10.3390/ijms26072941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Animals and humans are frequently infected by bacteria or exposed to bacterial derivatives in contaminated food, drinking water, or air, which significantly impacts their health. Among these bacterial sources, LPS (lipopolysaccharide) is the primary culprit. While it is widely known that LPS can cause liver inflammation and damage in animals, few studies have investigated this mechanism from the perspective of RNA editing. In this study, we administered LPS to mice via gavage to induce a liver injury model. We then used RNA editing omics approaches (RE-seq) to analyze RNA editing events potentially leading to liver inflammation following LPS administration, aiming to reveal the crucial role of RNA editing in LPS-induced processes. At the RNA editing level, we observed significant differences between the LPS group and the control (CON) group. Specifically, we identified 354 differentially edited genes, with 192 upregulated and 162 downregulated. These differentially edited genes were significantly enriched in pathways related to apoptosis, mTOR signaling, oxidative stress, and Nf-Kappa B signaling. By further integrating gene expression profiles and using a nine-quadrant analysis, we identified an important gene, Birc3, which showed significantly higher editing and expression levels in the LPS group. This gene is directly linked to liver inflammation and damage. The RNA editing of Birc3 represents a significant potential mechanism underlying LPS-induced liver damage, providing a novel approach for addressing animal and human health issues.
Collapse
Affiliation(s)
| | | | | | - Xiaogan Yang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning 530004, China; (W.L.); (D.C.)
| |
Collapse
|
3
|
Huang Y, Yan P, Zhu J, Gong Y, Liu M, Cheng H, Yi T, Zhang F, Yang X, Su Y, Guo L. From Genes to Healing: The Protective Mechanisms of Poria cocos Polysaccharide in Endometrial Health. Curr Issues Mol Biol 2025; 47:139. [PMID: 40136393 PMCID: PMC11940905 DOI: 10.3390/cimb47030139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/27/2025] Open
Abstract
The aim of this study is to investigate the therapeutic effect of Poria cocos polysaccharide (PCP) on bovine endometritis. Initially, an inflammation model was induced using LPS-treated bovine endometrial epithelial cells (BEND) to identify the differentially expressed genes (DEGs) between the control and LPS groups by transcriptome sequencing, and GO functional annotation and KEGG enrichment analysis were performed. Subsequently, the mechanism of PCP treatment for endometritis was further evaluated using protein immunoblotting and real-time fluorescence quantitative analysis. Finally, the efficacy of PCP in treating endometritis was evaluated using a rat model of endometritis established with a mixed bacterial infection. The results show that transcriptome sequencing identified 4367 DEGs, with enrichment analysis highlighting the primary influences on the cell cycle and apoptosis signaling pathways. Following treatment of BEND with LPS resulted in cell apoptosis and inflammatory response. However, the introduction of PCP intervention significantly inhibited the progression of apoptosis and inflammation. Animal test results indicate that PCP significantly decreases the levels of serum inflammatory in rats suffering from endometritis and enhances antioxidant capacity. Furthermore, it effectively improved uterine swelling and tissue vacuolization caused by bacterial infection. These findings suggest that PCP could alleviate endometritis by modulating the inflammatory response and suppressing cell apoptosis. Poria cocos polysaccharides demonstrate significant potential for applications in immune modulation, anti-inflammatory responses, and antioxidant activities. Their high safety profile makes them suitable candidates as alternative therapeutic agents for the treatment of endometritis in the veterinary field.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Liwei Guo
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China; (Y.H.); (P.Y.); (J.Z.); (Y.G.); (M.L.); (H.C.); (T.Y.); (F.Z.); (X.Y.); (Y.S.)
| |
Collapse
|
4
|
Wang Z, Wang X, Li P, Xia H, Yang X. Genetic associations between immune-related plasma proteins and neurodegenerative diseases. Neurol Res 2025; 47:129-138. [PMID: 39743746 DOI: 10.1080/01616412.2024.2448745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Immune dysregulation is commonly associated with neurodegenerative diseases (NDs), yet the underlying causes and mechanisms still require further investigation. OBJECTIVE This study investigates the correlation between immune-related plasma proteins and the risk of NDs by integrating genome-wide association study (GWAS) data for Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS) with plasma proteome analysis. METHODS By analyzing GWAS data for 4907 immune-related plasma proteins, this research evaluates the direct impact of plasma proteins on the risk of four NDs: AD, PD, ALS, and MS. Additionally, the study conducts an analysis of protein expression levels using single-cell RNA sequencing data. RESULTS We have identified plasma proteins that are closely associated with the risk of NDs. Using stringent criteria, we identified 88 proteins associated with AD, 115 with PD, 100 with ALS, and 87 with MS. Additionally, single-cell sequencing analyzed the protein expression and its distribution within different cell types in the brain. CONCLUSIONS Our research has demonstrated that plasma proteins may contribute to the risk of NDs, and it has also provided concrete evidence linking genetic susceptibility for these diseases to immune mechanisms. Furthermore, we found that specific proteins influence genetic variations linked to NDs risk via plasma-mediated regulation, emphasizing the importance of interactions between the brain and circulatory system.
Collapse
Affiliation(s)
- Zihao Wang
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Medical Research, Xinjiang Key Laboratory of Neurological Disease Research, Urumqi, Xinjiang, China
| | - Xiaobei Wang
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Medical Research, Xinjiang Key Laboratory of Neurological Disease Research, Urumqi, Xinjiang, China
| | - Peishan Li
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Medical Research, Xinjiang Key Laboratory of Neurological Disease Research, Urumqi, Xinjiang, China
| | - Huan Xia
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Medical Research, Xinjiang Key Laboratory of Neurological Disease Research, Urumqi, Xinjiang, China
| | - Xinling Yang
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Medical Research, Xinjiang Key Laboratory of Neurological Disease Research, Urumqi, Xinjiang, China
| |
Collapse
|
5
|
McFarlin BK, Bridgeman EA, Curtis JH, Vingren JL, Hill DW. Baker's yeast beta glucan supplementation was associated with an improved innate immune mRNA expression response after exercise. Methods 2024; 230:68-79. [PMID: 39097177 DOI: 10.1016/j.ymeth.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024] Open
Abstract
Beta glucans are found in many natural sources, however, only Baker's Yeast Beta Glucan (BYBG) has been well documented to have structure-function effects that are associated with improved innate immune response to stressors (e.g., exercise, infection, etc.). The purpose was to identify a BYBG-associated mRNA expression pattern following exercise. Participants gave IRB-approved consent and were randomized to BYBG (Wellmune®; N=9) or Placebo (maltodextrin; N=10) for 6-weeks prior to performing 90 min of whole-body exercise. Paxgene blood samples were collected prior to exercise (PRE), after exercise (POST), two hours after exercise (2H), and four hours after exercise (4H). Total RNA was isolated and analyzed for the expression of 770 innate immune response mRNA (730 mRNA targets; 40 housekeepers/controls; Nanostring nCounter). The raw data were normalized against housekeeping controls and expressed as Log2 fold change from PRE for a given condition. Significance was set at p < 0.05 with adjustments for multiple comparisons and false discovery rate. We identified 47 mRNA whose expression was changed after exercise with BYBG and classified them to four functional pathways: 1) Immune Cell Maturation (8 mRNA), 2) Immune Response and Function (5 mRNA), 3) Pattern Recognition Receptors and DAMP or PAMP Detection (25 mRNA), and 4) Detection and Resolution of Tissue Damage (9 mRNA). The identified mRNA whose expression was altered after exercise with BYBG may represent an innate immune response pattern and supports previous conclusions that BYBG improves immune response to a future sterile inflammation or infection.
Collapse
Affiliation(s)
- Brian K McFarlin
- Applied Physiology Laboratory, University of North Texas, Denton, TX 76203, United States; University of North Texas, Dept. of Biological Sciences, Denton, TX 76203, United States.
| | - Elizabeth A Bridgeman
- Applied Physiology Laboratory, University of North Texas, Denton, TX 76203, United States.
| | - John H Curtis
- Applied Physiology Laboratory, University of North Texas, Denton, TX 76203, United States.
| | - Jakob L Vingren
- Applied Physiology Laboratory, University of North Texas, Denton, TX 76203, United States; University of North Texas, Dept. of Biological Sciences, Denton, TX 76203, United States.
| | - David W Hill
- Applied Physiology Laboratory, University of North Texas, Denton, TX 76203, United States.
| |
Collapse
|
6
|
Necker-Brown A, Kooi C, Thorne AJ, Bansal A, Mostafa MM, Chandramohan P, Gao A, Kalyanaraman K, Milani A, Gill S, Georgescu A, Sasse SK, Gerber AN, Leigh R, Newton R. Inducible gene expression of IκB-kinase ε is dependent on nuclear factor-κB in human pulmonary epithelial cells. Biochem J 2024; 481:959-980. [PMID: 38941070 DOI: 10.1042/bcj20230461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/19/2024] [Accepted: 06/28/2024] [Indexed: 06/29/2024]
Abstract
While IκB-kinase-ε (IKKε) induces immunomodulatory genes following viral stimuli, its up-regulation by inflammatory cytokines remains under-explored. Since airway epithelial cells respond to airborne insults and potentiate inflammation, IKKε expression was characterized in pulmonary epithelial cell lines (A549, BEAS-2B) and primary human bronchial epithelial cells grown as submersion or differentiated air-liquid interface cultures. IKKε expression was up-regulated by the pro-inflammatory cytokines, interleukin-1β (IL-1β) and tumour necrosis factor-α (TNFα). Thus, mechanistic interrogations in A549 cells were used to demonstrate the NF-κB dependence of cytokine-induced IKKε. Furthermore, chromatin immunoprecipitation in A549 and BEAS-2B cells revealed robust recruitment of the NF-κB subunit, p65, to one 5' and two intronic regions within the IKKε locus (IKBKE). In addition, IL-1β and TNFα induced strong RNA polymerase 2 recruitment to the 5' region, the first intron, and the transcription start site. Stable transfection of the p65-binding regions into A549 cells revealed IL-1β- and TNFα-inducible reporter activity that required NF-κB, but was not repressed by glucocorticoid. While critical NF-κB motifs were identified in the 5' and downstream intronic regions, the first intronic region did not contain functional NF-κB motifs. Thus, IL-1β- and TNFα-induced IKKε expression involves three NF-κB-binding regions, containing multiple functional NF-κB motifs, and potentially other mechanisms of p65 binding through non-classical NF-κB binding motifs. By enhancing IKKε expression, IL-1β may prime, or potentiate, responses to alternative stimuli, as modelled by IKKε phosphorylation induced by phorbol 12-myristate 13-acetate. However, since IKKε expression was only partially repressed by glucocorticoid, IKKε-dependent responses could contribute to glucocorticoid-resistant disease.
Collapse
Affiliation(s)
- Amandah Necker-Brown
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Cora Kooi
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Lung Health Research Group. Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Andrew J Thorne
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Akanksha Bansal
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Mahmoud M Mostafa
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Priyanka Chandramohan
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Alex Gao
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | | | - Arya Milani
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Sachman Gill
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Andrei Georgescu
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Sarah K Sasse
- Department of Medicine, National Jewish Health, Denver, CO, U.S.A
| | - Anthony N Gerber
- Department of Medicine, National Jewish Health, Denver, CO, U.S.A
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, U.S.A
| | - Richard Leigh
- Department of Medicine, Lung Health Research Group. Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Robert Newton
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Kouro T, Higashijima N, Horaguchi S, Mano Y, Kasajima R, Xiang H, Fujimoto Y, Kishi H, Hamana H, Hoshino D, Himuro H, Matsuura R, Tsuji S, Imai K, Sasada T. Novel chimeric antigen receptor-expressing T cells targeting the malignant mesothelioma-specific antigen sialylated HEG1. Int J Cancer 2024; 154:1828-1841. [PMID: 38212893 DOI: 10.1002/ijc.34843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/13/2024]
Abstract
The selection of highly specific target antigens is critical for the development of clinically efficient and safe chimeric antigen receptors (CARs). In search of diagnostic marker for malignant mesothelioma (MM), we have established SKM9-2 monoclonal antibody (mAb) which recognizes a MM-specific molecule, sialylated Protein HEG homolog 1 (HEG1), with high specificity and sensitivity. In this study, to develop a novel therapeutic approach against MM, we generated SKM9-2 mAb-derived CARs that included the CD28 (SKM-28z) or 4-1BB (SKM-BBz) costimulatory domain. SKM-28z CAR-T cells showed continuous growth and enhanced Tim-3, LAG-3, and PD-1 expression in vitro, which might be induced by tonic signaling caused by self-activation; however, these phenotypes were not observed in SKM-BBz CAR-T cells. In addition, SKM-BBz CAR-T cells exhibited slightly stronger in vitro killing activity against MM cell lines than SKM-28z CAR-T cells. More importantly, only SKM-BBz CAR-T cells, but not SKM-28z CAR-T cells, significantly inhibited tumor growth in vivo in a MM cell line xenograft mouse model. Gene expression profiling and reporter assays revealed differential signaling pathway activation; in particular, SKM-BBz CAR-T cells exhibited enhanced NF-kB signaling and reduced NFAT activation. In addition, SKM-BBz CAR-T cells showed upregulation of early memory markers, such as TCF7 and CCR7, as well as downregulation of pro-apoptotic proteins, such as BAK1 and BID, which may be associated with phenotypical and functional differences between SKM-BBz and SKM-28z CAR-T cells. In conclusion, we developed novel SKM9-2-derived CAR-T cells with the 4-1BB costimulatory domain, which could provide a promising therapeutic approach against refractory MM.
Collapse
Affiliation(s)
- Taku Kouro
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Japan
| | - Naoko Higashijima
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Shun Horaguchi
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Japan
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Yasunobu Mano
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Japan
| | - Rika Kasajima
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Huihui Xiang
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Yuki Fujimoto
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Hiroyuki Kishi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Hiroshi Hamana
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Daisuke Hoshino
- Cancer Biology Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Hidetomo Himuro
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Japan
| | - Rieko Matsuura
- Division of Cancer Therapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Shoutaro Tsuji
- Division of Cancer Therapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Medical Technology & Clinical Engineering, Gunma University of Health and Welfare, Maebashi, Japan
| | - Kohzoh Imai
- Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Tetsuro Sasada
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Japan
| |
Collapse
|
8
|
Bansal A, Kooi C, Kalyanaraman K, Gill S, Thorne A, Chandramohan P, Necker-Brown A, Mostafa MM, Milani A, Leigh R, Newton R. Synergy between Interleukin-1 β, Interferon- γ, and Glucocorticoids to Induce TLR2 Expression Involves NF- κB, STAT1, and the Glucocorticoid Receptor. Mol Pharmacol 2023; 105:23-38. [PMID: 37863662 DOI: 10.1124/molpharm.123.000740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/14/2023] [Accepted: 09/29/2023] [Indexed: 10/22/2023] Open
Abstract
Glucocorticoids act via the glucocorticoid receptor (GR; NR3C1) to downregulate inflammatory gene expression and are effective treatments for mild to moderate asthma. However, in severe asthma and virus-induced exacerbations, glucocorticoid therapies are less efficacious, possibly due to reduced repressive ability and/or the increased expression of proinflammatory genes. In human A549 epithelial and primary human bronchial epithelial cells, toll-like receptor (TLR)-2 mRNA and protein were supra-additively induced by interleukin-1β (IL-1β) plus dexamethasone (IL-1β+Dex), interferon-γ (IFN-γ) plus dexamethasone (IFN-γ+Dex), and IL-1β plus IFN-γ plus dexamethasone (IL-1β+IFN-γ+Dex). Indeed, ∼34- to 2100-fold increases were apparent at 24 hours for IL-1β+IFN-γ+Dex, and this was greater than for any single or dual treatment. Using the A549 cell model, TLR2 induction by IL-1β+IFN-γ+Dex was antagonized by Org34517, a competitive GR antagonist. Further, when combined with IL-1β, IFN-γ, or IL-1β+IFN-γ, the enhancements by dexamethasone on TLR2 expression required GR. Likewise, inhibitor of κB kinase 2 inhibitors reduced IL-1β+IFN-γ+Dex-induced TLR2 expression, and TLR2 expression induced by IL-1β+Dex, with or without IFN-γ, required the nuclear factor (NF)-κB subunit, p65. Similarly, signal transducer and activator of transcription (STAT)-1 phosphorylation and γ-interferon-activated sequence-dependent transcription were induced by IFN-γ These, along with IL-1β+IFN-γ+Dex-induced TLR2 expression, were inhibited by Janus kinase (JAK) inhibitors. As IL-1β+IFN-γ+Dex-induced TLR2 expression also required STAT1, this study reveals cooperation between JAK-STAT1, NF-κB, and GR to upregulate TLR2 expression. Since TLR2 agonism elicits inflammatory responses, we propose that synergies involving TLR2 may occur within the cytokine milieu present in the immunopathology of glucocorticoid-resistant disease, and this could promote glucocorticoid resistance. SIGNIFICANCE STATEMENT: This study highlights that in human pulmonary epithelial cells, glucocorticoids, when combined with the inflammatory cytokines interleukin-1β (IL-1β) and interferon-γ (IFN-γ), can synergistically induce the expression of inflammatory genes, such as TLR2. This effect involved positive combinatorial interactions between NF-κB/p65, glucocorticoid receptor, and JAK-STAT1 signaling to synergistically upregulate TLR2 expression. Thus, synergies involving glucocorticoid enhancement of TLR2 expression may occur in the immunopathology of glucocorticoid-resistant inflammatory diseases, including severe asthma.
Collapse
Affiliation(s)
- Akanksha Bansal
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Cora Kooi
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Keerthana Kalyanaraman
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Sachman Gill
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Andrew Thorne
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Priyanka Chandramohan
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Amandah Necker-Brown
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Mahmoud M Mostafa
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Arya Milani
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Richard Leigh
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Robert Newton
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|