1
|
Tao H, Zhang W, Liu J, Zhou Y, Wang G. The impact of the flagellar protein gene fliK on Helicobacter pylori biofilm formation. mSphere 2025; 10:e0001825. [PMID: 40116479 PMCID: PMC12039246 DOI: 10.1128/msphere.00018-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 03/23/2025] Open
Abstract
The biofilm structure of Helicobacter pylori is known to enhance its capabilities for antimicrobial resistance. This study aims to investigate the role of the flagellar hook length control protein gene fliK in the biofilm formation of H. pylori. Homologous recombination was employed to knock out the fliK gene in the H. pylori NCTC 11637 strain. The flagella of H. pylori were observed using transmission electron microscopy (TEM), whereas H. pylori motility and growth were examined through semi-solid agar assays and growth curve analyses, respectively. The bacterial biofilm and its constituents were visualized utilizing fluorescence confocal microscopy. Assessments of H. pylori adhesion to gastric mucosal cells, its vacuolar toxicity, and antibiotic resistance were evaluated using co-culture experiments and E-test methods. The fliK gene was successfully knocked out in H. pylori NCTC 11637. The ΔfliK mutant exhibited polyhook structures or lacked typical flagellar morphology, reduced mobility, and a slower bacterial growth rate compared with the wild-type strain. Fluorescence confocal microscopy revealed a decrease in the thickness of the biofilm formed by the ΔfliK strain, along with reductions in polysaccharide and DNA components. The deletion of fliK did not affect vacuolar toxicity or antibiotic resistance but did reduce the adhesive capacity of the bacterium to gastric mucosal cells. The deletion of the fliK gene significantly impairs H. pylori biofilm formation, leading to substantial decreases in biofilm components, bacterial growth, and adhesion capabilities. These findings underscore the importance of fliK in the pathogenicity of H. pylori.IMPORTANCEThe increasing antibiotic resistance of Helicobacter pylori has emerged as a global health concern, with biofilm formation serving as a crucial mechanism underlying this resistance. This study investigates the role of the fliK gene, which encodes the flagellar hook length control protein, in H. pylori biofilm formation. Furthermore, we examined the influence of fliK on H. pylori growth, motility, and cellular adhesion capabilities. Our findings elucidate the molecular mechanisms governing H. pylori biofilm formation and suggest potential therapeutic strategies for addressing H. pylori antibiotic resistance.
Collapse
Affiliation(s)
- Hongjin Tao
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Wangjingyi Zhang
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Jing Liu
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yu Zhou
- Department of Laboratory Medicine, Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Gangshi Wang
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Tachiyama S, Rosinke K, Khan MF, Zhou X, Xin Y, Botting JM, Yue J, Roujeinikova A, Hoover TR, Liu J. FlgY, PflA, and PflB form a spoke-ring network in the high-torque flagellar motor of Helicobacter pylori. Proc Natl Acad Sci U S A 2025; 122:e2421632122. [PMID: 40261933 PMCID: PMC12054838 DOI: 10.1073/pnas.2421632122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 03/19/2025] [Indexed: 04/24/2025] Open
Abstract
Helicobacter pylori has evolved distinct flagellar motility to colonize the human stomach. Rotation of the H. pylori flagella is driven by one of the largest known bacterial flagellar motors. In addition to the core motor components found in Escherichia coli and Salmonella enterica, the flagellar motor in H. pylori possesses many accessories that enable the bacteria to penetrate the gastric mucus layer. Here, we utilize cryoelectron tomography with molecular genetics and biochemical approaches to characterize three accessory proteins, FlgY, PflA, and PflB, and their roles in H. pylori flagellar assembly and motility. Comparative analyses of in situ flagellar motor structures from pflA, pflB, and flgY mutants and wild-type H. pylori reveal that FlgY forms a 13-fold proximal spoke-ring around the MS-ring and that PflA and PflB form an 18-fold distal spoke-ring enclosing 18 torque-generating stator complexes. We build a pseudoatomic model of the H. pylori motor by leveraging AlphaFold-predicted structures, protein-protein interactions, and in situ motor structures. Our model suggests that the FlgY spoke-ring functions as a bearing around the rotating MS-ring and as a template for stabilizing the PflA-PflB spoke-ring, thus enabling the recruitment of 18 stator complexes for high-torque generation. Overall, our study sheds light on how this spoke-ring network between the MS-ring and stator complexes enables the unique motility of H. pylori. As these accessory proteins are conserved in the phylum Campylobacterota, our findings apply broadly to a better understanding of how polar flagella help bacteria thrive in gastric and enteric niches.
Collapse
Affiliation(s)
- Shoichi Tachiyama
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
- Microbial Sciences Institute, Yale University, West Haven, CT06516
| | - Kyle Rosinke
- Department of Microbiology, University of Georgia, Athens, GA30602
| | - Mohammad F. Khan
- Department of Microbiology, Monash University, Clayton, VIC3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC3800, Australia
| | - Xiaotian Zhou
- Department of Microbiology, Monash University, Clayton, VIC3800, Australia
| | - Yue Xin
- Department of Microbiology, Monash University, Clayton, VIC3800, Australia
| | - Jack M. Botting
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
- Microbial Sciences Institute, Yale University, West Haven, CT06516
| | - Jian Yue
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
- Microbial Sciences Institute, Yale University, West Haven, CT06516
| | - Anna Roujeinikova
- Department of Microbiology, Monash University, Clayton, VIC3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC3800, Australia
| | | | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
- Microbial Sciences Institute, Yale University, West Haven, CT06516
| |
Collapse
|
3
|
Zamba-Campero M, Soliman D, Yu H, Lasseter AG, Chang YY, Silberman JL, Liu J, Aravind L, Jewett MW, Storz G, Adams PP. Broadly conserved FlgV controls flagellar assembly and Borrelia burgdorferi dissemination in mice. Nat Commun 2024; 15:10417. [PMID: 39614093 PMCID: PMC11607428 DOI: 10.1038/s41467-024-54806-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
Flagella propel pathogens through their environments, yet are expensive to synthesize and are immunogenic. Thus, complex hierarchical regulatory networks control flagellar gene expression. Spirochetes are highly motile bacteria, but peculiarly, the archetypal flagellar regulator σ28 is absent in the Lyme spirochete Borrelia burgdorferi. Here, we show that gene bb0268 (flgV) in B. burgdorferi, previously and incorrectly annotated to encode the RNA-binding protein Hfq, is instead a structural flagellar component that modulates flagellar assembly. The flgV gene is broadly conserved in the flagellar superoperon alongside σ28 in many Spirochaetae, Firmicutes and other phyla, with distant homologs in Epsilonproteobacteria. We find that B. burgdorferi FlgV is localized within flagellar basal bodies, and strains lacking flgV produce fewer and shorter flagellar filaments and are defective in cell division and motility. During the enzootic cycle, flgV-deficient B. burgdorferi survive and replicate in Ixodes ticks but are attenuated for infection and dissemination in mice. Our work defines infection timepoints when spirochete motility is most crucial and implicates FlgV as a broadly distributed structural flagellar component that modulates flagellar assembly.
Collapse
Affiliation(s)
- Maxime Zamba-Campero
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Daniel Soliman
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Huaxin Yu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, 06536, USA
- Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Amanda G Lasseter
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, 32827, USA
| | - Yuen-Yan Chang
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Julia L Silberman
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, 06536, USA
- Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - L Aravind
- Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Mollie W Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, 32827, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Philip P Adams
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, 32827, USA.
- Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD, 20892, USA.
- Independent Research Scholar Program, Intramural Research Program, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Zamba-Campero M, Soliman D, Yu H, Lasseter AG, Chang YY, Liu J, Aravind L, Jewett MW, Storz G, Adams PP. Broadly conserved FlgV controls flagellar assembly and Borrelia burgdorferi dissemination in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574855. [PMID: 38260563 PMCID: PMC10802407 DOI: 10.1101/2024.01.09.574855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Flagella propel pathogens through their environments yet are expensive to synthesize and are immunogenic. Thus, complex hierarchical regulatory networks control flagellar gene expression. Spirochetes are highly motile bacteria, but peculiarly in the Lyme spirochete Borrelia burgdorferi, the archetypal flagellar regulator σ28 is absent. We rediscovered gene bb0268 in B. burgdorferi as flgV, a broadly-conserved gene in the flagellar superoperon alongside σ28 in many Spirochaetes, Firmicutes and other phyla, with distant homologs in Epsilonproteobacteria. We found that B. burgdorferi FlgV is localized within flagellar motors. B. burgdorferi lacking flgV construct fewer and shorter flagellar filaments and are defective in cell division and motility. During the enzootic cycle, B. burgdorferi lacking flgV survive and replicate in Ixodes ticks but are attenuated for dissemination and infection in mice. Our work defines infection timepoints when spirochete motility is most crucial and implicates FlgV as a broadly distributed structural flagellar component that modulates flagellar assembly.
Collapse
Affiliation(s)
- Maxime Zamba-Campero
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel Soliman
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huaxin Yu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Amanda G. Lasseter
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, 32827, USA
| | - Yuen-Yan Chang
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Mollie W. Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, 32827, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Philip P. Adams
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, 32827, USA
- Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20892, USA
- Independent Research Scholar Program, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|