1
|
Joshi D, Aghara H, Patel H, Suthar S, Mandal P, Patel D, Kikani B. Evaluating the potential of Halomonas pacifica DJ6.1 L-asparaginase: statistical production optimization, biochemical characterization and anticancer attributes using Caco-2 cell lines. Int J Biol Macromol 2025; 311:143723. [PMID: 40316107 DOI: 10.1016/j.ijbiomac.2025.143723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/09/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
The study displays attributes of Halomonas pacifica DJ6.1 L-asparaginase, an extracellular enzyme from a haloalkalitolerant bacterium. The production parameters were optimized using response surface methodology, followed by enzyme purification via size exclusion and ion-exchange chromatography, achieving a 15.4-fold purification with a yield of 18.33 %. It catalyzed L-asparagine across a broad pH (4-10) and temperatures (10-100 °C), with optimal catalysis at pH 9 and 60 °C. It demonstrated 87 % reduction in acrylamide formation during French fry preparation when combined with a blanching process. Further, its cytotoxicity assays using human colon cancer (Caco-2) and normal skeletal muscle (L6) cell lines revealed selective inhibition of cancer cell proliferation, with minimal cytotoxic effects on normal cells. Apoptotic events in cancer cells were confirmed via DAPI and AO/EB staining, highlighting features such as nuclear damage, chromatin condensation, and characteristic morphological changes. Reactive oxygen species (ROS) analysis showed increased oxidative stress in enzyme-treated cancer cells. The gene expression analysis also indicated that the pro-apoptotic gene, Bax and the anti-apoptotic gene, Bcl2 were upregulated and downregulated, respectively. Thus, the findings suggest that H. pacifica DJ6.1 L-asparaginase holds promise for both food safety and anticancer applications.
Collapse
Affiliation(s)
- Disha Joshi
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT campus, Changa - 388 421, Gujarat, India
| | - Hiral Aghara
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT campus, Changa - 388 421, Gujarat, India
| | - Harsh Patel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT campus, Changa - 388 421, Gujarat, India
| | - Sadikhusain Suthar
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT campus, Changa - 388 421, Gujarat, India
| | - Palash Mandal
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT campus, Changa - 388 421, Gujarat, India
| | - Darshan Patel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT campus, Changa - 388 421, Gujarat, India
| | - Bhavtosh Kikani
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT campus, Changa - 388 421, Gujarat, India.
| |
Collapse
|
2
|
Sapkota H, Dasgupta S, Roy B, Pathan EK. Human Commensal Bacteria: Next-generation Pro- and Post-biotics for Anticancer Therapy. Front Biosci (Elite Ed) 2025; 17:26809. [PMID: 40150985 DOI: 10.31083/fbe26809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/08/2024] [Accepted: 12/23/2024] [Indexed: 03/29/2025]
Abstract
Cancer is a common, deadly disease with an unknown etiology. Meanwhile, current therapeutic options possess significant risks. However, probiotic bacteria and their metabolites have been reported to have antiproliferative and apoptotic effects on cancer cells. Therefore, because of their selective specificity and lack of treatment-associated comorbidities, these bacteria and their metabolites could be potential alternatives to conventional chemical and radiation therapies. Given their superior immunomodulatory and anti-cancer effects and lack of side effects, commensal bacteria derived from healthy humans are currently used as next-generation probiotics. This review summarizes current findings on these probiotic properties and anti-cancer activities of healthy human commensal bacteria. Additionally, the review focuses on small metabolites, proteins, and enzymes secreted by human commensal bacteria for their therapeutic applications against cancer. Further, utilizing a protein engineering strategy to reduce the toxicity of L-asparaginase, an enzyme-based anti-leukemia drug used for the last forty years, is also discussed. A possible workflow outline for isolating, identifying, screening, and characterizing human commensal bacterial strains for their therapeutic applications in cancer treatment is also proposed. This review emphasizes the need to explore various human commensal bacteria, not just mainstream lactic acid bacteria, for novel cancer therapeutics that provide multiple health benefits.
Collapse
Affiliation(s)
- Himal Sapkota
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), 412115 Pune, Maharashtra, India
| | - Subrata Dasgupta
- RIKEN Center for Biosystems Dynamics Research, 230-0045 Yokohama, Kanagawa, Japan
| | - Bishnudeo Roy
- Department of Biosciences and Technology, MIT World Peace University, 411038 Pune, Maharashtra, India
| | - Ejaj K Pathan
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), 412115 Pune, Maharashtra, India
| |
Collapse
|
3
|
Ebrahimi V, Hashemi A. Optimizing recombinant production of L-asparaginase 1 from Saccharomyces cerevisiae using response surface methodology. Folia Microbiol (Praha) 2024; 69:1205-1219. [PMID: 38581537 DOI: 10.1007/s12223-024-01163-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
L-asparaginase is an essential enzyme used in cancer treatment, but its production faces challenges like low yield, high cost, and immunogenicity. Recombinant production is a promising method to overcome these limitations. In this study, response surface methodology (RSM) was used to optimize the production of L-asparaginase 1 from Saccharomyces cerevisiae in Escherichia coli K-12 BW25113. The Box-Behnken design (BBD) was utilized for the RSM modeling, and a total of 29 experiments were conducted. These experiments aimed to examine the impact of different factors, including the concentration of isopropyl-b-LD-thiogalactopyranoside (IPTG), the cell density prior to induction, the duration of induction, and the temperature, on the expression level of L-asparaginase 1. The results revealed that while the post-induction temperature, cell density at induction time, and post-induction time all had a significant influence on the response, the post-induction time exhibited the greatest effect. The optimized conditions (induction at cell density 0.8 with 0.7 mM IPTG for 4 h at 30 °C) resulted in a significant amount of L-asparaginase with a titer of 93.52 μg/mL, which was consistent with the model-based prediction. The study concluded that RSM optimization effectively increased the production of L-asparaginase 1 in E. coli, which could have the potential for large-scale fermentation. Further research can explore using other host cells, optimizing the fermentation process, and examining the effect of other variables to increase production.
Collapse
Affiliation(s)
- Vida Ebrahimi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, No. 2660, Valiasr-Niayesh Junction, Vali-e-Asr Ave, Tehran 1991953381, Iran
| | - Atieh Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, No. 2660, Valiasr-Niayesh Junction, Vali-e-Asr Ave, Tehran 1991953381, Iran.
| |
Collapse
|
4
|
Hassan FS, El-Fakharany EM, El-Maradny YA, Saleh AK, El-Sayed MH, Mazi W, Omer N, Abdelaziz MA, Jame R, Alatawi IS, El-Gendi H. Comprehensive insight into exploring the potential of microbial enzymes in cancer therapy: Progress, challenges, and opportunities: A review. Int J Biol Macromol 2024; 277:134535. [PMID: 39111467 DOI: 10.1016/j.ijbiomac.2024.134535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/03/2024] [Accepted: 08/04/2024] [Indexed: 09/03/2024]
Abstract
Microbial enzymes are crucial catalysts in various industries due to their versatility and efficiency. The microbial enzymes market has recently expanded due to increased demand for many reasons. Among them are eco-friendly solutions, developing novel microbial strains with enhanced enzymes that perform under harsh conditions, providing sustainability, and raising awareness about the benefits of enzyme-based products. By 2030, the global enzyme market is expected to account for $525 billion, with a growth rate of 6.7 %. L-asparaginase and L-glutaminase are among the leading applied microbial enzymes in antitumor therapy, with a growing market share of 16.5 % and 9.5 %, respectively. The use of microbial enzymes has opened new opportunities to fight various tumors, including leukemia, lymphosarcoma, and breast cancer, which has increased their demand in the pharmaceutical and medicine sectors. Despite their promising applications, commercial use of microbial enzymes faces challenges such as short half-life, immunogenicity, toxicity, and other side effects. Therefore, this review explores the industrial production, purification, formulation, and commercial utilization of microbial enzymes, along with an overview of the global enzyme market. With ongoing discoveries of novel enzymes and their applications, enzyme technology offers promising avenues for cancer treatment and other therapeutic interventions.
Collapse
Affiliation(s)
- Fareed Shawky Hassan
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria 21934, Egypt; Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt; Pharos University in Alexandria, Canal El Mahmoudia Street, Beside Green Plaza Complex, 21648, Alexandria, Egypt.
| | - Yousra A El-Maradny
- Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt
| | - Ahmed K Saleh
- Cellulose and Paper Department, National Research Centre, El-Tahrir St., Dokki 12622, Giza, Egypt
| | - Mohamed H El-Sayed
- Department of Biology, College of Sciences and Arts-Rafha, Northern Border University, Arar, Saudi Arabia
| | - Wafa Mazi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Noha Omer
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Mahmoud A Abdelaziz
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Rasha Jame
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Ibrahim Saleem Alatawi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Hamada El-Gendi
- Bioprocess development department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria 21934, Egypt
| |
Collapse
|
5
|
Abdelrazek NA, Saleh SE, Raafat MM, Ali AE, Aboulwafa MM. Production of highly cytotoxic and low immunogenic L-asparaginase from Stenotrophomonas maltophilia EMCC2297. AMB Express 2024; 14:51. [PMID: 38704453 PMCID: PMC11069494 DOI: 10.1186/s13568-024-01700-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/09/2024] [Indexed: 05/06/2024] Open
Abstract
L-asparaginase is an important therapeutic enzyme that is frequently utilized in the chemotherapy regimens of adults as well as pediatric patients with acute lymphoblastic leukemia. However, a high rate of hypersensitivity with prolonged use has limited its utilization. Stenotrophomonas maltophilia (S. maltophilia) EMCC2297 isolate was reported as a novel and promising source for L- asparaginase. The present study aimed at the production, purification, and characterization of L- asparaginase from S. maltophilia EMCC2297 isolate. The microbial production of L-asparaginase by the test isolate could be increased by pre-exposure to chloramphenicol at 200 µg/ml concentration. S. maltophilia EMCC2297 L-asparaginase could be purified to homogeneity by ammonium sulphate precipitation and the purified form obtained by gel exclusion chromatography showed total activity of 96.4375 IU/ml and specific activity of 36.251 IU/mg protein. SDS-PAGE analysis revealed that the purified form of the enzyme is separated at an apparent molecular weight of 17 KDa. Michaelis-Menten constant analysis showed a Km value of 4.16 × 10- 2 M with L-asparagine as substrate and Vmax of 10.67 IU/ml. The antitumor activity of the purified enzyme was evaluated on different cell lines and revealed low IC50 of 2.2 IU/ml and 2.83 IU/ml for Hepatocellular cancer cell line (HepG-2), human leukemia cancer cell line (K-562), respectively whereas no cytotoxic effect could be detected on normal human lung fibroblast cells (MRC-5). However, mice treated with native L-asparaginase showed lower IgG titre compared to commercial L-asparaginase. This study highlights the promising characteristics of this enzyme making it a valuable candidate for further research and development to be an adduct in cancer chemotherapy.
Collapse
Affiliation(s)
- Nada A Abdelrazek
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Al Khalifa Al Maamoun St., Abbassia, Cairo, 11517, Egypt
| | - Sarra E Saleh
- Department of Microbiology and immunology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Marwa M Raafat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Al Khalifa Al Maamoun St., Abbassia, Cairo, 11517, Egypt
| | - Amal E Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Al Khalifa Al Maamoun St., Abbassia, Cairo, 11517, Egypt
| | - Mohammad M Aboulwafa
- Department of Microbiology and immunology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, King Salman International University, South Sinai, Ras-Sudr, Egypt.
| |
Collapse
|