1
|
Sharma K, Kumar M, Dukare A, Vigneshwaran N, Thappa C, Saxena S, Pandiyan K, D'Souza C, Singh R. Gossypol and Semisynthetic Derivatives: Chemistry, Bioactivities, and Mechanism of Actions. Chem Biodivers 2025:e202402872. [PMID: 40145340 DOI: 10.1002/cbdv.202402872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/15/2025] [Accepted: 03/21/2025] [Indexed: 03/28/2025]
Abstract
Gossypol, a polyphenolic compound predominantly derived from cotton plants, has garnered significant attention as a notable plant-derived bioactive compound with significant relevance in medicinal chemistry due to its diverse biological activities and potential therapeutic applications. Despite its inherent toxicity, gossypol exhibits insecticidal, antimicrobial, antiviral, antifertility, antiparasitic, anti-inflammatory, antioxidant, and anticancer properties. Furthermore, gossypol serves as a core molecule for synthesizing various derivatives, such as gossypol Schiff bases, gossypolone, and apogossypol, which are less toxic yet retain similar therapeutic benefits. The aim of this review is to provide a comprehensive overview of gossypol's diverse biological activities, with a particular focus on its anticancer potential, mechanisms of action, and recent advancements in its therapeutic applications. It highlights gossypol's wide-ranging biological activities, including its potent anticancer, antimicrobial, and antioxidant effects. Recent studies have shown promise in reducing gossypol's toxicity through the synthesis of derivatives, while advanced drug delivery methods, including nanocarriers, have been explored to enhance its therapeutic efficacy. Furthermore, gossypol has demonstrated significant synergistic potential when used in combination with conventional anticancer drugs, offering new avenues for cancer therapy.
Collapse
Affiliation(s)
- Kanika Sharma
- ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - Manoj Kumar
- ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - Ajinath Dukare
- ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - N Vigneshwaran
- ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - Chandan Thappa
- CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Sujata Saxena
- ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - K Pandiyan
- ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - Charlene D'Souza
- ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | | |
Collapse
|
2
|
Duraj T, Kalamian M, Zuccoli G, Maroon JC, D'Agostino DP, Scheck AC, Poff A, Winter SF, Hu J, Klement RJ, Hickson A, Lee DC, Cooper I, Kofler B, Schwartz KA, Phillips MCL, Champ CE, Zupec-Kania B, Tan-Shalaby J, Serfaty FM, Omene E, Arismendi-Morillo G, Kiebish M, Cheng R, El-Sakka AM, Pflueger A, Mathews EH, Worden D, Shi H, Cincione RI, Spinosa JP, Slocum AK, Iyikesici MS, Yanagisawa A, Pilkington GJ, Chaffee A, Abdel-Hadi W, Elsamman AK, Klein P, Hagihara K, Clemens Z, Yu GW, Evangeliou AE, Nathan JK, Smith K, Fortin D, Dietrich J, Mukherjee P, Seyfried TN. Clinical research framework proposal for ketogenic metabolic therapy in glioblastoma. BMC Med 2024; 22:578. [PMID: 39639257 PMCID: PMC11622503 DOI: 10.1186/s12916-024-03775-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, with a universally lethal prognosis despite maximal standard therapies. Here, we present a consensus treatment protocol based on the metabolic requirements of GBM cells for the two major fermentable fuels: glucose and glutamine. Glucose is a source of carbon and ATP synthesis for tumor growth through glycolysis, while glutamine provides nitrogen, carbon, and ATP synthesis through glutaminolysis. As no tumor can grow without anabolic substrates or energy, the simultaneous targeting of glycolysis and glutaminolysis is expected to reduce the proliferation of most if not all GBM cells. Ketogenic metabolic therapy (KMT) leverages diet-drug combinations that inhibit glycolysis, glutaminolysis, and growth signaling while shifting energy metabolism to therapeutic ketosis. The glucose-ketone index (GKI) is a standardized biomarker for assessing biological compliance, ideally via real-time monitoring. KMT aims to increase substrate competition and normalize the tumor microenvironment through GKI-adjusted ketogenic diets, calorie restriction, and fasting, while also targeting glycolytic and glutaminolytic flux using specific metabolic inhibitors. Non-fermentable fuels, such as ketone bodies, fatty acids, or lactate, are comparatively less efficient in supporting the long-term bioenergetic and biosynthetic demands of cancer cell proliferation. The proposed strategy may be implemented as a synergistic metabolic priming baseline in GBM as well as other tumors driven by glycolysis and glutaminolysis, regardless of their residual mitochondrial function. Suggested best practices are provided to guide future KMT research in metabolic oncology, offering a shared, evidence-driven framework for observational and interventional studies.
Collapse
Affiliation(s)
- Tomás Duraj
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA.
| | | | - Giulio Zuccoli
- Neuroradiology, Private Practice, Philadelphia, PA, 19103, USA
| | - Joseph C Maroon
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Adrienne C Scheck
- Department of Child Health, University of Arizona College of Medicine, Phoenix, Phoenix, AZ, 85004, USA
| | - Angela Poff
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Sebastian F Winter
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Jethro Hu
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, 97422, Schweinfurt, Germany
| | | | - Derek C Lee
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | - Isabella Cooper
- Ageing Biology and Age-Related Diseases Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstr. 48, 5020, Salzburg, Austria
| | - Kenneth A Schwartz
- Department of Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Matthew C L Phillips
- Department of Neurology, Waikato Hospital, Hamilton, 3204, New Zealand
- Department of Medicine, University of Auckland, Auckland, 1142, New Zealand
| | - Colin E Champ
- Exercise Oncology & Resiliency Center and Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, PA, 15212, USA
| | | | - Jocelyn Tan-Shalaby
- School of Medicine, University of Pittsburgh, Veteran Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA
| | - Fabiano M Serfaty
- Department of Clinical Medicine, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
- Serfaty Clínicas, Rio de Janeiro, RJ, 22440-040, Brazil
| | - Egiroh Omene
- Department of Oncology, Cross Cancer Institute, Edmonton, AB, T6G 1Z2, Canada
| | - Gabriel Arismendi-Morillo
- Department of Medicine, Faculty of Health Sciences, University of Deusto, 48007, Bilbao (Bizkaia), Spain
- Facultad de Medicina, Instituto de Investigaciones Biológicas, Universidad del Zulia, Maracaibo, 4005, Venezuela
| | | | - Richard Cheng
- Cheng Integrative Health Center, Columbia, SC, 29212, USA
| | - Ahmed M El-Sakka
- Metabolic Terrain Institute of Health, East Congress Street, Tucson, AZ, 85701, USA
| | - Axel Pflueger
- Pflueger Medical Nephrologyand , Internal Medicine Services P.L.L.C, 6 Nelson Road, Monsey, NY, 10952, USA
| | - Edward H Mathews
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, 0002, South Africa
| | | | - Hanping Shi
- Department of Gastrointestinal Surgery and Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Raffaele Ivan Cincione
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Puglia, Italy
| | - Jean Pierre Spinosa
- Integrative Oncology, Breast and Gynecologic Oncology Surgery, Private Practice, Rue Des Terreaux 2, 1002, Lausanne, Switzerland
| | | | - Mehmet Salih Iyikesici
- Department of Medical Oncology, Altınbaş University Bahçelievler Medical Park Hospital, Istanbul, 34180, Turkey
| | - Atsuo Yanagisawa
- The Japanese College of Intravenous Therapy, Tokyo, 150-0013, Japan
| | | | - Anthony Chaffee
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Perth, 6009, Australia
| | - Wafaa Abdel-Hadi
- Clinical Oncology Department, Cairo University, Giza, 12613, Egypt
| | - Amr K Elsamman
- Neurosurgery Department, Cairo University, Giza, 12613, Egypt
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, 6410 Rockledge Drive, Suite 610, Bethesda, MD, 20817, USA
| | - Keisuke Hagihara
- Department of Advanced Hybrid Medicine, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Zsófia Clemens
- International Center for Medical Nutritional Intervention, Budapest, 1137, Hungary
| | - George W Yu
- George W, Yu Foundation For Nutrition & Health and Aegis Medical & Research Associates, Annapolis, MD, 21401, USA
| | - Athanasios E Evangeliou
- Department of Pediatrics, Medical School, Aristotle University of Thessaloniki, Papageorgiou Hospital, Efkarpia, 56403, Thessaloniki, Greece
| | - Janak K Nathan
- Dr. DY Patil Medical College, Hospital and Research Centre, Pune, Maharashtra, 411018, India
| | - Kris Smith
- Barrow Neurological Institute, Dignity Health St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - David Fortin
- Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Jorg Dietrich
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | | | | |
Collapse
|
3
|
Zhang T, Chen L, Kueth G, Shao E, Wang X, Ha T, Williams DL, Li C, Fan M, Yang K. Lactate's impact on immune cells in sepsis: unraveling the complex interplay. Front Immunol 2024; 15:1483400. [PMID: 39372401 PMCID: PMC11449721 DOI: 10.3389/fimmu.2024.1483400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Lactate significantly impacts immune cell function in sepsis and septic shock, transcending its traditional view as just a metabolic byproduct. This review summarizes the role of lactate as a biomarker and its influence on immune cell dynamics, emphasizing its critical role in modulating immune responses during sepsis. Mechanistically, key lactate transporters like MCT1, MCT4, and the receptor GPR81 are crucial in mediating these effects. HIF-1α also plays a significant role in lactate-driven immune modulation. Additionally, lactate affects immune cell function through post-translational modifications such as lactylation, acetylation, and phosphorylation, which alter enzyme activities and protein functions. These interactions between lactate and immune cells are central to understanding sepsis-associated immune dysregulation, offering insights that can guide future research and improve therapeutic strategies to enhance patient outcomes.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Linjian Chen
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Gatkek Kueth
- James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Emily Shao
- Program in Neuroscience, College of Arts and Science, Vanderbilt University, Nashville, TN, United States
| | - Xiaohui Wang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Tuanzhu Ha
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - David L. Williams
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Chuanfu Li
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Min Fan
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Kun Yang
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
5
|
Zhao K, Braun M, Meyer L, Otte K, Raifer H, Helmprobst F, Möschl V, Pagenstecher A, Urban H, Ronellenfitsch MW, Steinbach JP, Pesek J, Watzer B, Nockher WA, Taudte RV, Neubauer A, Nimsky C, Bartsch JW, Rusch T. A Novel Approach for Glioblastoma Treatment by Combining Apoptosis Inducers (TMZ, MTX, and Cytarabine) with E.V.A. (Eltanexor, Venetoclax, and A1210477) Inhibiting XPO1, Bcl-2, and Mcl-1. Cells 2024; 13:632. [PMID: 38607071 PMCID: PMC11011525 DOI: 10.3390/cells13070632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Adjuvant treatment for Glioblastoma Grade 4 with Temozolomide (TMZ) inevitably fails due to therapeutic resistance, necessitating new approaches. Apoptosis induction in GB cells is inefficient, due to an excess of anti-apoptotic XPO1/Bcl-2-family proteins. We assessed TMZ, Methotrexate (MTX), and Cytarabine (Ara-C) (apoptosis inducers) combined with XPO1/Bcl-2/Mcl-1-inhibitors (apoptosis rescue) in GB cell lines and primary GB stem-like cells (GSCs). Using CellTiter-Glo® and Caspase-3 activity assays, we generated dose-response curves and analyzed the gene and protein regulation of anti-apoptotic proteins via PCR and Western blots. Optimal drug combinations were examined for their impact on the cell cycle and apoptosis induction via FACS analysis, paralleled by the assessment of potential toxicity in healthy mouse brain slices. Ara-C and MTX proved to be 150- to 10,000-fold more potent in inducing apoptosis than TMZ. In response to inhibitors Eltanexor (XPO1; E), Venetoclax (Bcl-2; V), and A1210477 (Mcl-1; A), genes encoding for the corresponding proteins were upregulated in a compensatory manner. TMZ, MTX, and Ara-C combined with E, V, and A evidenced highly lethal effects when combined. As no significant cell death induction in mouse brain slices was observed, we conclude that this drug combination is effective in vitro and expected to have low side effects in vivo.
Collapse
Affiliation(s)
- Kai Zhao
- Department of Neurosurgery, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Madita Braun
- Department of Neurosurgery, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Leonie Meyer
- Department of Neurosurgery, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Katharina Otte
- Department of Neurosurgery, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Hartmann Raifer
- FACS Core Facility, Philipps University Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
| | - Frederik Helmprobst
- Department of Neuropathology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Vincent Möschl
- Department of Neuropathology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Axel Pagenstecher
- Department of Neuropathology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Hans Urban
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Dr. Senckenberg Institute of Neurooncology, Goethe-University of Frankfurt, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany
| | - Michael W. Ronellenfitsch
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Dr. Senckenberg Institute of Neurooncology, Goethe-University of Frankfurt, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany
| | - Joachim P. Steinbach
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Dr. Senckenberg Institute of Neurooncology, Goethe-University of Frankfurt, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany
| | - Jelena Pesek
- Medical Mass Spectrometry Core Facility, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Bernhard Watzer
- Medical Mass Spectrometry Core Facility, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Wolfgang A. Nockher
- Medical Mass Spectrometry Core Facility, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - R. Verena Taudte
- Medical Mass Spectrometry Core Facility, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Andreas Neubauer
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Jörg W. Bartsch
- Department of Neurosurgery, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Tillmann Rusch
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|