1
|
Mallawaarachchi S, Tonkin-Hill G, Pöntinen A, Calland J, Gladstone R, Arredondo-Alonso S, MacAlasdair N, Thorpe H, Top J, Sheppard S, Balding D, Croucher N, Corander J. Detecting co-selection through excess linkage disequilibrium in bacterial genomes. NAR Genom Bioinform 2024; 6:lqae061. [PMID: 38846349 PMCID: PMC11155488 DOI: 10.1093/nargab/lqae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/15/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
Population genomics has revolutionized our ability to study bacterial evolution by enabling data-driven discovery of the genetic architecture of trait variation. Genome-wide association studies (GWAS) have more recently become accompanied by genome-wide epistasis and co-selection (GWES) analysis, which offers a phenotype-free approach to generating hypotheses about selective processes that simultaneously impact multiple loci across the genome. However, existing GWES methods only consider associations between distant pairs of loci within the genome due to the strong impact of linkage-disequilibrium (LD) over short distances. Based on the general functional organisation of genomes it is nevertheless expected that majority of co-selection and epistasis will act within relatively short genomic proximity, on co-variation occurring within genes and their promoter regions, and within operons. Here, we introduce LDWeaver, which enables an exhaustive GWES across both short- and long-range LD, to disentangle likely neutral co-variation from selection. We demonstrate the ability of LDWeaver to efficiently generate hypotheses about co-selection using large genomic surveys of multiple major human bacterial pathogen species and validate several findings using functional annotation and phenotypic measurements. Our approach will facilitate the study of bacterial evolution in the light of rapidly expanding population genomic data.
Collapse
Affiliation(s)
| | | | - Anna K Pöntinen
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Jessica K Calland
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | | | | | | | - Harry A Thorpe
- Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Janetta Top
- Department of Medical Microbiology, UMC Utrecht, Utrecht, The Netherlands
| | - Samuel K Sheppard
- Ineos Oxford Institute of Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - David Balding
- Melbourne Integrative Genomics, School of BioSciences and School of Mathematics & Statistics, University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas J Croucher
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, United Kingdom
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, United Kingdom
| | - Jukka Corander
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
- Helsinki Institute of Information Technology, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Mikucki A, Kahler CM. Microevolution and Its Impact on Hypervirulence, Antimicrobial Resistance, and Vaccine Escape in Neisseria meningitidis. Microorganisms 2023; 11:3005. [PMID: 38138149 PMCID: PMC10745880 DOI: 10.3390/microorganisms11123005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Neisseria meningitidis is commensal of the human pharynx and occasionally invades the host, causing the life-threatening illness invasive meningococcal disease. The meningococcus is a highly diverse and adaptable organism thanks to natural competence, a propensity for recombination, and a highly repetitive genome. These mechanisms together result in a high level of antigenic variation to invade diverse human hosts and evade their innate and adaptive immune responses. This review explores the ways in which this diversity contributes to the evolutionary history and population structure of the meningococcus, with a particular focus on microevolution. It examines studies on meningococcal microevolution in the context of within-host evolution and persistent carriage; microevolution in the context of meningococcal outbreaks and epidemics; and the potential of microevolution to contribute to antimicrobial resistance and vaccine escape. A persistent theme is the idea that the process of microevolution contributes to the development of new hyperinvasive meningococcal variants. As such, microevolution in this species has significant potential to drive future public health threats in the form of hypervirulent, antibiotic-resistant, vaccine-escape variants. The implications of this on current vaccination strategies are explored.
Collapse
Affiliation(s)
- August Mikucki
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia;
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| | - Charlene M. Kahler
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia;
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
3
|
Viney M, Cheynel L. Gut immune responses and evolution of the gut microbiome-a hypothesis. DISCOVERY IMMUNOLOGY 2023; 2:kyad025. [PMID: 38567055 PMCID: PMC10917216 DOI: 10.1093/discim/kyad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/03/2023] [Accepted: 11/22/2023] [Indexed: 04/04/2024]
Abstract
The gut microbiome is an assemblage of microbes that have profound effects on their hosts. The composition of the microbiome is affected by bottom-up, among-taxa interactions and by top-down, host effects, which includes the host immune response. While the high-level composition of the microbiome is generally stable over time, component strains and genotypes will constantly be evolving, with both bottom-up and top-down effects acting as selection pressures, driving microbial evolution. Secretory IgA is a major feature of the gut's adaptive immune response, and a substantial proportion of gut bacteria are coated with IgA, though the effect of this on bacteria is unclear. Here we hypothesize that IgA binding to gut bacteria is a selection pressure that will drive the evolution of IgA-bound bacteria, so that they will have a different evolutionary trajectory than those bacteria not bound by IgA. We know very little about the microbiome of wild animals and even less about their gut immune responses, but it must be a priority to investigate this hypothesis to understand if and how host immune responses contribute to microbiome evolution.
Collapse
Affiliation(s)
- Mark Viney
- Department of Evolution, Ecology & Behaviour, University of Liverpool, Liverpool, UK
| | - Louise Cheynel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| |
Collapse
|
4
|
Georgieva M, Buckee CO, Lipsitch M. Models of immune selection for multi-locus antigenic diversity of pathogens. Nat Rev Immunol 2019; 19:55-62. [PMID: 30479379 DOI: 10.1038/s41577-018-0092-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is well accepted that pathogens can evade recognition and elimination by the host immune system by varying their antigenic targets. Thus, it has become a truism that host immunity is a major driver and determinant of the antigenic diversity of pathogens. However, it remains puzzling how host immunity selects for antigenic diversity at the level of the pathogen population, given that hosts have acquired immune responses to multiple antigens of most pathogens - sometimes through multiple effectors of both humoral and cellular immunity. In this Opinion article, we address this puzzle and the related question of why pathogens often have diversity at multiple antigenic loci. Here, we describe five hypotheses to explain the polymorphism of multiple antigens in a single pathogen species and highlight research relevant to our current models of thinking about multi-locus antigenic diversity.
Collapse
Affiliation(s)
- Maria Georgieva
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA. .,Department of Physiology, University of Lausanne, Lausanne, Switzerland.
| | - Caroline O Buckee
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marc Lipsitch
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
5
|
Reverse immunodynamics: a new method for identifying targets of protective immunity. Sci Rep 2019; 9:2164. [PMID: 30770839 PMCID: PMC6377634 DOI: 10.1038/s41598-018-37288-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022] Open
Abstract
Despite a dramatic increase in our ability to catalogue variation among pathogen genomes, we have made far fewer advances in using this information to identify targets of protective immunity. Epidemiological models predict that strong immune selection can cause antigenic variants to structure into genetically discordant sets of antigenic types (e.g. serotypes). A corollary of this theory is that targets of immunity may be identified by searching for non-overlapping associations of amino acids among co-circulating antigenic variants. We propose a novel population genetics methodology that combines such predictions with phylogenetic analyses to identify genetic loci (epitopes) under strong immune selection. We apply this concept to the AMA-1 protein of the malaria parasite Plasmodium falciparum and find evidence of epitopes among certain regions of low variability which could render them ideal vaccine candidates. The proposed method can be applied to a myriad of multi-strain pathogens for which vast amounts of genetic data has been collected in recent years.
Collapse
|
6
|
Ampattu BJ, Hagmann L, Liang C, Dittrich M, Schlüter A, Blom J, Krol E, Goesmann A, Becker A, Dandekar T, Müller T, Schoen C. Transcriptomic buffering of cryptic genetic variation contributes to meningococcal virulence. BMC Genomics 2017; 18:282. [PMID: 28388876 PMCID: PMC5383966 DOI: 10.1186/s12864-017-3616-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 03/10/2017] [Indexed: 01/06/2023] Open
Abstract
Background Commensal bacteria like Neisseria meningitidis sometimes cause serious disease. However, genomic comparison of hyperinvasive and apathogenic lineages did not reveal unambiguous hints towards indispensable virulence factors. Here, in a systems biological approach we compared gene expression of the invasive strain MC58 and the carriage strain α522 under different ex vivo conditions mimicking commensal and virulence compartments to assess the strain-specific impact of gene regulation on meningococcal virulence. Results Despite indistinguishable ex vivo phenotypes, both strains differed in the expression of over 500 genes under infection mimicking conditions. These differences comprised in particular metabolic and information processing genes as well as genes known to be involved in host-damage such as the nitrite reductase and numerous LOS biosynthesis genes. A model based analysis of the transcriptomic differences in human blood suggested ensuing metabolic flux differences in energy, glutamine and cysteine metabolic pathways along with differences in the activation of the stringent response in both strains. In support of the computational findings, experimental analyses revealed differences in cysteine and glutamine auxotrophy in both strains as well as a strain and condition dependent essentiality of the (p)ppGpp synthetase gene relA and of a short non-coding AT-rich repeat element in its promoter region. Conclusions Our data suggest that meningococcal virulence is linked to transcriptional buffering of cryptic genetic variation in metabolic genes including global stress responses. They further highlight the role of regulatory elements for bacterial virulence and the limitations of model strain approaches when studying such genetically diverse species as N. meningitidis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3616-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Biju Joseph Ampattu
- Institute for Hygiene and Microbiology, Joseph-Schneider-Straße 2, University of Würzburg, 97080, Würzburg, Germany
| | - Laura Hagmann
- Institute for Hygiene and Microbiology, Joseph-Schneider-Straße 2, University of Würzburg, 97080, Würzburg, Germany
| | - Chunguang Liang
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Marcus Dittrich
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.,Department of Human Genetics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstr. 27, 33615, Bielefeld, Germany
| | - Jochen Blom
- Institute for Bioinformatics and Systems Biology, Justus Liebig University Gießen, Heinrich-Buff-Ring 58, 35392, Gießen, Germany
| | - Elizaveta Krol
- LOEWE-Center for Synthetic Microbiology, Hans-Meerwein-Straße, 35032, Marburg, Germany
| | - Alexander Goesmann
- Institute for Bioinformatics and Systems Biology, Justus Liebig University Gießen, Heinrich-Buff-Ring 58, 35392, Gießen, Germany
| | - Anke Becker
- LOEWE-Center for Synthetic Microbiology, Hans-Meerwein-Straße, 35032, Marburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Tobias Müller
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Christoph Schoen
- Institute for Hygiene and Microbiology, Joseph-Schneider-Straße 2, University of Würzburg, 97080, Würzburg, Germany.
| |
Collapse
|
7
|
Metabolic shift in the emergence of hyperinvasive pandemic meningococcal lineages. Sci Rep 2017; 7:41126. [PMID: 28112239 PMCID: PMC5282872 DOI: 10.1038/srep41126] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/15/2016] [Indexed: 12/15/2022] Open
Abstract
Hyperinvasive lineages of Neisseria meningitidis, which persist despite extensive horizontal genetic exchange, are a major cause of meningitis and septicaemia worldwide. Over the past 50 years one such lineage of meningococci, known as serogroup A, clonal complex 5 (A:cc5), has caused three successive pandemics, including epidemics in sub-Saharan Africa. Although the principal antigens that invoke effective immunity have remained unchanged, distinct A:cc5 epidemic clones have nevertheless emerged. An analysis of whole genome sequence diversity among 153 A:cc5 isolates identified eleven genetic introgression events in the emergence of the epidemic clones, which primarily involved variants of core genes encoding metabolic processes. The acquired DNA was identical to that found over many years in other, unrelated, hyperinvasive meningococci, suggesting that the epidemic clones emerged by acquisition of pre-existing metabolic gene variants, rather than ‘virulence’ associated or antigen-encoding genes. This is consistent with mathematical models which predict the association of transmission fitness with the emergence and maintenance of virulence in recombining commensal organisms.
Collapse
|
8
|
Diverse evolutionary patterns of pneumococcal antigens identified by pangenome-wide immunological screening. Proc Natl Acad Sci U S A 2017; 114:E357-E366. [PMID: 28053228 DOI: 10.1073/pnas.1613937114] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Characterizing the immune response to pneumococcal proteins is critical in understanding this bacterium's epidemiology and vaccinology. Probing a custom-designed proteome microarray with sera from 35 healthy US adults revealed a continuous distribution of IgG affinities for 2,190 potential antigens from the species-wide pangenome. Reproducibly elevated IgG binding was elicited by 208 "antibody binding targets" (ABTs), which included 109 variants of the diverse pneumococcal surface proteins A and C (PspA and PspC) and zinc metalloprotease A and B (ZmpA and ZmpB) proteins. Functional analysis found ABTs were enriched in motifs for secretion and cell surface association, with extensive representation of cell wall synthesis machinery, adhesins, transporter solute-binding proteins, and degradative enzymes. ABTs were associated with stronger evidence for evolving under positive selection, although this varied between functional categories, as did rates of diversification through recombination. Particularly rapid variation was observed at some immunogenic accessory loci, including a phage protein and a phase-variable glycosyltransferase ubiquitous among the diverse set of genomic islands encoding the serine-rich PsrP glycoprotein. Nevertheless, many antigens were conserved in the core genome, and strains' antigenic profiles were generally stable. No strong evidence was found for any epistasis between antigens driving population dynamics, or redundancy between functionally similar accessory ABTs, or age stratification of antigen profiles. These results highlight the paradox of why substantial variation is observed in only a subset of epitopes. This result may indicate only some interactions between immunoglobulins and ABTs clear pneumococcal colonization or that acquired immunity to pneumococci is an accumulation of individually weak responses to ABTs evolving under different levels of functional constraint.
Collapse
|
9
|
Watkins ER, Maiden MC, Gupta S. Metabolic competition as a driver of bacterial population structure. Future Microbiol 2016; 11:1339-1357. [PMID: 27660887 DOI: 10.2217/fmb-2016-0079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Understanding the processes whereby diversity arises and is maintained in pathogen populations is pivotal for designing disease control interventions. A particular problem is the maintenance of strain structure in bacterial pathogen populations despite frequent genetic exchange. Although several theoretical frameworks have been put forward to explain this widespread phenomenon, few have focused on the role of genes encoding metabolic functions, despite an increasing recognition of their importance in pathogenesis and transmission. In this article, we review the literature for evidence of metabolic niches within the host and discuss theoretical frameworks which examine ecological interactions between metabolic genes. We contend that metabolic competition is an important phenomenon which contributes to the maintenance of population structure and diversity of many bacterial pathogens.
Collapse
Affiliation(s)
- Eleanor R Watkins
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Martin Cj Maiden
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Sunetra Gupta
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
10
|
Wachter J, Hill S. Positive Selection Pressure Drives Variation on the Surface-Exposed Variable Proteins of the Pathogenic Neisseria. PLoS One 2016; 11:e0161348. [PMID: 27532335 PMCID: PMC5020929 DOI: 10.1371/journal.pone.0161348] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/03/2016] [Indexed: 11/19/2022] Open
Abstract
Pathogenic species of Neisseria utilize variable outer membrane proteins to facilitate infection and proliferation within the human host. However, the mechanisms behind the evolution of these variable alleles remain largely unknown due to analysis of previously limited datasets. In this study, we have expanded upon the previous analyses to substantially increase the number of analyzed sequences by including multiple diverse strains, from various geographic locations, to determine whether positive selective pressure is exerted on the evolution of these variable genes. Although Neisseria are naturally competent, this analysis indicates that only intrastrain horizontal gene transfer among the pathogenic Neisseria principally account for these genes exhibiting linkage equilibrium which drives the polymorphisms evidenced within these alleles. As the majority of polymorphisms occur across species, the divergence of these variable genes is dependent upon the species and is independent of geographical location, disease severity, or serogroup. Tests of neutrality were able to detect strong selection pressures acting upon both the opa and pil gene families, and were able to locate the majority of these sites within the exposed variable regions of the encoded proteins. Evidence of positive selection acting upon the hypervariable domains of Opa contradicts previous beliefs and provides evidence for selection of receptor binding. As the pathogenic Neisseria reside exclusively within the human host, the strong selection pressures acting upon both the opa and pil gene families provide support for host immune system pressure driving sequence polymorphisms within these variable genes.
Collapse
Affiliation(s)
- Jenny Wachter
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, 60115, United States of America
| | - Stuart Hill
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, 60115, United States of America
| |
Collapse
|
11
|
Lourenço J, Wikramaratna PS, Gupta S. MANTIS: an R package that simulates multilocus models of pathogen evolution. BMC Bioinformatics 2015; 16:176. [PMID: 26017358 PMCID: PMC4445977 DOI: 10.1186/s12859-015-0598-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/27/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In host-pathogen systems the development of immunity by the host places pressure on pathogens, by setting up competition between genetic variants due to the establishment of cross-protective responses. These pressures can lead to pathogen-specific, ubiquitous dynamic behaviours. Understanding the evolutionary forces that shape these patterns is one of the key goals of computationally simulated epidemiological models. Despite the contribution of such research methods in recent years to our current understanding of pathogen evolution, the availability of free software tools for the general public remains scarce. RESULTS We developed the Multilocus ANTIgenic Simulator (MANTIS) software package for the R statistical environment. MANTIS can simulate and analyse epidemiological time-series generated under the biological assumptions of the strain theory of host-pathogen systems by Gupta et al. CONCLUSIONS MANTIS wraps a C/C++ ordinary-differential equations system and Runge-Kutta solver into a set of user-friendly R functions. These include routines to numerically simulate the system and others to analyse, visualize and export results. For this, the package offers its own set of time-series plotting and exportation functions. MANTIS's main goal is to serve as a free, ready-to-use academic software tool. Its open source nature further provides an opportunity for users with advanced programming skills to expand its capabilities. Here, we describe the background theory, implementation, basic functionality and usage of this package. MANTIS is freely available from http://www.eeid.ox.ac.uk/mantis under the GPL license.
Collapse
Affiliation(s)
- José Lourenço
- Department of Zoology, University of Oxford, South Parks Road, Oxford, UK.
| | | | - Sunetra Gupta
- Department of Zoology, University of Oxford, South Parks Road, Oxford, UK.
| |
Collapse
|
12
|
Contrasting within- and between-host immune selection shapes Neisseria Opa repertoires. Sci Rep 2014; 4:6554. [PMID: 25296566 PMCID: PMC4894414 DOI: 10.1038/srep06554] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 09/08/2014] [Indexed: 11/30/2022] Open
Abstract
Pathogen evolution is influenced strongly by the host immune response. Previous studies of the effects of herd immunity on the population structure of directly transmitted, short-lived pathogens have primarily focused on the impact of competition for hosts. In contrast, for long-lived infections like HIV, theoretical work has focused on the mechanisms promoting antigenic variation within the host. In reality, successful transmission requires that pathogens balance both within- and between-host immune selection. The Opa adhesins in the bacterial Neisseria genus provide a unique system to study the evolution of the same antigens across two major pathogens: while N. meningitidis is an airborne, respiratory pathogen colonising the nasopharynx relatively transiently, N. gonorrhoeae can cause sexually transmitted, long-lived infections. We use a simple mathematical model and genomic data to show that trade-offs between immune selection pressures within- and between-hosts can explain the contrasting Opa repertoires observed in meningococci and gonococci.
Collapse
|
13
|
Roy SW, Ferreira MU. A new model for the origins of allelic dimorphism in Plasmodium falciparum. Parasitol Int 2014; 64:229-37. [PMID: 25251164 DOI: 10.1016/j.parint.2014.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/11/2014] [Accepted: 09/12/2014] [Indexed: 11/17/2022]
Abstract
In his landmark 1987 study of the merozoite surface protein-1 locus in Plasmodium falciparum, Kazuyuki Tanabe and coauthors introduced the phenomenon of allelic dimorphism, in which antigenic diversity is arranged into two maximally diverged haplotypes. Further work has extended this finding to other loci in P. falciparum. Each of the loci at which allelic dimorphism is observed encodes major surface antigens of blood-stage malaria parasites, and is consequently a major vaccine target, thus understanding the origins and implications of allelic dimorphism is of crucial importance. Here we examine the essential features of allelic dimorphism in dimorphic malarial surface antigens. From sequence analysis, we conclude that the ancestral population may have been recombining/multimorphic rather than dimorphic. We hypothesize a pathway to allelic dimorphism in which an ancestral allele-rich recombining population could have undergone a severe population bottleneck, putatively caused by the lateral transfer of P. falciparum from apes to humans. This bottleneck produced a reduction in allelic diversity, favoring the survival of the most divergent alleles, which in turn led to recombination suppression by strong natural selection against recombinants.
Collapse
Affiliation(s)
- Scott W Roy
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA.
| | - Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, 05508-900 São Paulo, SP, Brazil.
| |
Collapse
|
14
|
Zhou K, Aertsen A, Michiels CW. The role of variable DNA tandem repeats in bacterial adaptation. FEMS Microbiol Rev 2013; 38:119-41. [PMID: 23927439 DOI: 10.1111/1574-6976.12036] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/13/2013] [Accepted: 07/26/2013] [Indexed: 01/05/2023] Open
Abstract
DNA tandem repeats (TRs), also designated as satellite DNA, are inter- or intragenic nucleotide sequences that are repeated two or more times in a head-to-tail manner. Because TR tracts are prone to strand-slippage replication and recombination events that cause the TR copy number to increase or decrease, loci containing TRs are hypermutable. An increasing number of examples illustrate that bacteria can exploit this instability of TRs to reversibly shut down or modulate the function of specific genes, allowing them to adapt to changing environments on short evolutionary time scales without an increased overall mutation rate. In this review, we discuss the prevalence and distribution of inter- and intragenic TRs in bacteria and the mechanisms of their instability. In addition, we review evidence demonstrating a role of TR variations in bacterial adaptation strategies, ranging from immune evasion and tissue tropism to the modulation of environmental stress tolerance. Nevertheless, while bioinformatic analysis reveals that most bacterial genomes contain a few up to several dozens of intra- and intergenic TRs, only a small fraction of these have been functionally studied to date.
Collapse
Affiliation(s)
- Kai Zhou
- Department of Microbial and Molecular Systems (M²S), Faculty of Bioscience Engineering, Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
15
|
Saleem M, Prince SM, Rigby SEJ, Imran M, Patel H, Chan H, Sanders H, Maiden MCJ, Feavers IM, Derrick JP. Use of a molecular decoy to segregate transport from antigenicity in the FrpB iron transporter from Neisseria meningitidis. PLoS One 2013; 8:e56746. [PMID: 23457610 PMCID: PMC3574120 DOI: 10.1371/journal.pone.0056746] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/14/2013] [Indexed: 11/25/2022] Open
Abstract
FrpB is an outer membrane transporter from Neisseria meningitidis, the causative agent of meningococcal meningitis. It is a member of the TonB-dependent transporter (TBDT) family and is responsible for iron uptake into the periplasm. FrpB is subject to a high degree of antigenic variation, principally through a region of hypervariable sequence exposed at the cell surface. From the crystal structures of two FrpB antigenic variants, we identify a bound ferric ion within the structure which induces structural changes on binding which are consistent with it being the transported substrate. Binding experiments, followed by elemental analysis, verified that FrpB binds Fe3+ with high affinity. EPR spectra of the bound Fe3+ ion confirmed that its chemical environment was consistent with that observed in the crystal structure. Fe3+ binding was reduced or abolished on mutation of the Fe3+-chelating residues. FrpB orthologs were identified in other Gram-negative bacteria which showed absolute conservation of the coordinating residues, suggesting the existence of a specific TBDT sub-family dedicated to the transport of Fe3+. The region of antigenic hypervariability lies in a separate, external sub-domain, whose structure is conserved in both the F3-3 and F5-1 variants, despite their sequence divergence. We conclude that the antigenic sub-domain has arisen separately as a result of immune selection pressure to distract the immune response from the primary transport function. This would enable FrpB to function as a transporter independently of antibody binding, by using the antigenic sub-domain as a ‘molecular decoy’ to distract immune surveillance.
Collapse
Affiliation(s)
- Muhammad Saleem
- Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, United Kingdom
| | - Stephen M. Prince
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, United Kingdom
| | - Stephen E. J. Rigby
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, United Kingdom
| | - Muhammad Imran
- Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, United Kingdom
| | - Hema Patel
- National Institute for Biological Standards and Control, Health Protection Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Hannah Chan
- National Institute for Biological Standards and Control, Health Protection Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Holly Sanders
- National Institute for Biological Standards and Control, Health Protection Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Martin C. J. Maiden
- Department of Zoology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Ian M. Feavers
- National Institute for Biological Standards and Control, Health Protection Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Jeremy P. Derrick
- Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Huber CA, Pflüger V, Hamid AWM, Forgor AA, Hodgson A, Sié A, Junghanss T, Pluschke G. Lack of antigenic diversification of major outer membrane proteins during clonal waves of Neisseria meningitidis serogroup A colonization and disease. Pathog Dis 2012; 67:4-10. [PMID: 23620114 DOI: 10.1111/2049-632x.12000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 08/17/2012] [Accepted: 08/21/2012] [Indexed: 12/22/2022] Open
Abstract
In particular in the 'meningitis belt' of sub-Saharan Africa, epidemic meningococcal meningitis is a severe public health problem. In the past decades, serogroup A lineages have been the dominant etiologic agents, but also other serogroups have caused outbreaks. A comprehensive vaccine based on subcapsular outer membrane proteins (OMPs) is not available. Here, we have investigated whether meningococcal populations overcome herd immunity by changing antigenic properties of their OMPs. Meningococcal isolates were collected in the context of longitudinal studies in Ghana between 2002 and 2008 and in Burkina Faso between 2006 and 2007. Serogroup A strains isolated during two clonal waves of colonization and disease showed no diversification in the genes encoding their PorA, PorB, and FetA proteins. However, we detected occasional allelic exchange of opa genes, as well as wide variation in the number of intragenic tandem repeats, showing that phase variation of Opa protein expression is a frequent event. Altogether we observed a remarkable antigenic stability of the PorA, PorB and FetA proteins over years. Our results indicate that while herd immunity may be responsible for the disappearance of meningococcal clones over time, it is not a strong driving force for antigenic diversification of the major OMPs analyzed here.
Collapse
|
17
|
Watkins ER, Maiden MCJ. Persistence of hyperinvasive meningococcal strain types during global spread as recorded in the PubMLST database. PLoS One 2012; 7:e45349. [PMID: 23028953 PMCID: PMC3460945 DOI: 10.1371/journal.pone.0045349] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/15/2012] [Indexed: 01/10/2023] Open
Abstract
Neisseria meningitidis is a major cause of septicaemia and meningitis worldwide. Most disease in Europe, the Americas and Australasia is caused by meningococci expressing serogroup B capsules, but no vaccine against this polysaccharide exists. Potential candidates for 'serogroup B substitute' vaccines are outer membrane protein antigens including the typing antigens PorA and FetA. The web-accessible PubMLST database (www.pubmlst.org) was used to investigate the temporal and geographical patterns of associations among PorA and FetA protein variants and lineages defined by combinations of housekeeping genes, known as clonal complexes. The sample contained 3460 isolates with genotypic information from 57 countries over a 74 year period. Although shifting associations among antigen variants and clonal complexes were evident, a subset of strain types associated with several serogroups persisted for decades and proliferated globally. Genetic stability among outer membrane proteins of serogroup A meningococci has been described previously, but here long-lived genetic associations were also observed among meningococci belonging to serogroups B and C. The patterns of variation were consistent with behaviour predicted by models that invoke inter-strain competition mediated by immune selection. There was also substantial geographic and temporal heterogeneity in antigenic repertoires, providing both opportunities and challenges for the design of broad coverage protein-based meningococcal vaccines.
Collapse
|
18
|
Sadarangani M, Pollard AJ, Gray-Owen SD. Opa proteins and CEACAMs: pathways of immune engagement for pathogenic Neisseria. FEMS Microbiol Rev 2011; 35:498-514. [PMID: 21204865 DOI: 10.1111/j.1574-6976.2010.00260.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neisseria meningitidis and Neisseria gonorrhoeae are globally important pathogens, which in part owe their success to their ability to successfully evade human immune responses over long periods. The phase-variable opacity-associated (Opa) adhesin proteins are a major surface component of these organisms, and are responsible for bacterial adherence and entry into host cells and interactions with the immune system. Most immune interactions are mediated via binding to members of the carcinoembryonic antigen cell adhesion molecule (CEACAM) family. These Opa variants are able to bind to different receptors of the CEACAM family on epithelial cells, neutrophils, and T and B lymphocytes, influencing the innate and adaptive immune responses. Increased epithelial cell adhesion creates the potential for prolonged infection, invasion and dissemination. Furthermore, Opa proteins may inhibit T-lymphocyte activation and proliferation, B-cell antibody production, and innate inflammatory responses by infected epithelia, in addition to conferring increased resistance to antibody-dependent, complement-mediated killing. While vaccines containing Opa proteins could induce adhesion-blocking and bactericidal antibodies, the consequence of CEACAM binding by a candidate Opa-containing vaccine requires further investigation. This review summarizes current knowledge of the immunological consequences of the interaction between meningococcal and gonococcal Opa proteins and human CEACAMs, considering the implications for pathogenesis and vaccine development.
Collapse
Affiliation(s)
- Manish Sadarangani
- Oxford Vaccine Group, Department of Paediatrics, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Churchill Hospital, Oxford, UK.
| | | | | |
Collapse
|
19
|
Yero D, Vipond C, Climent Y, Sardiñas G, Feavers IM, Pajón R. Variation in the Neisseria meningitidis FadL-like protein: an evolutionary model for a relatively low-abundance surface antigen. MICROBIOLOGY-SGM 2010; 156:3596-3608. [PMID: 20817647 DOI: 10.1099/mic.0.043182-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The molecular diversity of a novel Neisseria meningitidis antigen, encoded by the ORF NMB0088 of MC58 (FadL-like protein), was assessed in a panel of 64 diverse meningococcal strains. The panel consisted of strains belonging to different serogroups, serotypes, serosubtypes and MLST sequence types, of different clinical sources, years and countries of isolation. Based on the sequence variability of the protein, the FadL-like protein has been divided into four variant groups in this species. Antigen variants were associated with specific serogroups and MLST clonal complexes. Maximum-likelihood analyses were used to determine the relationships among sequences and to compare the selection pressures acting on the encoded protein. Furthermore, a model of population genetics and molecular evolution was used to detect natural selection in DNA sequences using the non-synonymous : synonymous substitution (d(N) : d(S)) ratio. The meningococcal sequences were also compared with those of the related surface protein in non-pathogenic commensal Neisseria species to investigate potential horizontal gene transfer. The N. meningitidis fadL gene was subject to only weak positive selection pressure and was less diverse than meningococcal major outer-membrane proteins. The majority of the variability in fadL was due to recombination among existing alleles from the same or related species that resulted in a discrete mosaic structure in the meningococcal population. In general, the population structuring observed based on the FadL-like membrane protein indicates that it is under intermediate immune selection. However, the emergence of a new subvariant within the hyperinvasive lineages demonstrates the phenotypic adaptability of N. meningitidis, probably in response to selective pressure.
Collapse
Affiliation(s)
- Daniel Yero
- Department of Molecular Biology, Division of Biotechnology, Finlay Institute, Havana, Cuba
| | - Caroline Vipond
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, UK
| | - Yanet Climent
- Department of Molecular Biology, Division of Biotechnology, Finlay Institute, Havana, Cuba
| | - Gretel Sardiñas
- Division of Vaccines, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Ian M Feavers
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, UK
| | - Rolando Pajón
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| |
Collapse
|
20
|
Comparative genome biology of a serogroup B carriage and disease strain supports a polygenic nature of meningococcal virulence. J Bacteriol 2010; 192:5363-77. [PMID: 20709895 DOI: 10.1128/jb.00883-10] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neisseria meningitidis serogroup B strains are responsible for most meningococcal cases in the industrialized countries, and strains belonging to the clonal complex ST-41/44 are among the most prevalent serogroup B strains in carriage and disease. Here, we report the first genome and transcriptome comparison of a serogroup B carriage strain from the clonal complex ST-41/44 to the serogroup B disease strain MC58 from the clonal complex ST-32. Both genomes are highly colinear, with only three major genome rearrangements that are associated with the integration of mobile genetic elements. They further differ in about 10% of their gene content, with the highest variability in gene presence as well as gene sequence found for proteins involved in host cell interactions, including Opc, NadA, TonB-dependent receptors, RTX toxin, and two-partner secretion system proteins. Whereas housekeeping genes coding for metabolic functions were highly conserved, there were considerable differences in their expression pattern upon adhesion to human nasopharyngeal cells between both strains, including differences in energy metabolism and stress response. In line with these genomic and transcriptomic differences, both strains also showed marked differences in their in vitro infectivity and in serum resistance. Taken together, these data support the concept of a polygenic nature of meningococcal virulence comprising differences in the repertoire of adhesins as well as in the regulation of metabolic genes and suggest a prominent role for immune selection and genetic drift in shaping the meningococcal genome.
Collapse
|
21
|
Abstract
No broadly effective vaccines are available for prevention of group B meningococcal disease, which accounts for >50% of all cases. The group B capsule is an autoantigen and is not a suitable vaccine target. Outer-membrane vesicle vaccines appear to be safe and effective, but serum bactericidal responses in infants are specific for a porin protein, PorA, which is antigenically variable. To broaden protection, outer-membrane vesicle vaccines have been prepared from >1 strain, from mutants with >1 PorA, or from mutants with genetically detoxified endotoxin and overexpressed desirable antigens, such as factor H binding protein. Also, recombinant protein vaccines such as factor H binding protein, given alone or in combination with other antigens, are in late-stage clinical development and may be effective against the majority of group B strains. Thus, the prospects have never been better for developing vaccines for prevention of meningococcal disease, including that caused by group B strains.
Collapse
Affiliation(s)
- Dan M Granoff
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, California, USA.
| |
Collapse
|
22
|
Baldo L, Desjardins CA, Russell JA, Stahlhut JK, Werren JH. Accelerated microevolution in an outer membrane protein (OMP) of the intracellular bacteria Wolbachia. BMC Evol Biol 2010; 10:48. [PMID: 20163713 PMCID: PMC2843615 DOI: 10.1186/1471-2148-10-48] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 02/17/2010] [Indexed: 11/16/2022] Open
Abstract
Background Outer membrane proteins (OMPs) of Gram-negative bacteria are key players in the biology of bacterial-host interactions. However, while considerable attention has been given to OMPs of vertebrate pathogens, relatively little is known about the role of these proteins in bacteria that primarily infect invertebrates. One such OMP is found in the intracellular bacteria Wolbachia, which are widespread symbionts of arthropods and filarial nematodes. Recent experimental studies have shown that the Wolbachia surface protein (WSP) can trigger host immune responses and control cell death programming in humans, suggesting a key role of WSP for establishment and persistence of the symbiosis in arthropods. Results Here we performed an analysis of 515 unique alleles found in 831 Wolbachia isolates, to investigate WSP structure, microevolution and population genetics. WSP shows an eight-strand transmembrane β-barrel structure with four extracellular loops containing hypervariable regions (HVRs). A clustering approach based upon patterns of HVR haplotype diversity was used to group similar WSP sequences and to estimate the relative contribution of mutation and recombination during early stages of protein divergence. Results indicate that although point mutations generate most of the new protein haplotypes, recombination is a predominant force triggering diversity since the very first steps of protein evolution, causing at least 50% of the total amino acid variation observed in recently diverged proteins. Analysis of synonymous variants indicates that individual WSP protein types are subject to a very rapid turnover and that HVRs can accommodate a virtually unlimited repertoire of peptides. Overall distribution of WSP across hosts supports a non-random association of WSP with the host genus, although extensive horizontal transfer has occurred also in recent times. Conclusions In OMPs of vertebrate pathogens, large recombination impact, positive selection, reduced structural and compositional constraints, and extensive lateral gene transfer are considered hallmarks of evolution in response to the adaptive immune system. However, Wolbachia do not infect vertebrates. Here we predict that the rapid turnover of WSP loop motifs could aid in evading or inhibiting the invertebrate innate immune response. Overall, these features identify WSP as a strong candidate for future studies of host-Wolbachia interactions that affect establishment and persistence of this widespread endosymbiosis.
Collapse
Affiliation(s)
- Laura Baldo
- Department of Biology, University of California, Riverside, CA, USA.
| | | | | | | | | |
Collapse
|
23
|
Beernink PT, Granoff DM. The modular architecture of meningococcal factor H-binding protein. MICROBIOLOGY-SGM 2009; 155:2873-2883. [PMID: 19574307 DOI: 10.1099/mic.0.029876-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Meningococcal factor H binding protein (fHbp) is a promising vaccine antigen that binds the human complement downregulatory molecule factor H (fH), and this binding enhances the survival of the organism in serum. Based on sequence variability of the entire protein, fHbp has been divided into three variant groups or two subfamilies. Here, we present evidence based on phylogenetic analysis of 70 unique fHbp amino acid sequences that the molecular architecture is modular. From sequences of natural chimeras we identified blocks of two to five invariant residues that flanked five modular variable segments. Although overall, 46 % of the fHbp amino acids were invariant, based on a crystal structure, the invariant blocks that flanked the modular variable segments clustered on the membrane surface containing the amino-terminal lipid anchor, while the remaining invariant residues were located throughout the protein. Each of the five modular variable segments could be classified into one of two types, designated alpha or beta, based on homology with segments encoded by variant 1 or 3 fHbp genes, respectively. Forty of the fHbps (57 %) comprised only alpha (n=33) or beta (n=7) type segments. The remaining 30 proteins (43 %) were chimeras and could be classified into one of four modular groups. These included all 15 proteins assigned to the previously described variant 2 in subfamily A. The modular segments of one chimeric modular group had 96 % amino acid identity with those of fHbp orthologs in Neisseria gonorrhoeae. Collectively, the data suggest that recombination between Neisseria meningitidis and N. gonorrhoeae progenitors generated a family of modular, antigenically diverse meningococcal fHbps.
Collapse
Affiliation(s)
- Peter T Beernink
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Dan M Granoff
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| |
Collapse
|
24
|
Carbonnelle E, Hill DJ, Morand P, Griffiths NJ, Bourdoulous S, Murillo I, Nassif X, Virji M. Meningococcal interactions with the host. Vaccine 2009; 27 Suppl 2:B78-89. [PMID: 19481311 DOI: 10.1016/j.vaccine.2009.04.069] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Neisseria meningitidis interacts with host tissues through hierarchical, concerted and co-ordinated actions of a number of adhesins; many of which undergo antigenic and phase variation, a strategy that helps immune evasion. Three major structures, pili, Opa and Opc predominantly influence bacterial adhesion to host cells. Pili and Opa proteins also determine host and tissue specificity while Opa and Opc facilitate efficient cellular invasion. Recent studies have also implied a role of certain adhesin-receptor pairs in determining increased host susceptibility to infection. This chapter examines our current knowledge of meningococcal adhesion and invasion mechanisms particularly related to human epithelial and endothelial cells which are of primary importance in the disease process.
Collapse
Affiliation(s)
- Etienne Carbonnelle
- INSERM, unité 570, Université Paris Descartes, 156 rue de Vaugirard, Paris 75015, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Caugant DA, Maiden MCJ. Meningococcal carriage and disease--population biology and evolution. Vaccine 2009; 27 Suppl 2:B64-70. [PMID: 19464092 PMCID: PMC2719693 DOI: 10.1016/j.vaccine.2009.04.061] [Citation(s) in RCA: 267] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Meningococcal disease occurs worldwide with incidence rates varying from 1 to 1000 cases per 100,000. The causative organism, Neisseria meningitidis, is an obligate commensal of humans, which normally colonizes the mucosa of the upper respiratory tract without causing invasive disease, a phenomenon known as carriage. Studies using molecular methods have demonstrated the extensive genetic diversity of meningocococci isolated from carriers, in contrast to a limited number of genetic types, known as the hyperinvasive lineages, associated with invasive disease. Population and evolutionary models that invoke positive selection can be used to resolve the apparent paradox of virulent lineages persisting during the global spread of a non-clonal and normally commensal bacterium. The application of insights gained from studies of meningococcal population biology and evolution is important in understanding the spread of disease, as well as in vaccine development and implementation, especially with regard to the challenge of producing comprehensive vaccines based on sub-capsular antigens and measuring their effectiveness.
Collapse
Affiliation(s)
- Dominique A Caugant
- WHO Collaborating Centre for Reference and Research on Meningococci, Norwegian Institute of Public Health, Oslo, Norway.
| | | |
Collapse
|
26
|
Distribution and genetic variability of three vaccine components in a panel of strains representative of the diversity of serogroup B meningococcus. Vaccine 2009; 27:2794-803. [PMID: 19428890 DOI: 10.1016/j.vaccine.2009.02.098] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 02/21/2009] [Accepted: 02/26/2009] [Indexed: 11/20/2022]
Abstract
With the aim of studying the molecular diversity of the antigens of a new recombinant vaccine against meningococcus serogroup B, the three genes coding for the main vaccine components GNA (Genome-derived Neisseria Antigen) 1870 (fHbp, factor H Binding Protein), GNA1994 (NadA, Neisseria adhesin A) and GNA2132 were sequenced in a panel of 85 strains collected worldwide and selected as representative of the serogroup B meningococcal diversity. No correlations were found between vaccine antigen variability and serogroup, geographic area and year of isolation. Although a relevant clustering was found with MLST clonal complexes, each showing an almost specific antigen variant repertoire, the prediction of the antigen assortment was not possible on the basis of MLST alone. Therefore, classification of meningococcus on the basis of MLST only is not sufficient to predict vaccine antigens diversity. Sequencing each gene in the different strains will be important to evaluate antigen conservation and assortment and to allow a future prediction of potential vaccine coverage.
Collapse
|
27
|
Maiden MC. Population genomics: diversity and virulence in the Neisseria. Curr Opin Microbiol 2008; 11:467-71. [PMID: 18822386 PMCID: PMC2612085 DOI: 10.1016/j.mib.2008.09.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 09/02/2008] [Indexed: 01/28/2023]
Abstract
Advances in high-throughput nucleotide sequencing and bioinformatics make the study of genomes at the population level feasible. Preliminary population genomic studies have explored the relationships among three closely related bacteria, Neisseria meningitidis, Neisseria gonorrhoeae and Neisseria lactamica, which exhibit very different phenotypes with respect to human colonisation. The data obtained have been especially valuable in the establishing of the role of horizontal genetic exchange in bacterial speciation and shaping population structure. In the meningococcus, they have been used to define invasive genetic types, search for virulence factors and potential vaccine components and investigate the effects of vaccines on population structure. These are generic approaches and their application to the Neisseria provides a foretaste for their application to the wider bacterial world.
Collapse
Affiliation(s)
- Martin Cj Maiden
- Department of Zoology, South Parks Road, Oxford OX1 2PS, United Kingdom.
| |
Collapse
|
28
|
Abstract
The meningococcal Opa proteins play an important role in pathogenesis by mediating invasion of human cells. The aim of this investigation was to determine whether carried and disease-associated meningococci possess different Opa repertoires and whether the diversity of these proteins is associated with clinical severity of disease. Opa repertoires in 227 disease-associated meningococci, isolated in the United Kingdom over a period of 6 years, were compared to the repertoires in 190 asymptomatically carried meningococci isolated in the United Kingdom from a contemporary, nonepidemic period. Multidimensional scaling (MDS) was employed to investigate the association between Opa repertoires and multilocus sequence typing (MLST) genotypes. Associations with clinical severity were also analyzed statistically. High levels of diversity were observed in opa alleles, variable regions, and repertoires, and MDS revealed that MLST genotypes were strongly associated with particular Opa repertoires. Individual Opa proteins or repertoires were not associated with clinical severity, though there was a trend toward an association with the opaD locus. Meningococcal Opa repertoire is strongly linked to MLST genotype irrespective of epidemiological sampling and therefore correlates with invasiveness. It is not, however, strongly associated with severity of meningococcal disease.
Collapse
|