1
|
Zhou M, Zhang X, Chen S, Xin Z, Zhang J. Non-coding RNAs and regulatory networks involved in the Ameson portunus (Microsporidia)-Portunus trituberculatus interaction. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110162. [PMID: 39884408 DOI: 10.1016/j.fsi.2025.110162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/04/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Ameson portunus, the causative agent of "toothpaste disease" in Portunus trituberculatus and "slurry-like syndrome" in Scylla paramamosain, has resulted in considerable economic losses in the marine crab aquaculture industry in China. Practical control strategies are yet unavailable. Non-coding RNAs (ncRNAs) are crucial components of gene regulation of intracellular parasites, however, their roles in regulating the microsporidia-host interaction remain limited. Here we conducted a whole-transcriptome RNA-seq analysis to identify ncRNAs and to establish the interaction regulatory networks to get further insights into the A. portunus-P. trituberculatus interaction. Totally, 2805 mRNAs, 484 lncRNAs, 5 circRNAs, and 496 miRNAs were identified from A. portunus. These ncRNAs are possibly important regulators for its own energy and substrate metabolism, thereby supporting the intracellular survival and proliferation of A. portunus. DNA replication-associated mRNAs were significantly up-regulated after P. trituberculatus infection with A. portunus. It can be hypothesized that up-regulated lncRNAs may be responsible for the up-regulation of these DNA replication-related genes by miRNAs in P. trituberculatus. The downregulation of metabolic pathways is one of possible strategies of P. trituberculatus to respond the infection of A. portunus. Cross-species miRNAs were suggested to play important roles in the cross-talk of P. trituberculatus-A. portunus, e.g. the disruption of the cytoskeletal organization and normal cell function of host by this microsporidian. The results enrich the knowledge of ncRNAs in microsporidia and offer new insights into microsporidia-host interactions.
Collapse
Affiliation(s)
- Min Zhou
- The Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Xintong Zhang
- The Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Shuqi Chen
- The Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Zhaozhe Xin
- The Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Jinyong Zhang
- The Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| |
Collapse
|
2
|
Meng X, Ou Y, Jiang W, Guo Y, Xiao L, Feng Y, Li N. Identification of two new genetic loci for high-resolution genotyping of Enterocytozoon bieneusi. Parasite 2025; 32:6. [PMID: 39887113 PMCID: PMC11784105 DOI: 10.1051/parasite/2025002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025] Open
Abstract
In addition to the ribosomal internal transcribed spacer (ITS) locus, four loci (MS1, MS3, MS4, and MS7) have been identified to develop multilocus sequence typing tools for high-resolution genotyping of Enterocytozoon bieneusi in previous studies. However, the use of only five loci was insufficient for population genetic analysis of E. bieneusi from diverse hosts. In this study, comparison of a clinical genome sequence (C44566) with the whole genome sequence of an E. bieneusi isolate (H348) in GenBank led to the selection of the hypothetical protein 1 (hp1) and tubulin 1 (tub1) loci. Further analysis of the two loci with 156 E. bieneusi-positive samples showed high sequence polymorphisms in ITS Groups 1-6 and 10. Altogether, 30 and 23 sequence types were identified at hp1 and tub1, respectively. Genotyping based on the two loci confirmed the lack of genetic differentiation between Group 1 and Group 2 genotypes, as previously reported. Moreover, the genotypes in Groups 4 and 5 are more divergent from other genotypes within Groups 1-10. However, isolates in Group 11 and 12 could not be amplified at the hp1 and tub1 loci, supporting the previous conclusion of genetic uniqueness of the two genotype groups. The identified genetic markers and generated data could be used to develop a multilocus sequence typing tool for high-resolution genotyping of E. bieneusi, which would also have implications for understanding the taxonomy of Enterocytozoon spp., the public health significance of E. bieneusi in animals, and sources of E. bieneusi infections in humans.
Collapse
Affiliation(s)
- Xinan Meng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, South China Agricultural University Guangzhou 510642 China
| | - Yonglin Ou
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, South China Agricultural University Guangzhou 510642 China
| | - Wen Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, South China Agricultural University Guangzhou 510642 China
| | - Yaqiong Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, South China Agricultural University Guangzhou 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University Guangzhou 510642 China
| | - Lihua Xiao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, South China Agricultural University Guangzhou 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University Guangzhou 510642 China
| | - Yaoyu Feng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, South China Agricultural University Guangzhou 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University Guangzhou 510642 China
| | - Na Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, South China Agricultural University Guangzhou 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University Guangzhou 510642 China
| |
Collapse
|
3
|
South LR, Hurdeal VG, Fast NM. Genomics and phylogenetic relationships of microsporidia and their relatives. J Eukaryot Microbiol 2024; 71:e13051. [PMID: 39079911 DOI: 10.1111/jeu.13051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 11/20/2024]
Abstract
Microsporidia are intracellular parasites that all possess a unique infection apparatus involving a polar tube. Upon contact with a host cell, this tube forms the conduit through which the parasite enters the host. Infecting mostly animals, microsporidian species can be transmitted vertically or horizontally, and exert various effects on their hosts: infections range from being relatively benign to lethal. Microsporidian genomes possess highly divergent sequences and are often substantially reduced in size. Their divergent sequences and unique morphology created early challenges to our understanding of their phylogenetic position within the tree of eukaryotes. Over the last couple of decades, advances in both sequencing technology and phylogenetic methodology supported a clear relationship between microsporidia and fungi. However, the specifics of this relationship were muddied by the lack of known microsporidian relatives. With increased taxon discovery and the morphological and molecular characterization of microsporidia-like taxa, rozellids and aphelids, a better resolved picture is emerging. Here we review the history of microsporidian taxonomy and current status of genomics of microsporidia and their nearest relatives, with an aim to understand their morphological and metabolic differences, along with their evolutionary relationships.
Collapse
Affiliation(s)
- Lilith R South
- Biodiversity Research Centre, Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vedprakash G Hurdeal
- Biodiversity Research Centre, Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Naomi M Fast
- Biodiversity Research Centre, Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Peyretaillade E, Akossi RF, Tournayre J, Delbac F, Wawrzyniak I. How to overcome constraints imposed by microsporidian genome features to ensure gene prediction? J Eukaryot Microbiol 2024; 71:e13038. [PMID: 38934348 DOI: 10.1111/jeu.13038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Since the advent of sequencing techniques and due to their continuous evolution, it has become easier and less expensive to obtain the complete genome sequence of any organism. Nevertheless, to elucidate all biological processes governing organism development, quality annotation is essential. In genome annotation, predicting gene structure is one of the most important and captivating challenges for computational biology. This aspect of annotation requires continual optimization, particularly for genomes as unusual as those of microsporidia. Indeed, this group of fungal-related parasites exhibits specific features (highly reduced gene sizes, sequences with high rate of evolution) linked to their evolution as intracellular parasites, requiring the implementation of specific annotation approaches to consider all these features. This review aimed to outline these characteristics and to assess the increasingly efficient approaches and tools that have enhanced the accuracy of gene prediction for microsporidia, both in terms of sensitivity and specificity. Subsequently, a final part will be dedicated to postgenomic approaches aimed at reinforcing the annotation data generated by prediction software. These approaches include the characterization of other understudied genes, such as those encoding regulatory noncoding RNAs or very small proteins, which also play crucial roles in the life cycle of these microorganisms.
Collapse
Affiliation(s)
| | - Reginal F Akossi
- LMGE, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jérémy Tournayre
- INRAE, UMR Herbivores, Université Clermont Auvergne, VetAgro Sup, Saint-Genès-Champanelle, France
| | - Frédéric Delbac
- LMGE, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Ivan Wawrzyniak
- LMGE, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
5
|
Khalaf A, Francis O, Blaxter ML. Genome evolution in intracellular parasites: Microsporidia and Apicomplexa. J Eukaryot Microbiol 2024; 71:e13033. [PMID: 38785208 DOI: 10.1111/jeu.13033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/29/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
Microsporidia and Apicomplexa are eukaryotic, single-celled, intracellular parasites with huge public health and economic importance. Typically, these parasites are studied separately, emphasizing their uniqueness and diversity. In this review, we explore the huge amount of genomic data that has recently become available for the two groups. We compare and contrast their genome evolution and discuss how their transitions to intracellular life may have shaped it. In particular, we explore genome reduction and compaction, genome expansion and ploidy, gene shuffling and rearrangements, and the evolution of centromeres and telomeres.
Collapse
Affiliation(s)
- Amjad Khalaf
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | - Ore Francis
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | | |
Collapse
|
6
|
Gang SS, Lažetić V. Microsporidia: Pervasive natural pathogens of Caenorhabditis elegans and related nematodes. J Eukaryot Microbiol 2024; 71:e13027. [PMID: 38702921 DOI: 10.1111/jeu.13027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/02/2024] [Indexed: 05/06/2024]
Abstract
The nematode Caenorhabditis elegans is an invaluable host model for studying infections caused by various pathogens, including microsporidia. Microsporidia represent the first natural pathogens identified in C. elegans, revealing the previously unknown Nematocida genus of microsporidia. Following this discovery, the utilization of nematodes as a model host has rapidly expanded our understanding of microsporidia biology and has provided key insights into the cell and molecular mechanisms of antimicrosporidia defenses. Here, we first review the isolation history, morphological characteristics, life cycles, tissue tropism, genetics, and host immune responses for the four most well-characterized Nematocida species that infect C. elegans. We then highlight additional examples of microsporidia that infect related terrestrial and aquatic nematodes, including parasitic nematodes. To conclude, we assess exciting potential applications of the nematode-microsporidia system while addressing the technical advances necessary to facilitate future growth in this field.
Collapse
Affiliation(s)
- Spencer S Gang
- Molecular Biology Department, Colorado College, Colorado Springs, Colorado, USA
| | - Vladimir Lažetić
- Department of Biological Sciences, Columbian College of Arts & Sciences, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
7
|
Chen M, Wang H, Li X, Guo Y, Lu Y, Zheng L, Liang G, Sui Y, Wang B, Dai H, Dong H, Zhang L. Molecular epidemiology of Enterocytozoon bieneusi from foxes and raccoon dogs in the Henan and Hebei provinces in China. BMC Vet Res 2024; 20:53. [PMID: 38341563 PMCID: PMC10858577 DOI: 10.1186/s12917-024-03883-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Enterocytozoon bieneusi is a zoonotic pathogen widely distributed in animals and humans. It can cause diarrhea and even death in immunocompromised hosts. Approximately 800 internal transcribed spacer (ITS) genotypes have been identified in E. bieneusi. Farmed foxes and raccoon dogs are closely associated to humans and might be the reservoir of E. bieneusi which is known to have zoonotic potential. However, there are only a few studies about E. bieneusi genotype identification and epidemiological survey in foxes and raccoon dogs in Henan and Hebei province. Thus, the present study investigated the infection rates and genotypes of E. bieneusi in farmed foxes and raccoon dogs in the Henan and Hebei provinces. RESULT A total of 704 and 884 fecal specimens were collected from foxes and raccoon dogs, respectively. Nested PCR was conducted based on ITS of ribosomal RNA (rRNA), and then multilocus sequence typing (MLST) was conducted to analyze the genotypes. The result showed that infection rates of E. bieneusi in foxes and raccoon dogs were 18.32% and 5.54%, respectively. Ten E. bieneusi genotypes with zoonotic potential (NCF2, NCF3, D, EbpC, CHN-DC1, SCF2, CHN-F1, Type IV, BEB4, and BEB6) were identified in foxes and raccoon dogs. Totally 178 ITS-positive DNA specimens were identified from foxes and raccoon dogs and these specimens were then subjected to MLST analysis. In the MLST analysis, 12, 2, 7 and 8 genotypes were identified in at the mini-/ micro-satellite loci MS1, MS3, MS4 and MS7, respectively. A total of 14 multilocus genotypes were generated using ClustalX 2.1 software. Overall, the present study evaluated the infection of E. bieneusi in foxes and raccoon dogs in the Henan and Hebei province, and investigated the zoonotic potential of the E. bieneusi in foxes and raccoon dogs. CONCLUSIONS These findings expand the geographic distribution information of E. bieneusi' host in China and was helpful in preventing against the infection of E. bieneusi with zoonotic potential in foxes and raccoon dogs.
Collapse
Affiliation(s)
- Minghui Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Haidong Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Xinmiao Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Yunan Guo
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Ying Lu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Liping Zheng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Guoqing Liang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Yuzhen Sui
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Bukang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Hongyu Dai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| | - Haiju Dong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| |
Collapse
|
8
|
Tournayre J, Polonais V, Wawrzyniak I, Akossi RF, Parisot N, Lerat E, Delbac F, Souvignet P, Reichstadt M, Peyretaillade E. MicroAnnot: A Dedicated Workflow for Accurate Microsporidian Genome Annotation. Int J Mol Sci 2024; 25:880. [PMID: 38255958 PMCID: PMC10815200 DOI: 10.3390/ijms25020880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
With nearly 1700 species, Microsporidia represent a group of obligate intracellular eukaryotes with veterinary, economic and medical impacts. To help understand the biological functions of these microorganisms, complete genome sequencing is routinely used. Nevertheless, the proper prediction of their gene catalogue is challenging due to their taxon-specific evolutionary features. As innovative genome annotation strategies are needed to obtain a representative snapshot of the overall lifestyle of these parasites, the MicroAnnot tool, a dedicated workflow for microsporidian sequence annotation using data from curated databases of accurately annotated microsporidian genes, has been developed. Furthermore, specific modules have been implemented to perform small gene (<300 bp) and transposable element identification. Finally, functional annotation was performed using the signature-based InterProScan software. MicroAnnot's accuracy has been verified by the re-annotation of four microsporidian genomes for which structural annotation had previously been validated. With its comparative approach and transcriptional signal identification method, MicroAnnot provides an accurate prediction of translation initiation sites, an efficient identification of transposable elements, as well as high specificity and sensitivity for microsporidian genes, including those under 300 bp.
Collapse
Affiliation(s)
- Jérémy Tournayre
- INRAE, UMR Herbivores, Université Clermont Auvergne, VetAgro Sup, 63122 Saint-Genès-Champanelle, France; (J.T.); (P.S.); (M.R.)
| | - Valérie Polonais
- LMGE, CNRS, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (V.P.); (I.W.); (R.F.A.); (F.D.)
| | - Ivan Wawrzyniak
- LMGE, CNRS, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (V.P.); (I.W.); (R.F.A.); (F.D.)
| | - Reginald Florian Akossi
- LMGE, CNRS, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (V.P.); (I.W.); (R.F.A.); (F.D.)
| | - Nicolas Parisot
- UMR 203, BF2I, INRAE, INSA Lyon, Université de Lyon, 69621 Villeurbanne, France
| | - Emmanuelle Lerat
- VAS, CNRS, UMR5558, LBBE, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France;
| | - Frédéric Delbac
- LMGE, CNRS, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (V.P.); (I.W.); (R.F.A.); (F.D.)
| | - Pierre Souvignet
- INRAE, UMR Herbivores, Université Clermont Auvergne, VetAgro Sup, 63122 Saint-Genès-Champanelle, France; (J.T.); (P.S.); (M.R.)
| | - Matthieu Reichstadt
- INRAE, UMR Herbivores, Université Clermont Auvergne, VetAgro Sup, 63122 Saint-Genès-Champanelle, France; (J.T.); (P.S.); (M.R.)
| | - Eric Peyretaillade
- LMGE, CNRS, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (V.P.); (I.W.); (R.F.A.); (F.D.)
| |
Collapse
|
9
|
Hacker C, Sendra K, Keisham P, Filipescu T, Lucocq J, Salimi F, Ferguson S, Bhella D, MacNeill SA, Embley M, Lucocq J. Biogenesis, inheritance, and 3D ultrastructure of the microsporidian mitosome. Life Sci Alliance 2024; 7:e202201635. [PMID: 37903625 PMCID: PMC10618108 DOI: 10.26508/lsa.202201635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 11/01/2023] Open
Abstract
During the reductive evolution of obligate intracellular parasites called microsporidia, a tiny remnant mitochondrion (mitosome) lost its typical cristae, organellar genome, and most canonical functions. Here, we combine electron tomography, stereology, immunofluorescence microscopy, and bioinformatics to characterise mechanisms of growth, division, and inheritance of this minimal mitochondrion in two microsporidia species (grown within a mammalian RK13 culture-cell host). Mitosomes of Encephalitozoon cuniculi (2-12/cell) and Trachipleistophora hominis (14-18/nucleus) displayed incremental/non-phasic growth and division and were closely associated with an organelle identified as equivalent to the fungal microtubule-organising centre (microsporidian spindle pole body; mSPB). The mitosome-mSPB association was resistant to treatment with microtubule-depolymerising drugs nocodazole and albendazole. Dynamin inhibitors (dynasore and Mdivi-1) arrested mitosome division but not growth, whereas bioinformatics revealed putative dynamins Drp-1 and Vps-1, of which, Vps-1 rescued mitochondrial constriction in dynamin-deficient yeast (Schizosaccharomyces pombe). Thus, microsporidian mitosomes undergo incremental growth and dynamin-mediated division and are maintained through ordered inheritance, likely mediated via binding to the microsporidian centrosome (mSPB).
Collapse
Affiliation(s)
| | - Kacper Sendra
- Biosciences Institute, The Medical School, Catherine Cookson Building, Newcastle University, Newcastle upon Tyne, UK
| | | | | | - James Lucocq
- Department of Surgery, Dundee Medical School Ninewells Hospital, Dundee, UK
| | - Fatemeh Salimi
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Sophie Ferguson
- School of Medicine, University of St Andrews, St Andrews, UK
| | - David Bhella
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Martin Embley
- Biosciences Institute, Centre for Bacterial Cell Biology, Baddiley-Clark Building, Newcastle University, Newcastle upon Tyne, UK
| | - John Lucocq
- School of Medicine, University of St Andrews, St Andrews, UK
| |
Collapse
|
10
|
Wu Y, Yu Y, Sun Q, Yu Y, Chen J, Li T, Meng X, Pan G, Zhou Z. A Putative TRAPα Protein of Microsporidia Nosema bombycis Exhibits Non-Canonical Alternative Polyadenylation in Transcripts. J Fungi (Basel) 2023; 9:jof9040407. [PMID: 37108862 PMCID: PMC10142623 DOI: 10.3390/jof9040407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Microsporidia are obligate intracellular eukaryotic parasites that have significantly reduced genomes and that have lost most of their introns. In the current study, we characterized a gene in microsporidia Nosema bombycis, annotated as TRAPα (HNbTRAPα). The homologous of TRAPα are a functional component of ER translocon and facilitates the initiation of protein translocation in a substrate-specific manner, which is conserved in animals but absent from most fungi. The coding sequence of HNbTRAPα consists of 2226 nucleotides, longer than the majority of homologs in microsporidia. A 3′ RACE analysis indicated that there were two mRNA isoforms resulting from non-canonical alternative polyadenylation (APA), and the polyadenylate tail was synthesized after the C951 or C1167 nucleotide, respectively. Indirect immunofluorescence analysis showed two different localization characteristics of HNbTRAPα, which are mainly located around the nuclear throughout the proliferation stage and co-localized with the nuclear in mature spores. This study demonstrated that the post-transcriptional regulation mechanism exists in Microsporidia and expands the mRNA isoform repertoire.
Collapse
Affiliation(s)
- Yujiao Wu
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Ying Yu
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Quan Sun
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Yixiang Yu
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Jie Chen
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Tian Li
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Xianzhi Meng
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
- Correspondence: (G.P.); (Z.Z.)
| | - Zeyang Zhou
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
- Key Laboratory of Conservation and Utilization of Pollinator Insect of the Upper Reaches of the Yangtze River (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Chongqing Normal University, Chongqing 400047, China
- Correspondence: (G.P.); (Z.Z.)
| |
Collapse
|
11
|
Bojko J, Frizzera A, Vázquez N, Taylor G, Rand V, Cremonte F. Comparative genomics for Agmasoma sp. (Microsporidia) parasitising invasive Carcinus aestuarii and Carcinus maenas in Argentina. J Invertebr Pathol 2023; 198:107908. [PMID: 36878425 DOI: 10.1016/j.jip.2023.107908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
Carcinus spp. are global aquatic invaders and carriers of several parasites, including a taxonomically unrecognised microsporidian recently observed from Argentina. We provide genome drafts for two parasite isolates, one from Carcinus maenas and one from Carcinus aestuarii, and use multi-gene phylogenetics and genome comparison methods to outline their similarities. Their SSU genes are 100 % similar and other genes have an average similarity of 99.31 %. We informally name the parasite Agmasoma carcini, terming the isolates Ac. var. aestuarii and Ac. var. maenas, following the wealth of genomic data available for each. This study follows on from Frizzera et al. (2021), where this parasite was first histologically identified.
Collapse
Affiliation(s)
- Jamie Bojko
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK; School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK.
| | - Antonella Frizzera
- Laboratorio de Parasitología, Instituto de Biología de Organismos Marinos (CCT CONICET-CENPAT), Boulevard Brown 2915, U9120ACF Puerto Madryn, Argentina
| | - Nuria Vázquez
- Laboratorio de Parasitología, Instituto de Biología de Organismos Marinos (CCT CONICET-CENPAT), Boulevard Brown 2915, U9120ACF Puerto Madryn, Argentina
| | - Gillian Taylor
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK; School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
| | - Vikki Rand
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK; School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
| | - Florencia Cremonte
- Laboratorio de Parasitología, Instituto de Biología de Organismos Marinos (CCT CONICET-CENPAT), Boulevard Brown 2915, U9120ACF Puerto Madryn, Argentina
| |
Collapse
|
12
|
Sar1 Interacts with Sec23/Sec24 and Sec13/Sec31 Complexes: Insight into Its Involvement in the Assembly of Coat Protein Complex II in the Microsporidian Nosema bombycis. Microbiol Spectr 2022; 10:e0071922. [PMID: 36301095 PMCID: PMC9769691 DOI: 10.1128/spectrum.00719-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Microsporidia, as unicellular eukaryotes, also have an endomembrane system for transporting proteins, which is essentially similar to those of other eukaryotes. In eukaryotes, coat protein complex II (COPII) consists of Sar1, Sec23, Sec24, Sec13, and Sec31 and mediates protein transport from the endoplasmic reticulum (ER) to the Golgi apparatus. Sar1 is the central player in the regulation of coat protein complex II vesicle formation in the endoplasmic reticulum. In this study, we successfully cloned the NbSar1, NbSec23-1, NbSec23-2, NbSec24-1, NbSec24-2, NbSec13, NbSec31-1, and NbSec31-2 genes and prepared NbSar1 polyclonal antibody. We found that NbSar1 was localized mainly in the perinuclear cytoplasm of Nosema bombycis by immunofluorescence analysis (IFA). Yeast two-hybrid assays demonstrated that NbSar1 interacts with NbSec23-2, NbSec23-2 interacts with NbSec24-1 or NbSec24-2, NbSec23-1 interacts with NbSec31, and NbSec31 interacts with NbSec13. Moreover, the silencing of NbSar1 by RNA interference resulted in the aberrant expression of NbSar1, NbSec23-1, NbSec24-1, NbSec24-2, NbSec13, NbSec31-1, and NbSec31-2 and significantly inhibited the proliferation of N. bombycis. Altogether, these findings indicated that the subunits of coat protein complex II work together to perform functions in the proliferation of N. bombycis and that NbSar1 may play a crucial role in coat protein complex II vesicle formation. IMPORTANCE As eukaryotes, microsporidia have retained the endomembrane system for transporting and sorting proteins throughout their evolution. Whether the microsporidia form coat protein complex II (COPII) vesicles to transport cargo proteins and whether they play other roles besides cargo transport are not fully explained at present. Our results showed that NbSar1, NbSec23-1/NbSec23-2, NbSec24-1/NbSec24-2, NbSec13, and NbSec31 might be assembled to form COPII in the ER of N. bombycis, and the functions of COPII are also closely related to the proliferation of N. bombycis, this may be a new target for the prevention of pébrine disease of the silkworm.
Collapse
|
13
|
Sun F, Zhu G, He P, Wei E, Wang R, Wang Q, Tang X, Zhang Y, Shen Z. Identification, expression and subcellular localization of Orc1 in the microsporidian Nosema bombycis. Gene X 2022; 834:146607. [PMID: 35609797 DOI: 10.1016/j.gene.2022.146607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022] Open
Abstract
As a typical species of microsporidium, Nosema bombycis is the pathogen causing the pébrine disease of silkworm. Rapid proliferation of N. bombycis in host cells requires replication of genetic material. As eukaryotic origin recognition protein, origin recognition complex (ORC) plays an important role in regulating DNA replication, and Orc1 is a key subunit of the origin recognition complex. In this study, we identified the Orc1 in the microsporidian N. bombycis (NbOrc1) for the first time. The NbOrc1 gene contains a complete ORF of 987 bp in length that encodes a 328 amino acid polypeptide. Indirect immunofluorescence results showed that NbOrc1 were colocalized with Nbactin and NbSAS-6 in the nuclei of N. bombycis. Subsequently, we further identified the interaction between the NbOrc1 and Nbactin by CO-IP and Western blot. These results imply that Orc1 may be involved in the proliferation of the microsporidian N. bombycis through interacting with actin.
Collapse
Affiliation(s)
- Fuzhen Sun
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China
| | - Guanyu Zhu
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China
| | - Ping He
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China
| | - Erjun Wei
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China
| | - Runpeng Wang
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China
| | - Qiang Wang
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China; Sericulture Research Institute of Chinese Academy of Agricultural Sciences, Zhenjiang 212018, Jiangsu Province, China
| | - Xudong Tang
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China; Sericulture Research Institute of Chinese Academy of Agricultural Sciences, Zhenjiang 212018, Jiangsu Province, China
| | - Yiling Zhang
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China; Sericulture Research Institute of Chinese Academy of Agricultural Sciences, Zhenjiang 212018, Jiangsu Province, China
| | - Zhongyuan Shen
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China; Sericulture Research Institute of Chinese Academy of Agricultural Sciences, Zhenjiang 212018, Jiangsu Province, China.
| |
Collapse
|
14
|
Meng X, Ye H, Shang Z, Sun L, Guo Y, Li N, Xiao L, Feng Y. Identification and Characterization of Three Spore Wall Proteins of Enterocytozoon Bieneusi. Front Cell Infect Microbiol 2022; 12:808986. [PMID: 35795186 PMCID: PMC9251001 DOI: 10.3389/fcimb.2022.808986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/25/2022] [Indexed: 11/30/2022] Open
Abstract
Enterocytozoon bieneusi is the most common microsporidian pathogen in farm animals and humans. Although several spore wall proteins (SWPs) of other human-pathogenic microsporidia have been identified, SWPs of E. bieneusi remain poorly characterized. In the present study, we identified the sequences of three E. bieneusi SWPs from whole genome sequence data, expressed them in Escherichia coli, generated a monoclonal antibody (mAb) against one of them (EbSWP1), and used the mAb in direct immunofluorescence detection of E. bieneusi spores in fecal samples. The amino acid sequence of EbSWP1 shares some identity to EbSWP2 with a BAR2 domain, while the sequence of EbSWP3 contains a MICSWaP domain. No cross-reactivity among the EbSWPs was demonstrated using the polyclonal antibodies generated against them. The mAb against EbSWP1 was shown to react with E. bieneusi spores in fecal samples. Using chromotrope 2R staining-based microscopy as the gold standard, the sensitivity and specificity of the direct immunofluorescence for the detection of E. bieneusi were 91.4 and 73.7%. Data generated from the study could be useful in the characterization of E. bieneusi and immunological detection of the pathogen.
Collapse
Affiliation(s)
- Xinan Meng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Haojie Ye
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ziyu Shang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lianjing Sun
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Na Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Lihua Xiao, ; Yaoyu Feng,
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Lihua Xiao, ; Yaoyu Feng,
| |
Collapse
|
15
|
Jespersen N, Monrroy L, Barandun J. Impact of Genome Reduction in Microsporidia. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 114:1-42. [PMID: 35543997 DOI: 10.1007/978-3-030-93306-7_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microsporidia represent an evolutionary outlier in the tree of life and occupy the extreme edge of the eukaryotic domain with some of their biological features. Many of these unicellular fungi-like organisms have reduced their genomic content to potentially the lowest limit. With some of the most compacted eukaryotic genomes, microsporidia are excellent model organisms to study reductive evolution and its functional consequences. While the growing number of sequenced microsporidian genomes have elucidated genome composition and organization, a recent increase in complementary post-genomic studies has started to shed light on the impacts of genome reduction in these unique pathogens. This chapter will discuss the biological framework enabling genome minimization and will use one of the most ancient and essential macromolecular complexes, the ribosome, to illustrate the effects of extreme genome reduction on a structural, molecular, and cellular level. We outline how reductive evolution in microsporidia has shaped DNA organization, the composition and function of the ribosome, and the complexity of the ribosome biogenesis process. Studying compacted mechanisms, processes, or macromolecular machines in microsporidia illuminates their unique lifestyle and provides valuable insights for comparative eukaryotic structural biology.
Collapse
Affiliation(s)
- Nathan Jespersen
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory, Umeå University, Umeå, Sweden.
| | - Leonardo Monrroy
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory, Umeå University, Umeå, Sweden
| | - Jonas Barandun
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory, Umeå University, Umeå, Sweden.
| |
Collapse
|
16
|
Koehler AV, Zhang Y, Gasser RB. A Perspective on the Molecular Identification, Classification, and Epidemiology of Enterocytozoon bieneusi of Animals. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 114:389-415. [PMID: 35544010 DOI: 10.1007/978-3-030-93306-7_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The microsporidian Enterocytozoon bieneusi is an obligate intracellular pathogen that causes enteric disease (microsporidiosis) in humans and has been recorded in a wide range of animal species worldwide. The transmission of E. bieneusi is direct and likely occurs from person to person and from animal to person via the ingestion of spores in water, food, or the environment. The identification of E. bieneusi is usually accomplished by molecular means, typically using the sequence of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA. Currently, ~820 distinct genotypes of E. bieneusi have been recorded in at least 210 species of vertebrates (mammals, birds, reptiles, and amphibians) or invertebrates (insects and mussels) in more than 50 countries. In this chapter, we provide a perspective on (1) clinical aspects of human microsporidiosis; (2) the genome and DNA markers for E. bieneusi as well as molecular methods for the specific and genotypic identification of E. bieneusi; (3) epidemiological aspects of E. bieneusi of animals and humans, with an emphasis on the genotypes proposed to be zoonotic, human-specific, and animal-specific; and (4) future research directions to underpin expanded molecular studies to better understand E. bieneusi and microsporidiosis.
Collapse
Affiliation(s)
- Anson V Koehler
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Yan Zhang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
17
|
Williams BAP, Williams TA, Trew J. Comparative Genomics of Microsporidia. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 114:43-69. [PMID: 35543998 DOI: 10.1007/978-3-030-93306-7_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The microsporidia are a phylum of intracellular parasites that represent the eukaryotic cell in a state of extreme reduction, with genomes and metabolic capabilities embodying eukaryotic cells in arguably their most streamlined state. Over the past 20 years, microsporidian genomics has become a rapidly expanding field starting with sequencing of the genome of Encephalitozoon cuniculi, one of the first ever sequenced eukaryotes, to the current situation where we have access to the data from over 30 genomes across 20+ genera. Reaching back further in evolutionary history, to the point where microsporidia diverged from other eukaryotic lineages, we now also have genomic data for some of the closest known relatives of the microsporidia such as Rozella allomycis, Metchnikovella spp. and Amphiamblys sp. Data for these organisms allow us to better understand the genomic processes that shaped the emergence of the microsporidia as a group. These intensive genomic efforts have revealed some of the processes that have shaped microsporidian cells and genomes including patterns of genome expansions and contractions through gene gain and loss, whole genome duplication, differential patterns of invasion and purging of transposable elements. All these processes have been shown to occur across short and longer time scales to give rise to a phylum of parasites with dynamic genomes with a diversity of sizes and organisations.
Collapse
Affiliation(s)
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Jahcub Trew
- School of Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
18
|
Enterocytozoon bieneusi. Trends Parasitol 2021; 38:95-96. [PMID: 34474945 DOI: 10.1016/j.pt.2021.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 11/23/2022]
|
19
|
Abstract
Microsporidia are obligate intracellular pathogens identified ∼150 years ago as the cause of pébrine, an economically important infection in silkworms. There are about 220 genera and 1,700 species of microsporidia, which are classified based on their ultrastructural features, developmental cycle, host-parasite relationship, and molecular analysis. Phylogenetic analysis suggests that microsporidia are related to the fungi, being grouped with the Cryptomycota as a basal branch or sister group to the fungi. Microsporidia can be transmitted by food and water and are likely zoonotic, as they parasitize a wide range of invertebrate and vertebrate hosts. Infection in humans occurs in both immunocompetent and immunodeficient hosts, e.g., in patients with organ transplantation, patients with advanced human immunodeficiency virus (HIV) infection, and patients receiving immune modulatory therapy such as anti-tumor necrosis factor alpha antibody. Clusters of infections due to latent infection in transplanted organs have also been demonstrated. Gastrointestinal infection is the most common manifestation; however, microsporidia can infect virtually any organ system, and infection has resulted in keratitis, myositis, cholecystitis, sinusitis, and encephalitis. Both albendazole and fumagillin have efficacy for the treatment of various species of microsporidia; however, albendazole has limited efficacy for the treatment of Enterocytozoon bieneusi. In addition, immune restoration can lead to resolution of infection. While the prevalence rate of microsporidiosis in patients with AIDS has fallen in the United States, due to the widespread use of combination antiretroviral therapy (cART), infection continues to occur throughout the world and is still seen in the United States in the setting of cART if a low CD4 count persists.
Collapse
|
20
|
Hage H, Rosso MN, Tarrago L. Distribution of methionine sulfoxide reductases in fungi and conservation of the free-methionine-R-sulfoxide reductase in multicellular eukaryotes. Free Radic Biol Med 2021; 169:187-215. [PMID: 33865960 DOI: 10.1016/j.freeradbiomed.2021.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Methionine, either as a free amino acid or included in proteins, can be oxidized into methionine sulfoxide (MetO), which exists as R and S diastereomers. Almost all characterized organisms possess thiol-oxidoreductases named methionine sulfoxide reductase (Msr) enzymes to reduce MetO back to Met. MsrA and MsrB reduce the S and R diastereomers of MetO, respectively, with strict stereospecificity and are found in almost all organisms. Another type of thiol-oxidoreductase, the free-methionine-R-sulfoxide reductase (fRMsr), identified so far in prokaryotes and a few unicellular eukaryotes, reduces the R MetO diastereomer of the free amino acid. Moreover, some bacteria possess molybdenum-containing enzymes that reduce MetO, either in the free or protein-bound forms. All these Msrs play important roles in the protection of organisms against oxidative stress. Fungi are heterotrophic eukaryotes that colonize all niches on Earth and play fundamental functions, in organic matter recycling, as symbionts, or as pathogens of numerous organisms. However, our knowledge on fungal Msrs is still limited. Here, we performed a survey of msr genes in almost 700 genomes across the fungal kingdom. We show that most fungi possess one gene coding for each type of methionine sulfoxide reductase: MsrA, MsrB, and fRMsr. However, several fungi living in anaerobic environments or as obligate intracellular parasites were devoid of msr genes. Sequence inspection and phylogenetic analyses allowed us to identify non-canonical sequences with potentially novel enzymatic properties. Finaly, we identified several ocurences of msr horizontal gene transfer from bacteria to fungi.
Collapse
Affiliation(s)
- Hayat Hage
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France
| | - Marie-Noëlle Rosso
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France
| | - Lionel Tarrago
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France.
| |
Collapse
|
21
|
Zhang Y, Koehler AV, Wang T, Gasser RB. Enterocytozoon bieneusi of animals-With an 'Australian twist'. ADVANCES IN PARASITOLOGY 2021; 111:1-73. [PMID: 33482973 DOI: 10.1016/bs.apar.2020.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Enterocytozoon bieneusi is a microsporidian microorganism that causes intestinal disease in animals including humans. E. bieneusi is an obligate intracellular pathogen, typically causing severe or chronic diarrhoea, malabsorption and/or wasting. Currently, E. bieneusi is recognised as a fungus, although its exact classification remains contentious. The transmission of E. bieneusi can occur from person to person and/or animals to people. Transmission is usually via the faecal-oral route through E. bieneusi spore-contaminated water, environment or food, or direct contact with infected individuals. Enterocytozoon bieneusi genotypes are usually identified and classified by PCR-based sequencing of the internal transcribed spacer region (ITS) of nuclear ribosomal DNA. To date, ~600 distinct genotypes of E. bieneusi have been recorded in ~170 species of animals, including various orders of mammals and reptiles as well as insects in >40 countries. Moreover, E. bieneusi has also been found in recreational water, irrigation water, and treated raw- and waste-waters. Although many studies have been conducted on the epidemiology of E. bieneusi, prevalence surveys of animals and humans are scant in some countries, such as Australia, and transmission routes of individual genotypes and related risk factors are poorly understood. This article/chapter reviews aspects of the taxonomy, biology and epidemiology of E. bieneusi; the diagnosis, treatment and prevention of microsporidiosis; critically appraises the naming system for E. bieneusi genotypes as well as the phylogenetic relationships of these genotypes; provides new insights into the prevalence and genetic composition of E. bieneusi populations in animals in parts of Australia using molecular epidemiological tools; and proposes some areas for future research in the E. bieneusi/microsporidiosis field.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Anson V Koehler
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
22
|
Ecological and public health significance of Enterocytozoon bieneusi. One Health 2020; 12:100209. [PMID: 33426263 PMCID: PMC7779778 DOI: 10.1016/j.onehlt.2020.100209] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 11/24/2022] Open
Abstract
Enterocytozoon bieneusi, a fungus-like protist parasite, causes symptomatic and asymptomatic intestinal infections in terrestrial animals and is also abundant in the environment. This parasite has been isolated from a variety of host types including humans, livestock, companion animals, birds, and wildlife, as well as the natural and urban environments including drinking source water, coastal water, recreational water, wastewater, vegetables in retail markets, and raw milk on farms. E. bieneusi exhibits high genetic diversity among host species and environmental sources and at least 500 genotypes have been identified thus far. Since its discovery in AIDS patients in 1985, scientists across the world have worked to demonstrate the natural history and public health potential of this pathogen. Here we review molecular typing studies on E. bieneusi and summarize relevant data to identify the potential sources of human and nonhuman infections and environmental contamination. This review also discusses the possible transmission routes of E. bieneusi and the associated risk factors, and advocates the importance of the One Health approach to tackle E. bieneusi infections.
Collapse
|
23
|
Ou Y, Jiang W, Roellig DM, Wan Z, Li N, Guo Y, Feng Y, Xiao L. Characterizations of Enterocytozoon bieneusi at new genetic loci reveal a lack of strict host specificity among common genotypes and the existence of a canine-adapted Enterocytozoon species. Int J Parasitol 2020; 51:215-223. [PMID: 33275946 DOI: 10.1016/j.ijpara.2020.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 10/22/2022]
Abstract
Molecular characterizations of the microsporidian pathogen Enterocytozoon bieneusi at the ribosomal internal transcribed spacer (ITS) locus have identified nearly 500 genotypes in 11 phylogenetic groups with different host ranges. Among those, one unique group of genotypes, Group 11, is commonly found in dogs. Genetic characterizations of those and many divergent E. bieneusi genotypes at other genetic loci are thus far impossible. In this study, we sequenced 151 E. bieneusi isolates from several ITS genotype groups at the 16S rRNA locus and two new semi-conservative genetic markers (casein kinase 1 (ck1) and spore wall protein 1 (swp1)). Comparison of the near full (~1,200 bp) 16S rRNA sequences showed mostly two to three nucleotide substitutions between Group 1 and Group 2 genotypes, while Group 11 isolates differed from those by 26 (2.2%) nucleotides. Sequence analyses of the ck1 and swp1 loci confirmed the genetic uniqueness of Group 11 genotypes, which produced sequences very divergent from other groups. In contrast, genotypes in Groups 1 and 2 produced similar nucleotide sequences at these genetic loci, and there was discordant placement of ITS genotypes among loci in phylogenetic analyses of sequences. These results suggest that the canine-adapted Group 11 genotypes are genetically divergent from other genotype groups of E. bieneusi, possibly representing a different Enterocytozoon sp. They also indicate that there is no clear genetic differentiation of ITS Groups 1 and 2 at other genetic loci, supporting the conclusion on the lack of strict host specificity in both groups. Data and genetic markers from the study should facilitate population genetic characterizations of E. bieneusi isolates and improve our understanding of the zoonotic potential of E. bieneusi in domestic animals.
Collapse
Affiliation(s)
- Yonglin Ou
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Wen Jiang
- State Key Laboratory of Bioreactor Engineering, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Dawn M Roellig
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States
| | - Zhuowei Wan
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Na Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China.
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
24
|
Li W, Feng Y, Xiao L. Diagnosis and molecular typing of Enterocytozoon bieneusi: the significant role of domestic animals in transmission of human microsporidiosis. Res Vet Sci 2020; 133:251-261. [PMID: 33035931 DOI: 10.1016/j.rvsc.2020.09.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 12/30/2022]
Abstract
Enterocytozoon bieneusi is an obligate intracellular fungus-like parasite with high genetic diversity among mammalian and avian hosts. Based on polymorphism analysis of the ribosomal internal transcribed spacer (ITS), nearly 500 genotypes were identified within E. bieneusi. Those genotypes form several genetic groups that exhibit phenotypic differences in host specificity and zoonotic potential and probably have varying public health implications. Some of the genotypes in Group 1 (e.g., D, EbpC, and Type IV) and Group 2 (e.g., BEB4, BEB6, I, and J) are the most common ones that infect a variety of hosts including humans and thus are of public health importance. By contrast, those genotypes in other genetic groups (Groups 3-11) are mostly restricted to the hosts from which they were originally isolated, which would have unknown or limited impacts on public health. Advances on diagnosis and molecular typing of E. bieneusi are introduced in this review. Genotype distribution pattern of E. bieneusi in major domestic animal groups (pigs, cattle, sheep, goats, cats, and dogs), the role of those animals in zoonotic transmission of microsporidiosis, and food and water as potential vehicles for transmission are interpreted here as well. This review highlights the importance of including more genetic or epidemiological data obtained in the same geographical areas and using more reliable genetic markers to analyze the actual extent of host specificity in E. bieneusi, for the purpose of fully appreciating zoonotic risks of those domestic animals in close contacts with men and enhancing our understanding of the modes of transmission.
Collapse
Affiliation(s)
- Wei Li
- Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China.
| | - Yaoyu Feng
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lihua Xiao
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
25
|
Han Y, Gao H, Xu J, Luo J, Han B, Bao J, Pan G, Li T, Zhou Z. Innate and Adaptive Immune Responses Against Microsporidia Infection in Mammals. Front Microbiol 2020; 11:1468. [PMID: 32670257 PMCID: PMC7332555 DOI: 10.3389/fmicb.2020.01468] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 06/04/2020] [Indexed: 12/22/2022] Open
Abstract
Microsporidia are obligate intracellular and eukaryotic pathogens that can infect immunocompromised and immunocompetent mammals, including humans. Both innate and adaptive immune systems play important roles against microsporidian infection. The innate immune system can partially eliminate the infection by immune cells, such as gamma delta T cell, natural killer cells (NKs), macrophages and dendritic cells (DCs), and present the pathogens to lymphocytes. The innate immune cells can also prime and enhance the adaptive immune response via surface molecules and secreted cytokines. The adaptive immune system is critical to eliminate microsporidian infection by activating cytotoxic T lymphocyte (CTL) and humoral immune responses, and feedback regulation of the innate immune mechanism. In this review, we will discuss the cellular and molecular responses and functions of innate and adaptive immune systems against microsporidian infection.
Collapse
Affiliation(s)
- Yinze Han
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Hailong Gao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Jinzhi Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Jian Luo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Bing Han
- Department of Pathology, Albert Einstein College of Medicine, The Bronx, NY, United States
| | - Jialing Bao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Tian Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China.,College of Life Sciences, Chongqing Normal University, Chongqing, China
| |
Collapse
|
26
|
Abou-El-Naga IF, Said DE, Gaafar MR, Ahmed SM, El-Deeb SA. A new scope for orlistat: Effect of approved anti-obesity drug against experimental microsporidiosis. Med Mycol 2019. [PMID: 29529254 DOI: 10.1093/mmy/myy005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
As the current therapies for intestinal microsporidiosis are either inconsistent in their efficacies or hampered by several adverse effects, alternative antimicrosporidial agents are being sought. The present study is the first that was designed to evaluate the potency of orlistat, an approved anti-obesity drug, against intestinal microsporidiosis caused by both Enterocytozoon bieneusi and Encephalitozoon intestinalis. Results were assessed through studying fecal and intestinal spore load, intestinal histopathological changes, viability, and infectivity of spores from treated animals. Results showed that orlistat has promising antimicrosporidia potential, with better results in E. intestinalis than E. bieneusi. The animals that received orlistat showed statistically significant decrease in the fecal and intestinal spore load, when compared to the corresponding control infected nontreated mice. The results were insignificant compared to fumagillin and albendazole. Light microscopic examination of stained intestinal sections revealed amelioration of the pathological changes and decreased inflammatory cells detected in the control infected nontreated mice. Spores encountered from stool of orlistat-treated E. bieneusi and E. intestinalis mice showed low viability and significant reduction of infectivity versus their control. Thus, considering the results of the present work, orlistat proved its effectiveness against the intestinal microsporidial infection.
Collapse
Affiliation(s)
| | - D E Said
- Department of Medical Parasitology
| | | | - S M Ahmed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Alexandria University, Egypt
| | | |
Collapse
|
27
|
Li W, Feng Y, Zhang L, Xiao L. Potential impacts of host specificity on zoonotic or interspecies transmission of Enterocytozoon bieneusi. INFECTION GENETICS AND EVOLUTION 2019; 75:104033. [PMID: 31494271 DOI: 10.1016/j.meegid.2019.104033] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/31/2019] [Accepted: 09/05/2019] [Indexed: 12/30/2022]
Abstract
Microsporidia are composed of a highly diverse group of single-celled, obligate intracellular fungi that colonize an extremely wide range of other eukaryotes, among which Enterocytozoon bieneusi is the most common species responsible for human microsporidiasis. Genotyping of E. bieneusi based on sequence analysis of the ribosomal internal transcribed spacer (ITS) has recognized ~500 genotypes in humans and a great variety of other mammals and birds. Those genotypes vary in genetic or hereditary characteristics and form 11 genetic groups in phylogenetic analysis of the ITS nucleotide sequences. Some of genotypes in Group 1 (e.g., D, EbpC, and type IV) and Group 2 (e.g., BEB4, BEB6, I, and J) have broad host and geographic ranges, constituting a major risk for zoonotic or cross-species transmission. By contrast, host specificity seems common in Group 3 to Group 11 whose members appear well adapted to specific hosts and thus would have minimal or unknown effects on public health. Multilocus sequence typing using the ITS, three microsatellites MS1, MS3, and MS7, and one minisatellite MS4, and population genetic analysis of Group 1 isolates reveal the occurrence of clonality, potential host adaptation, and population differentiation of E. bieneusi in various hosts. Nonetheless, it is still highly desirable to explore novel genetic markers with enough polymorphisms, to type complex or unstructured E. bieneusi populations of various host species and geographic origins, notably those belonging to Group 2 to Group 11. Additional population genetic and comparative genomic data are needed to elucidate the actual extent of host specificity in E. bieneusi and its potential impacts on zoonotic or interspecies transmission of microsporidiasis.
Collapse
Affiliation(s)
- Wei Li
- Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yaoyu Feng
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Lihua Xiao
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
28
|
Sista Kameshwar AK, Qin W. Systematic review of publicly available non-Dikarya fungal proteomes for understanding their plant biomass-degrading and bioremediation potentials. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0264-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
29
|
Deeg CM, Zimmer MM, George EE, Husnik F, Keeling PJ, Suttle CA. Chromulinavorax destructans, a pathogen of microzooplankton that provides a window into the enigmatic candidate phylum Dependentiae. PLoS Pathog 2019; 15:e1007801. [PMID: 31150530 PMCID: PMC6561590 DOI: 10.1371/journal.ppat.1007801] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/12/2019] [Accepted: 04/30/2019] [Indexed: 11/25/2022] Open
Abstract
Members of the major candidate phylum Dependentiae (a.k.a. TM6) are widespread across diverse environments from showerheads to peat bogs; yet, with the exception of two isolates infecting amoebae, they are only known from metagenomic data. The limited knowledge of their biology indicates that they have a long evolutionary history of parasitism. Here, we present Chromulinavorax destructans (Strain SeV1) the first isolate of this phylum to infect a representative from a widespread and ecologically significant group of heterotrophic flagellates, the microzooplankter Spumella elongata (Strain CCAP 955/1). Chromulinavorax destructans has a reduced 1.2 Mb genome that is so specialized for infection that it shows no evidence of complete metabolic pathways, but encodes an extensive transporter system for importing nutrients and energy in the form of ATP from the host. Its replication causes extensive reorganization and expansion of the mitochondrion, effectively surrounding the pathogen, consistent with its dependency on the host for energy. Nearly half (44%) of the inferred proteins contain signal sequences for secretion, including many without recognizable similarity to proteins of known function, as well as 98 copies of proteins with an ankyrin-repeat domain; ankyrin-repeats are known effectors of host modulation, suggesting the presence of an extensive host-manipulation apparatus. These observations help to cement members of this phylum as widespread and diverse parasites infecting a broad range of eukaryotic microbes. Little is known about the biology of bacteria in the candidate phylum Dependentiae, despite being widespread in nature. Here, we describe a novel isolate of this phylum, Chromulinavorax destructans, which infects an abundant aquatic predatory protist, Spumella elongata. Chromulinavorax destructans is an obligate intracellular parasite, forgoes binary fission and replicates surrounded by the host mitochondrion. The genome of C. destructans encodes no detectable complete metabolic pathways and instead contains extensive transporter systems to import metabolites and even energy in the form of ATP from the host. We also found a surprising number of genes in the C. destructans genome encoding putative host modifying proteins that might be responsible for the extensive host reorganization. Phylogenetic analysis showed that C. destructans is distantly related to intracellular pathogens and symbionts of unrelated amoebae. Hence, Chromulinavorax destructans provides new insights into the biology of a widespread but largely unknown phylum of bacteria. These results imply that members of the Dependentiae are pathogens of diverse aquatic protists and are therefore likely important players in aquatic ecosystems.
Collapse
Affiliation(s)
- Christoph M. Deeg
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Matthias M. Zimmer
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, Canada
| | - Emma E. George
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Filip Husnik
- Department of Botany, University of British Columbia, Vancouver, Canada
| | | | - Curtis A. Suttle
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, Canada
- Department of Botany, University of British Columbia, Vancouver, Canada
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, Canada
- * E-mail:
| |
Collapse
|
30
|
Li W, Feng Y, Santin M. Host Specificity of Enterocytozoon bieneusi and Public Health Implications. Trends Parasitol 2019; 35:436-451. [PMID: 31076351 DOI: 10.1016/j.pt.2019.04.004] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 10/26/2022]
Abstract
Enterocytozoon bieneusi is the most common cause of human microsporidiosis and it also infects a wide range of mammals and birds worldwide. The role of animals in the transmission of this parasite to humans and its public health importance remain poorly elucidated. This review summarizes all E. bieneusi genotypes identified thus far based on sequence analysis of the ribosomal internal transcribed spacer (ITS) from specimens obtained from humans, domestic and wild animals, and water sources; it examines genotypes, host and geographical distribution, analyzes inter- and intragenotype group host specificity, and interprets the public health significance of genotype groups and major zoonotic genotypes, with the goal of improving our understanding of host specificity in E. bieneusi and its implications for interspecies and zoonotic transmission.
Collapse
Affiliation(s)
- Wei Li
- Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yaoyu Feng
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Monica Santin
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, USA.
| |
Collapse
|
31
|
Li W, Xiao L. Multilocus Sequence Typing and Population Genetic Analysis of Enterocytozoon bieneusi: Host Specificity and Its Impacts on Public Health. Front Genet 2019; 10:307. [PMID: 31001333 PMCID: PMC6454070 DOI: 10.3389/fgene.2019.00307] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/20/2019] [Indexed: 01/13/2023] Open
Abstract
Microsporidia comprise a large class of unicellular eukaryotic pathogens that are medically and agriculturally important, but poorly understood. There have been nearly 1,500 microsporidian species described thus far, which are variable in biology, genetics, genomics, and host specificity. Among those, Enterocytozoon bieneusi is the well-known species responsible for the most recorded cases of human microsporidian affections. The pathogen can colonize a broad range of mammals and birds and most of the animals surveyed share some genotypes with humans, posing a threat to public health. Based on DNA sequence analysis of the ribosomal internal transcribed spacer (ITS) and phylogenetic analysis, several hundreds of E. bieneusi genotypes have been defined and clustered into different genetic groups with varied levels of host specificity. However, single locus-based typing using ITS might have insufficient resolution to discriminate among E. bieneusi isolates with complex genetic or hereditary characteristics and to assess the elusive reproduction or transmission modes of the organism, highlighting the need for exploration and application of multilocus sequence typing (MLST) and population genetic tools. The present review begins with a primer on microsporidia and major microsporidian species, briefly introduces the recent advances on E. bieneusi ITS genotyping and phylogeny, summarizes recent MLST and population genetic data, analyzes the inter- and intragroup host specificity at the MLST level, and interprets the public health implications of host specificity in zoonotic or cross-species transmission of this ubiquitous fungus.
Collapse
Affiliation(s)
- Wei Li
- Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Lihua Xiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
32
|
Kabbara S, Hérivaux A, Dugé de Bernonville T, Courdavault V, Clastre M, Gastebois A, Osman M, Hamze M, Cock JM, Schaap P, Papon N. Diversity and Evolution of Sensor Histidine Kinases in Eukaryotes. Genome Biol Evol 2019; 11:86-108. [PMID: 30252070 PMCID: PMC6324907 DOI: 10.1093/gbe/evy213] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2018] [Indexed: 12/20/2022] Open
Abstract
Histidine kinases (HKs) are primary sensor proteins that act in cell signaling pathways generically referred to as "two-component systems" (TCSs). TCSs are among the most widely distributed transduction systems used by both prokaryotic and eukaryotic organisms to detect and respond to a broad range of environmental cues. The structure and distribution of HK proteins are now well documented in prokaryotes, but information is still fragmentary for eukaryotes. Here, we have taken advantage of recent genomic resources to explore the structural diversity and the phylogenetic distribution of HKs in the prominent eukaryotic supergroups. Searches of the genomes of 67 eukaryotic species spread evenly throughout the phylogenetic tree of life identified 748 predicted HK proteins. Independent phylogenetic analyses of predicted HK proteins were carried out for each of the major eukaryotic supergroups. This allowed most of the compiled sequences to be categorized into previously described HK groups. Beyond the phylogenetic analysis of eukaryotic HKs, this study revealed some interesting findings: 1) characterization of some previously undescribed eukaryotic HK groups with predicted functions putatively related to physiological traits; 2) discovery of HK groups that were previously believed to be restricted to a single kingdom in additional supergroups, and 3) indications that some evolutionary paths have led to the appearance, transfer, duplication, and loss of HK genes in some phylogenetic lineages. This study provides an unprecedented overview of the structure and distribution of HKs in the Eukaryota and represents a first step toward deciphering the evolution of TCS signaling in living organisms.
Collapse
Affiliation(s)
- Samar Kabbara
- Groupe d’Etude des Interactions Hôte-Pathogène, GEIHP, EA3142, Université d’Angers, SFR 4208 ICAT, France
| | - Anaïs Hérivaux
- Groupe d’Etude des Interactions Hôte-Pathogène, GEIHP, EA3142, Université d’Angers, SFR 4208 ICAT, France
| | | | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université François Rabelais de Tours, France
| | - Marc Clastre
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université François Rabelais de Tours, France
| | - Amandine Gastebois
- Groupe d’Etude des Interactions Hôte-Pathogène, GEIHP, EA3142, Université d’Angers, SFR 4208 ICAT, France
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - J Mark Cock
- Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, UPMC Université Paris 06, CNRS, Roscoff, France
| | - Pauline Schaap
- School of Life Sciences, University of Dundee, United Kingdom
| | - Nicolas Papon
- Groupe d’Etude des Interactions Hôte-Pathogène, GEIHP, EA3142, Université d’Angers, SFR 4208 ICAT, France
| |
Collapse
|
33
|
Sperschneider J, Dodds PN, Gardiner DM, Singh KB, Taylor JM. Improved prediction of fungal effector proteins from secretomes with EffectorP 2.0. MOLECULAR PLANT PATHOLOGY 2018; 19:2094-2110. [PMID: 29569316 PMCID: PMC6638006 DOI: 10.1111/mpp.12682] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 05/14/2023]
Abstract
Plant-pathogenic fungi secrete effector proteins to facilitate infection. We describe extensive improvements to EffectorP, the first machine learning classifier for fungal effector prediction. EffectorP 2.0 is now trained on a larger set of effectors and utilizes a different approach based on an ensemble of classifiers trained on different subsets of negative data, offering different views on classification. EffectorP 2.0 achieves an accuracy of 89%, compared with 82% for EffectorP 1.0 and 59.8% for a small size classifier. Important features for effector prediction appear to be protein size, protein net charge as well as the amino acids serine and cysteine. EffectorP 2.0 decreases the number of predicted effectors in secretomes of fungal plant symbionts and saprophytes by 40% when compared with EffectorP 1.0. However, EffectorP 1.0 retains value, and combining EffectorP 1.0 and 2.0 results in a stringent classifier with a low false positive rate of 9%. EffectorP 2.0 predicts significant enrichments of effectors in 12 of 13 sets of infection-induced proteins from diverse fungal pathogens, whereas a small cysteine-rich classifier detects enrichment in only seven of 13. EffectorP 2.0 will fast track the prioritization of high-confidence effector candidates for functional validation and aid in improving our understanding of effector biology. EffectorP 2.0 is available at http://effectorp.csiro.au.
Collapse
Affiliation(s)
- Jana Sperschneider
- Centre for Environment and Life Sciences, CSIRO Agriculture and FoodPerth, WA 6014Australia
| | - Peter N. Dodds
- Black Mountain Laboratories, CSIRO Agriculture and FoodCanberra, ACT 2601Australia
| | - Donald M. Gardiner
- CSIRO Agriculture and FoodQueensland Bioscience PrecinctBrisbane, Qld 4067Australia
| | - Karam B. Singh
- Centre for Environment and Life Sciences, CSIRO Agriculture and FoodPerth, WA 6014Australia
- Department of Environment and Agriculture, Centre for Crop and Disease ManagementCurtin UniversityBentley, WA 6102Australia
| | - Jennifer M. Taylor
- Black Mountain Laboratories, CSIRO Agriculture and FoodCanberra, ACT 2601Australia
| |
Collapse
|
34
|
Error-prone protein synthesis in parasites with the smallest eukaryotic genome. Proc Natl Acad Sci U S A 2018; 115:E6245-E6253. [PMID: 29915081 DOI: 10.1073/pnas.1803208115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Microsporidia are parasitic fungi-like organisms that invade the interior of living cells and cause chronic disorders in a broad range of animals, including humans. These pathogens have the tiniest known genomes among eukaryotic species, for which they serve as a model for exploring the phenomenon of genome reduction in obligate intracellular parasites. Here we report a case study to show an apparent effect of overall genome reduction on the primary structure and activity of aminoacyl-tRNA synthetases, indispensable cellular proteins required for protein synthesis. We find that most microsporidian synthetases lack regulatory and eukaryote-specific appended domains and have a high degree of sequence variability in tRNA-binding and catalytic domains. In one synthetase, LeuRS, an apparent sequence degeneration annihilates the editing domain, a catalytic center responsible for the accurate selection of leucine for protein synthesis. Unlike accurate LeuRS synthetases from other eukaryotic species, microsporidian LeuRS is error-prone: apart from leucine, it occasionally uses its near-cognate substrates, such as norvaline, isoleucine, valine, and methionine. Mass spectrometry analysis of the microsporidium Vavraia culicis proteome reveals that nearly 6% of leucine residues are erroneously replaced by other amino acids. This remarkably high frequency of mistranslation is not limited to leucine codons and appears to be a general property of protein synthesis in microsporidian parasites. Taken together, our findings reveal that the microsporidian protein synthesis machinery is editing-deficient, and that the proteome of microsporidian parasites is more diverse than would be anticipated based on their genome sequences.
Collapse
|
35
|
Heyworth MF. Genetic aspects and environmental sources of microsporidia that infect the human gastrointestinal tract. Trans R Soc Trop Med Hyg 2018; 111:18-21. [PMID: 28339881 DOI: 10.1093/trstmh/trx001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/11/2017] [Indexed: 01/06/2023] Open
Abstract
Enterocytozoon bieneusi and Encephalitozoon intestinalis are microsporidia that infect the human gastrointestinal (GI) tract. Each of these microsporidia has been shown to infect various non-human hosts (mammalian and avian), raising the possibility of inter-species transmission, for example, from such hosts to human subjects via waterborne dispersal of microsporidian spores. During the past two decades, genome sequencing has delineated more than 90 genotypes of Ent. bieneusi, and has led to the conclusion that not all the genotypes of this organism infect human subjects. Well documented in the HIV-infected population, GI tract microsporidiosis is also known to occur in immunocompetent, HIV-negative, individuals. The prevalence of HIV-associated microsporidiosis diminished following the introduction of effective anti-retroviral therapy.
Collapse
Affiliation(s)
- Martin F Heyworth
- Research Service (151), Corporal Michael J. Crescenz Department of Veterans Affairs (VA) Medical Center, University and Woodland Avenues, Philadelphia, PA 19104, USA.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
36
|
Sperschneider J, Dodds PN, Singh KB, Taylor JM. ApoplastP: prediction of effectors and plant proteins in the apoplast using machine learning. THE NEW PHYTOLOGIST 2018; 217:1764-1778. [PMID: 29243824 DOI: 10.1111/nph.14946] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/07/2017] [Indexed: 05/18/2023]
Abstract
The plant apoplast is integral to intercellular signalling, transport and plant-pathogen interactions. Plant pathogens deliver effectors both into the apoplast and inside host cells, but no computational method currently exists to discriminate between these localizations. We present ApoplastP, the first method for predicting whether an effector or plant protein localizes to the apoplast. ApoplastP uncovers features of apoplastic localization common to both effectors and plant proteins, namely depletion in glutamic acid, acidic amino acids and charged amino acids and enrichment in small amino acids. ApoplastP predicts apoplastic localization in effectors with a sensitivity of 75% and a false positive rate of 5%, improving the accuracy of cysteine-rich classifiers by > 13%. ApoplastP does not depend on the presence of a signal peptide and correctly predicts the localization of unconventionally secreted proteins. The secretomes of fungal saprophytes as well as necrotrophic, hemibiotrophic and extracellular fungal pathogens are enriched for predicted apoplastic proteins. Rust pathogens have low proportions of predicted apoplastic proteins, but these are highly enriched for predicted effectors. ApoplastP pioneers apoplastic localization prediction using machine learning. It will facilitate functional studies and will be valuable for predicting if an effector localizes to the apoplast or if it enters plant cells.
Collapse
Affiliation(s)
- Jana Sperschneider
- Centre for Environment and Life Sciences, CSIRO Agriculture and Food, Perth, WA, 6014, Australia
| | - Peter N Dodds
- Black Mountain Laboratories, CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Karam B Singh
- Centre for Environment and Life Sciences, CSIRO Agriculture and Food, Perth, WA, 6014, Australia
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, 6102, Australia
| | - Jennifer M Taylor
- Black Mountain Laboratories, CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| |
Collapse
|
37
|
Zhang Y, Koehler AV, Wang T, Haydon SR, Gasser RB. First detection and genetic characterisation of Enterocytozoon bieneusi in wild deer in Melbourne's water catchments in Australia. Parasit Vectors 2018; 11:2. [PMID: 29295716 PMCID: PMC5751821 DOI: 10.1186/s13071-017-2577-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/06/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Enterocytozoon bieneusi is reported to be a common microsporidian of humans and animals in various countries. However, E. bieneusi has yet to be recorded in animals in Australia. Here, we undertook the first molecular epidemiological investigation of E. bieneusi in three species of deer (Cervus elaphus, Dama dama and Rusa unicolor) that live in the catchment areas that supply the city of Melbourne with drinking water. METHODS Genomic DNA was extracted from a total of 610 individual faecal samples from wild deer, including sambar deer (Rusa unicolor) (n = 516), red deer (Cervus elaphus) (n = 77) and fallow deer (Dama dama) (n = 17) from nine catchment areas, and then tested using a nested PCR-based sequencing approach employing internal transcribed spacer (ITS) of nuclear ribosomal DNA as the genetic marker. RESULTS Enterocytozoon bieneusi was detected in 25 of all 610 (4.1%) samples exclusively in samples from sambar deer. The analysis of ITS sequence data revealed three known (D, J and Type IV) and two new (MWC_d1 and MWC_d2) genotypes of E. bieneusi. Although the significance of the latter two new genotypes is presently unknown, phylogenetic analysis of ITS sequence data sets showed that they cluster with genotypes D and Type IV, which have been recorded previously in humans. These findings suggest that sambar deer in the water catchments harbour zoonotic genotypes of E. bieneusi. CONCLUSIONS Further insight into the epidemiology of E. bieneusi in wildlife, water and the environment in Australia will be important to have an informed position on the public health significance of microsporidiosis caused by this microbe.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Anson V. Koehler
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010 Australia
| | | | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010 Australia
| |
Collapse
|
38
|
Vosseberg J, Snel B. Domestication of self-splicing introns during eukaryogenesis: the rise of the complex spliceosomal machinery. Biol Direct 2017; 12:30. [PMID: 29191215 PMCID: PMC5709842 DOI: 10.1186/s13062-017-0201-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/20/2017] [Indexed: 12/31/2022] Open
Abstract
ᅟ The spliceosome is a eukaryote-specific complex that is essential for the removal of introns from pre-mRNA. It consists of five small nuclear RNAs (snRNAs) and over a hundred proteins, making it one of the most complex molecular machineries. Most of this complexity has emerged during eukaryogenesis, a period that is characterised by a drastic increase in cellular and genomic complexity. Although not fully resolved, recent findings have started to shed some light on how and why the spliceosome originated. In this paper we review how the spliceosome has evolved and discuss its origin and subsequent evolution in light of different general hypotheses on the evolution of complexity. Comparative analyses have established that the catalytic core of this ribonucleoprotein (RNP) complex, as well as the spliceosomal introns, evolved from self-splicing group II introns. Most snRNAs evolved from intron fragments and the essential Prp8 protein originated from the protein that is encoded by group II introns. Proteins that functioned in other RNA processes were added to this core and extensive duplications of these proteins substantially increased the complexity of the spliceosome prior to the eukaryotic diversification. The splicing machinery became even more complex in animals and plants, yet was simplified in eukaryotes with streamlined genomes. Apparently, the spliceosome did not evolve its complexity gradually, but in rapid bursts, followed by stagnation or even simplification. We argue that although both adaptive and neutral evolution have been involved in the evolution of the spliceosome, especially the latter was responsible for the emergence of an enormously complex eukaryotic splicing machinery from simple self-splicing sequences. Reviewers This article was reviewed by W. Ford Doolittle, Eugene V. Koonin and Vivek Anantharaman.
Collapse
Affiliation(s)
- Julian Vosseberg
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands.
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| |
Collapse
|
39
|
Stajich JE. Fungal Genomes and Insights into the Evolution of the Kingdom. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0055-2016. [PMID: 28820125 PMCID: PMC6078396 DOI: 10.1128/microbiolspec.funk-0055-2016] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Indexed: 12/23/2022] Open
Abstract
The kingdom Fungi comprises species that inhabit nearly all ecosystems. Fungi exist as both free-living and symbiotic unicellular and multicellular organisms with diverse morphologies. The genomes of fungi encode genes that enable them to thrive in diverse environments, invade plant and animal cells, and participate in nutrient cycling in terrestrial and aquatic ecosystems. The continuously expanding databases of fungal genome sequences have been generated by individual and large-scale efforts such as Génolevures, Broad Institute's Fungal Genome Initiative, and the 1000 Fungal Genomes Project (http://1000.fungalgenomes.org). These efforts have produced a catalog of fungal genes and genomic organization. The genomic datasets can be utilized to better understand how fungi have adapted to their lifestyles and ecological niches. Large datasets of fungal genomic and transcriptomic data have enabled the use of novel methodologies and improved the study of fungal evolution from a molecular sequence perspective. Combined with microscopes, petri dishes, and woodland forays, genome sequencing supports bioinformatics and comparative genomics approaches as important tools in the study of the biology and evolution of fungi.
Collapse
Affiliation(s)
- Jason E Stajich
- Department of Plant Pathology and Microbiology and Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
| |
Collapse
|
40
|
Wiredu Boakye D, Jaroenlak P, Prachumwat A, Williams TA, Bateman KS, Itsathitphaisarn O, Sritunyalucksana K, Paszkiewicz KH, Moore KA, Stentiford GD, Williams BAP. Decay of the glycolytic pathway and adaptation to intranuclear parasitism within Enterocytozoonidae microsporidia. Environ Microbiol 2017; 19:2077-2089. [DOI: 10.1111/1462-2920.13734] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/24/2017] [Accepted: 03/05/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Dominic Wiredu Boakye
- Biosciences; College of Life and Environmental Sciences, University of Exeter; EX4 4QD UK
| | - Pattana Jaroenlak
- Department of Biochemistry, Faculty of Science; Mahidol University; Rama VI Rd Bangkok 10400 Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology, Faculty of Science; Mahidol University; Rama VI Rd Bangkok 10400 Thailand
| | - Anuphap Prachumwat
- Shrimp-Virus Interaction Laboratory (ASVI); National Center for Genetic Engineering and Biotechnology (BIOTEC); Rama VI Rd Bangkok 10400 Thailand
| | | | - Kelly S. Bateman
- European Union Reference Laboratory for Crustacean Diseases, Centre for Environment Fisheries and Aquaculture Science, Weymouth Laboratory; Weymouth Dorset DT4 8UB UK
| | - Ornchuma Itsathitphaisarn
- Department of Biochemistry, Faculty of Science; Mahidol University; Rama VI Rd Bangkok 10400 Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology, Faculty of Science; Mahidol University; Rama VI Rd Bangkok 10400 Thailand
| | - Kallaya Sritunyalucksana
- Shrimp-Virus Interaction Laboratory (ASVI); National Center for Genetic Engineering and Biotechnology (BIOTEC); Rama VI Rd Bangkok 10400 Thailand
| | - Konrad H. Paszkiewicz
- Biosciences; College of Life and Environmental Sciences, University of Exeter; EX4 4QD UK
| | - Karen A. Moore
- Biosciences; College of Life and Environmental Sciences, University of Exeter; EX4 4QD UK
| | - Grant D. Stentiford
- European Union Reference Laboratory for Crustacean Diseases, Centre for Environment Fisheries and Aquaculture Science, Weymouth Laboratory; Weymouth Dorset DT4 8UB UK
| | - Bryony A. P. Williams
- Biosciences; College of Life and Environmental Sciences, University of Exeter; EX4 4QD UK
| |
Collapse
|
41
|
Li J, Gu F, Wu R, Yang J, Zhang KQ. Phylogenomic evolutionary surveys of subtilase superfamily genes in fungi. Sci Rep 2017; 7:45456. [PMID: 28358043 PMCID: PMC5371821 DOI: 10.1038/srep45456] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/28/2017] [Indexed: 01/10/2023] Open
Abstract
Subtilases belong to a superfamily of serine proteases which are ubiquitous in fungi and are suspected to have developed distinct functional properties to help fungi adapt to different ecological niches. In this study, we conducted a large-scale phylogenomic survey of subtilase protease genes in 83 whole genome sequenced fungal species in order to identify the evolutionary patterns and subsequent functional divergences of different subtilase families among the main lineages of the fungal kingdom. Our comparative genomic analyses of the subtilase superfamily indicated that extensive gene duplications, losses and functional diversifications have occurred in fungi, and that the four families of subtilase enzymes in fungi, including proteinase K-like, Pyrolisin, kexin and S53, have distinct evolutionary histories which may have facilitated the adaptation of fungi to a broad array of life strategies. Our study provides new insights into the evolution of the subtilase superfamily in fungi and expands our understanding of the evolution of fungi with different lifestyles.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, P.R. China
| | - Fei Gu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, P.R. China
| | - Runian Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, P.R. China
| | - JinKui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, P.R. China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, P.R. China
| |
Collapse
|
42
|
Mikhailov KV, Simdyanov TG, Aleoshin VV. Genomic Survey of a Hyperparasitic Microsporidian Amphiamblys sp. (Metchnikovellidae). Genome Biol Evol 2017; 9:454-467. [PMID: 27694476 PMCID: PMC5381614 DOI: 10.1093/gbe/evw235] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2016] [Indexed: 12/18/2022] Open
Abstract
Metchnikovellidae are a group of unusual microsporidians that lack some of the defining ultrastructural features characteristic of derived Microsporidia and are thought to be one of their earliest-branching lineages. The basal position of metchnikovellids was never confirmed by molecular phylogeny in published research, and thus far no genomic data for this group were available. In this work, we obtain a partial genome of metchnikovellid Amphiamblys sp. using multiple displacement amplification, next-generation sequencing, and metagenomic binning approaches. The partial genome, which we estimate to be close to 90% complete, displays genome compaction on par with gene-dense microsporidian genomes, but contains an unusual repertoire of unique repeat elements. Phylogenetic analyses of multigene datasets place Amphiamblys sp. as the first branch of the microsporidian lineage following the divergence of a mitochondriate microsporidian Mitosporidium. We find evidence for a mitochondrial remnant presumably functionally equivalent to a mitosome in Amphiamblys sp. and the common enzymatic complement for microsporidian anaerobic metabolism. Comparative genomic analyses identify the conservation of components for clathrin vesicle formation as one of the key features distinguishing the metchnikovellid from its highly derived relatives. The presented data confirm the notion of Metchnikovellidae as a less derived microsporidian group, and provide an additional stepping stone for reconstruction of an evolutionary transition from the early diverging parasitic fungi to derived Microsporidia.
Collapse
Affiliation(s)
- Kirill V. Mikhailov
- A.N. Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation
| | - Timur G. Simdyanov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Vladimir V. Aleoshin
- A.N. Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
43
|
Roy SW. Transcriptomic analysis of diplomonad parasites reveals a trans-spliced intron in a helicase gene in Giardia. PeerJ 2017; 5:e2861. [PMID: 28090405 PMCID: PMC5224939 DOI: 10.7717/peerj.2861] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/03/2016] [Indexed: 11/21/2022] Open
Abstract
Background The mechanisms by which DNA sequences are expressed is the central preoccupation of molecular genetics. Recently, ourselves and others reported that in the diplomonad protist Giardia lamblia, the coding regions of several mRNAs are produced by ligation of independent RNA species expressed from distinct genomic loci. Such trans-splicing of introns was found to affect nearly as many genes in this organism as does classical cis-splicing of introns. These findings raised questions about the incidence of intron trans-splicing both across the G. lambliatranscriptome and across diplomonad diversity in general, however a dearth of transcriptomic data at the time prohibited systematic study of these questions. Methods I leverage newly available transcriptomic data from G. lamblia and the related diplomonad Spironucleus salmonicidato search for trans-spliced introns. My computational pipeline recovers all four previously reported trans-spliced introns in G. lamblia, suggesting good sensitivity. Results Scrutiny of thousands of potential cases revealed only a single additional trans-spliced intron in G. lamblia, in the p68 helicase gene, and no cases in S. salmonicida. The p68 intron differs from the previously reported trans-spliced introns in its high degree of streamlining: the core features of G. lamblia trans-spliced introns are closely packed together, revealing striking economy in the implementation of a seemingly inherently uneconomical molecular mechanism. Discussion These results serve to circumscribe the role of trans-splicing in diplomonads both in terms of the number of genes effected and taxonomically. Future work should focus on the molecular mechanisms, evolutionary origins and phenotypic implications of this intriguing phenomenon.
Collapse
Affiliation(s)
- Scott William Roy
- Department of Biology, San Francisco State University , San Francisco , CA , United States
| |
Collapse
|
44
|
Ndikumana S, Pelin A, Williot A, Sanders JL, Kent M, Corradi N. Genome Analysis of Pseudoloma neurophilia: A Microsporidian Parasite of Zebrafish (Danio rerio). J Eukaryot Microbiol 2017; 64:18-30. [PMID: 27230544 PMCID: PMC5124540 DOI: 10.1111/jeu.12331] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/06/2016] [Accepted: 05/18/2016] [Indexed: 12/23/2022]
Abstract
Microsporidia are highly successful parasites that infect virtually all known animal lineages, including the model Danio rerio (zebrafish). The widespread use of this aquatic model for biomedical research has resulted in an unexpected increase in infections from the microsporidium Pseudoloma neurophilia, which can lead to significant physical, behavioral, and immunological modifications, resulting in nonprotocol variation during experimental procedures. Here, we seek to obtain insights into the biology of P. neurophilia by investigating its genome content, which was obtained from only 29 nanograms of DNA using the MiSeq technology and paired-end Illumina sequencing. We found that the genome of P. neurophilia is phylogenetically and genetically related to other fish-microsporidians, but features unique to this intracellular parasite are also found. The small 5.25-Mb genome assembly includes 1,139 unique open-reading frames and an unusually high number of transposable elements for such a small genome. Investigations of intragenomic diversity also provided strong indications that the mononucleate nucleus of this species is diploid. Overall, our study provides insights into the dynamics of microsporidian genomes and a solid sequence reference to be used in future studies of host-parasite interactions using the zebrafish D. rerio and P. neurophilia as a model.
Collapse
Affiliation(s)
- Steve Ndikumana
- Center for Advanced Research in Environment Genomic, Department of Biology, University of Ottawa, ON, Canada
| | - Adrian Pelin
- Center for Advanced Research in Environment Genomic, Department of Biology, University of Ottawa, ON, Canada
| | - Alex Williot
- Center for Advanced Research in Environment Genomic, Department of Biology, University of Ottawa, ON, Canada
| | - Justin L. Sanders
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Michael Kent
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Nicolas Corradi
- Center for Advanced Research in Environment Genomic, Department of Biology, University of Ottawa, ON, Canada
| |
Collapse
|
45
|
Deng L, Li W, Yu X, Gong C, Liu X, Zhong Z, Xie N, Lei S, Yu J, Fu H, Chen H, Xu H, Hu Y, Peng G. First Report of the Human-Pathogenic Enterocytozoon bieneusi from Red-Bellied Tree Squirrels (Callosciurus erythraeus) in Sichuan, China. PLoS One 2016; 11:e0163605. [PMID: 27683278 PMCID: PMC5040432 DOI: 10.1371/journal.pone.0163605] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/12/2016] [Indexed: 11/19/2022] Open
Abstract
Enterocytozoon bieneusi is a common opportunistic pathogen causing diarrhea and enteric disease in a variety of animal hosts. Although it has been reported in many animals, there is no published information available on the occurrence of E. bieneusi in red-bellied tree squirrels. To understand the occurrence, genetic diversity, and zoonotic potential of E. bieneusi in red-bellied tree squirrels, 144 fecal specimens from Sichuan province, China, were examined by PCR amplification and sequencing of the internal transcribed spacer (ITS) region of the ribosomal RNA (rRNA) gene of E. bieneusi. The overall infection rate of E. bieneusi 16.7% (24/144) was observed in red-bellied tree squirrels. Altogether five genotypes of E. bieneusi were identified: three known genotypes D (n = 18), EbpC (n = 3), SC02 (n = 1) and two novel genotypes CE01, CE02 (one each). Multilocus sequence typing (MLST) analysis employing three microsatellite (MS1, MS3, MS7) and one minisatellite (MS4) revealed 16, 14, 7 and 14 positive specimens were successfully sequenced, and identified eight, three, three and two genotypes at four loci, respectively. In phylogenetic analysis, the three known genotypes D, EbpC, and SC02 were clustered into group 1 with zoonotic potential, and the two novel genotypes CE01 and CE02 were clustered into group 6. The present study firstly reported the occurrence of E. bieneusi in red-bellied tree squirrels in China, and the E. bieneusi genotypes D and EbpC were found in humans previously. These results indicate that red-bellied tree squirrels may play a potential role in the transmission of E. bieneusi to humans.
Collapse
Affiliation(s)
- Lei Deng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Wei Li
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xingming Yu
- The Chengdu Zoo, Institute of Wild Animals, Chengdu, Sichuan, 625001, China
| | - Chao Gong
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xuehan Liu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zhijun Zhong
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Na Xie
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Shuangshuang Lei
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jianqiu Yu
- The Chengdu Zoo, Institute of Wild Animals, Chengdu, Sichuan, 625001, China
| | - Hualin Fu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hongwei Chen
- The Chengdu Zoo, Institute of Wild Animals, Chengdu, Sichuan, 625001, China
| | - Huailiang Xu
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, 625014, China
| | - Yanchun Hu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Guangneng Peng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| |
Collapse
|
46
|
Testa AC, Oliver RP, Hane JK. OcculterCut: A Comprehensive Survey of AT-Rich Regions in Fungal Genomes. Genome Biol Evol 2016; 8:2044-64. [PMID: 27289099 PMCID: PMC4943192 DOI: 10.1093/gbe/evw121] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2016] [Indexed: 12/03/2022] Open
Abstract
We present a novel method to measure the local GC-content bias in genomes and a survey of published fungal species. The method, enacted as "OcculterCut" (https://sourceforge.net/projects/occultercut, last accessed April 30, 2016), identified species containing distinct AT-rich regions. In most fungal taxa, AT-rich regions are a signature of repeat-induced point mutation (RIP), which targets repetitive DNA and decreases GC-content though the conversion of cytosine to thymine bases. RIP has in turn been identified as a driver of fungal genome evolution, as RIP mutations can also occur in single-copy genes neighboring repeat-rich regions. Over time RIP perpetuates "two speeds" of gene evolution in the GC-equilibrated and AT-rich regions of fungal genomes. In this study, genomes showing evidence of this process are found to be common, particularly among the Pezizomycotina. Further analysis highlighted differences in amino acid composition and putative functions of genes from these regions, supporting the hypothesis that these regions play an important role in fungal evolution. OcculterCut can also be used to identify genes undergoing RIP-assisted diversifying selection, such as small, secreted effector proteins that mediate host-microbe disease interactions.
Collapse
Affiliation(s)
- Alison C Testa
- Department of Environment & Agriculture, Centre for Crop and Disease Management, Curtin University, Perth, Australia
| | - Richard P Oliver
- Department of Environment & Agriculture, Centre for Crop and Disease Management, Curtin University, Perth, Australia
| | - James K Hane
- Department of Environment & Agriculture, Centre for Crop and Disease Management, Curtin University, Perth, Australia Curtin Institute for Computation, Curtin University, Perth, Australia
| |
Collapse
|
47
|
Exogenous gene can be integrated into Nosema bombycis genome by mediating with a non-transposon vector. Parasitol Res 2016; 115:3093-8. [PMID: 27083186 DOI: 10.1007/s00436-016-5064-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 01/25/2023]
Abstract
Nosema bombycis, a microsporidium, is a pathogen of pebrine disease of silkworms, and its genomic DNA sequences had been determined. Thus far, the research of gene functions of microsporidium including N. bombycis cannot be performed with gain/loss of function. In the present study, we targeted to construct transgenic N. bombycis. Therefore, hemocytes of the infected silkworm were transfected with a non-transposon vector pIZT/V5-His vector in vivo, and the blood, in which the hemocyte with green fluorescence could be observed, was added to the cultured BmN cells. Furthermore, normal BmN cells were infected with germinated N. bombycis, and the infected cells were transfected with pIZT/V5-His. Continuous fluorescence observations exposed that there were N. bombycis with green fluorescence in some N. bombycis-infected cells, and the extracted genome from the purified N. bombycis spore was used as templates. PCR amplification was carried out with a pair of primers for specifically amplifying the green fluorescence protein (GFP) gene; a specific product representing the gfp gene could be amplified. Expression of the GFP protein through Western blotting also demonstrated that the gfp gene was perfectly inserted into the genome of N. bombysis. These results illustrated that exogenous gene can be integrated into N. bombycis genome by mediating with a non-transposon vector. Our research not only offers a strategy for research on gene function of N. bombycis but also provides an important reference for constructing genetically modified microsporidium utilized for biocontrol of pests.
Collapse
|
48
|
The Prediction and Validation of Small CDSs Expand the Gene Repertoire of the Smallest Known Eukaryotic Genomes. PLoS One 2015; 10:e0139075. [PMID: 26421846 PMCID: PMC4589312 DOI: 10.1371/journal.pone.0139075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/09/2015] [Indexed: 01/05/2023] Open
Abstract
The proper prediction of the gene catalogue of an organism is essential to obtain a representative snapshot of its overall lifestyle, especially when it is not amenable to culturing. Microsporidia are obligate intracellular, sometimes hard to culture, eukaryotic parasites known to infect members of every animal phylum. To date, sequencing and annotation of microsporidian genomes have revealed a poor gene complement with highly reduced gene sizes. In the present paper, we investigated whether such gene sizes may have induced biases for the methodologies used for genome annotation, with an emphasis on small coding sequence (CDS) gene prediction. Using better delineated intergenic regions from four Encephalitozoon genomes, we predicted de novo new small CDSs with sizes ranging from 78 to 255 bp (median 168) and corroborated these predictions by RACE-PCR experiments in Encephalitozoon cuniculi. Most of the newly found genes are present in other distantly related microsporidian species, suggesting their biological relevance. The present study provides a better framework for annotating microsporidian genomes and to train and evaluate new computational methods dedicated at detecting ultra-small genes in various organisms.
Collapse
|
49
|
Hudson AJ, Stark MR, Fast NM, Russell AG, Rader SD. Splicing diversity revealed by reduced spliceosomes in C. merolae and other organisms. RNA Biol 2015; 12:1-8. [PMID: 26400738 PMCID: PMC4829280 DOI: 10.1080/15476286.2015.1094602] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pre-mRNA splicing has been considered one of the hallmarks of eukaryotes, yet its diversity is astonishing: the number of substrate introns for splicing ranges from hundreds of thousands in humans to a mere handful in certain parasites. The catalytic machinery that carries out splicing, the spliceosome, is similarly diverse, with over 300 associated proteins in humans to a few tens in other organisms. In this Point of View, we discuss recent work characterizing the reduced spliceosome of the acidophilic red alga Cyanidioschyzon merolae, which further highlights the diversity of splicing in that it does not possess the U1 snRNP that is characteristically responsible for 5′ splice site recognition. Comparisons to other organisms with reduced spliceosomes, such as microsporidia, trypanosomes, and Giardia, help to identify the most highly conserved splicing factors, pointing to the essential core of this complex machine. These observations argue for increased exploration of important biochemical processes through study of a wider ranger of organisms.
Collapse
Affiliation(s)
- Andrew J Hudson
- a Alberta RNA Research and Training Institute and Department of Biological Sciences ; University of Lethbridge ; Lethbridge , Alberta , Canada
| | - Martha R Stark
- b Department of Chemistry ; University of Northern British Columbia ; Prince George , British Columbia , Canada
| | - Naomi M Fast
- c Biodiversity Research Center and Department of Botany ; University of British Columbia ; Vancouver , British Columbia , Canada
| | - Anthony G Russell
- a Alberta RNA Research and Training Institute and Department of Biological Sciences ; University of Lethbridge ; Lethbridge , Alberta , Canada
| | - Stephen D Rader
- b Department of Chemistry ; University of Northern British Columbia ; Prince George , British Columbia , Canada
| |
Collapse
|
50
|
Genome analysis and polar tube firing dynamics of mosquito-infecting microsporidia. Fungal Genet Biol 2015; 83:41-44. [PMID: 26300319 DOI: 10.1016/j.fgb.2015.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/27/2015] [Accepted: 08/17/2015] [Indexed: 01/25/2023]
Abstract
Microsporidia are highly divergent fungi that are obligate intracellular pathogens of a wide range of host organisms. Here we review recent findings from the genome sequences of mosquito-infecting microsporidian species Edhazardia aedis and Vavraia culicis, which show large differences in genome size, although similar numbers of predicted genes. We also show a video of E. aedis polar tube firing, which is the dramatic mechanism used by microsporidia to deliver the germ cell (sporoplasm) into the host cell to initiate intracellular infection.
Collapse
|