1
|
Capone A, Lo Presti A, Sernicola L, Farcomeni S, Ferrantelli F, Maggiorella MT, Mee ET, Rose NJ, Cella E, Ciccozzi M, Ensoli B, Borsetti A. Genetic diversity in the env V1-V2 region of proviral quasispecies from long-term controller MHC-typed cynomolgus macaques infected with SHIVSF162P4cy. J Gen Virol 2018; 99:1717-1728. [PMID: 30311877 DOI: 10.1099/jgv.0.001159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Intra-host evolution of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) has been shown by viral RNA analysis in subjects who naturally suppress plasma viremia to low levels, known as controllers. However, little is known about the variability of proviral DNA and the inter-relationships among contained systemic viremia, rate of reservoir reseeding and specific major histocompatibility complex (MHC) genotypes, in controllers. Here, we analysed the proviral DNA quasispecies of the env V1-V2 region, in PBMCs and in anatomical compartments of 13 long-term controller monkeys after 3.2 years of infection with simian/human immunodeficiency virus (SHIV)SF162P4cy. A considerable variation in the genetic diversity of proviral quasispecies was present among animals. Seven monkeys exhibited env V1-V2 proviral populations composed of both clusters of identical ancestral sequences and new variants, whereas the other six monkeys displayed relatively high env V1-V2 genetic diversity with a large proportion of diverse novel sequences. Our results demonstrate that in SHIVSF162P4cy-infected monkeys there exists a disparate pattern of intra-host viral diversity and that reseeding of the proviral reservoir occurs in some animals. Moreover, even though no particular association has been observed between MHC haplotypes and the long-term control of infection, a remarkably similar pattern of intra-host viral diversity and divergence was found within animals carrying the M3 haplotype. This suggests that in animals bearing the same MHC haplotype and infected with the same virus, viral diversity follows a similar pattern with similar outcomes and control of infection.
Collapse
Affiliation(s)
- Alessia Capone
- 1National HIV/AIDS Research Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161 Rome, Italy.,2Neuroimmunology Laboratory, Fondazione Santa Lucia, Rome, Italy.,3Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Alessandra Lo Presti
- 4Department of Infectious Diseases, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161 Rome, Italy
| | - Leonardo Sernicola
- 1National HIV/AIDS Research Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161 Rome, Italy
| | - Stefania Farcomeni
- 1National HIV/AIDS Research Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161 Rome, Italy
| | - Flavia Ferrantelli
- 5National Center for Global Health, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161 Rome, Italy
| | - Maria T Maggiorella
- 1National HIV/AIDS Research Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161 Rome, Italy
| | - Edward T Mee
- 6Division of Virology, National Institute for Biological Standards and Control, Medicines and Healthcare product Regulatory Agency, South Mimms, Hertfordshire, EN6 3QG, UK
| | - Nicola J Rose
- 6Division of Virology, National Institute for Biological Standards and Control, Medicines and Healthcare product Regulatory Agency, South Mimms, Hertfordshire, EN6 3QG, UK
| | - Eleonora Cella
- 7Medical statistic and molecular epidemiology unit, University campus bio medico, Roma, Italy
| | - Massimo Ciccozzi
- 7Medical statistic and molecular epidemiology unit, University campus bio medico, Roma, Italy
| | - Barbara Ensoli
- 1National HIV/AIDS Research Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161 Rome, Italy
| | - Alessandra Borsetti
- 1National HIV/AIDS Research Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
2
|
Innate Immunity and the Inter-exposure Interval Determine the Dynamics of Secondary Influenza Virus Infection and Explain Observed Viral Hierarchies. PLoS Comput Biol 2015; 11:e1004334. [PMID: 26284917 PMCID: PMC4540579 DOI: 10.1371/journal.pcbi.1004334] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/12/2015] [Indexed: 12/24/2022] Open
Abstract
Influenza is an infectious disease that primarily attacks the respiratory system. Innate immunity provides both a very early defense to influenza virus invasion and an effective control of viral growth. Previous modelling studies of virus–innate immune response interactions have focused on infection with a single virus and, while improving our understanding of viral and immune dynamics, have been unable to effectively evaluate the relative feasibility of different hypothesised mechanisms of antiviral immunity. In recent experiments, we have applied consecutive exposures to different virus strains in a ferret model, and demonstrated that viruses differed in their ability to induce a state of temporary immunity or viral interference capable of modifying the infection kinetics of the subsequent exposure. These results imply that virus-induced early immune responses may be responsible for the observed viral hierarchy. Here we introduce and analyse a family of within-host models of re-infection viral kinetics which allow for different viruses to stimulate the innate immune response to different degrees. The proposed models differ in their hypothesised mechanisms of action of the non-specific innate immune response. We compare these alternative models in terms of their abilities to reproduce the re-exposure data. Our results show that 1) a model with viral control mediated solely by a virus-resistant state, as commonly considered in the literature, is not able to reproduce the observed viral hierarchy; 2) the synchronised and desynchronised behaviour of consecutive virus infections is highly dependent upon the interval between primary virus and challenge virus exposures and is consistent with virus-dependent stimulation of the innate immune response. Our study provides the first mechanistic explanation for the recently observed influenza viral hierarchies and demonstrates the importance of understanding the host response to multi-strain viral infections. Re-exposure experiments provide a new paradigm in which to study the immune response to influenza and its role in viral control. Infection with the influenza virus is responsible for serious morbidity and mortality. In otherwise-healthy individuals, infection is usually acute, lasting between 5 to 10 days. Over this time, the virus initially replicates rapidly, before peaking and then being cleared from the body. Despite extensive study, we do not yet fully understand the processes which lead to viral control and viral clearance from the host. Experimental and modelling studies of single infections have previously indicated that both the innate and adaptive immune responses play an important role in combating infection. Here we study a novel dataset on how the host responds to sequential exposure to two different strains of influenza. We introduce a family of mathematical models of the within-host dynamics of influenza infection which allow for re-infection. Our models allow us, for the first time, to differentiate between alternative hypothesised mechanisms by which the innate immune response acts to control viral replication. This study improves our understanding of the innate immune response to influenza and demonstrates that re-exposure studies provide a new paradigm for further experimental research. Our findings may contribute to the development of next-generation treatment and vaccination strategies which rely upon an understanding of the host’s immunological response to influenza infection.
Collapse
|
3
|
Linking pig-tailed macaque major histocompatibility complex class I haplotypes and cytotoxic T lymphocyte escape mutations in simian immunodeficiency virus infection. J Virol 2014; 88:14310-25. [PMID: 25275134 DOI: 10.1128/jvi.02428-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED The influence of major histocompatibility complex class I (MHC-I) alleles on human immunodeficiency virus (HIV) diversity in humans has been well characterized at the population level. MHC-I alleles likely affect viral diversity in the simian immunodeficiency virus (SIV)-infected pig-tailed macaque (Macaca nemestrina) model, but this is poorly characterized. We studied the evolution of SIV in pig-tailed macaques with a range of MHC-I haplotypes. SIV(mac251) genomes were amplified from the plasma of 44 pig-tailed macaques infected with SIV(mac251) at 4 to 10 months after infection and characterized by Illumina deep sequencing. MHC-I typing was performed on cellular RNA using Roche/454 pyrosequencing. MHC-I haplotypes and viral sequence polymorphisms at both individual mutations and groups of mutations spanning 10-amino-acid segments were linked using in-house bioinformatics pipelines, since cytotoxic T lymphocyte (CTL) escape can occur at different amino acids within the same epitope in different animals. The approach successfully identified 6 known CTL escape mutations within 3 Mane-A1*084-restricted epitopes. The approach also identified over 70 new SIV polymorphisms linked to a variety of MHC-I haplotypes. Using functional CD8 T cell assays, we confirmed that one of these associations, a Mane-B028 haplotype-linked mutation in Nef, corresponded to a CTL epitope. We also identified mutations associated with the Mane-B017 haplotype that were previously described to be CTL epitopes restricted by Mamu-B*017:01 in rhesus macaques. This detailed study of pig-tailed macaque MHC-I genetics and SIV polymorphisms will enable a refined level of analysis for future vaccine design and strategies for treatment of HIV infection. IMPORTANCE Cytotoxic T lymphocytes select for virus escape mutants of HIV and SIV, and this limits the effectiveness of vaccines and immunotherapies against these viruses. Patterns of immune escape variants are similar in HIV type 1-infected human subjects that share the same MHC-I genes, but this has not been studied for SIV infection of macaques. By studying SIV sequence diversity in 44 MHC-typed SIV-infected pigtail macaques, we defined over 70 sites within SIV where mutations were common in macaques sharing particular MHC-I genes. Further, pigtail macaques sharing nearly identical MHC-I genes with rhesus macaques responded to the same CTL epitope and forced immune escape. This allows many reagents developed to study rhesus macaques to also be used to study pigtail macaques. Overall, our study defines sites of immune escape in SIV in pigtailed macaques, and this enables a more refined level of analysis of future vaccine design and strategies for treatment of HIV infection.
Collapse
|
4
|
Simian immunodeficiency virus infects follicular helper CD4 T cells in lymphoid tissues during pathogenic infection of pigtail macaques. J Virol 2013; 87:3760-73. [PMID: 23325697 DOI: 10.1128/jvi.02497-12] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
T follicular helper (Tfh) cells are a specialized subset of memory CD4(+) T cells that are found exclusively within the germinal centers of secondary lymphoid tissues and are important for adaptive antibody responses and B cell memory. Tfh cells do not express CCR5, the primary entry coreceptor for both human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV), and therefore, we hypothesized that these cells would avoid infection. We studied lymph nodes and spleens from pigtail macaques infected with pathogenic strain SIVmac239 or SIVmac251, to investigate the susceptibility of Tfh cells to SIV infection. Pigtail macaque PD-1(high) CD127(low) memory CD4(+) T cells have a phenotype comparable to that of human Tfh cells, expressing high levels of CXCR5, interleukin-21 (IL-21), Bcl-6, and inducible T cell costimulator (ICOS). As judged by either proviral DNA or cell-associated viral RNA measurements, macaque Tfh cells were infected with SIV at levels comparable to those in other CD4(+) memory T cells. Infection of macaque Tfh cells was evident within weeks of inoculation, yet we confirmed that Tfh cells do not express CCR5 or either of the well-known alternative SIV coreceptors, CXCR6 and GPR15. Mutations in the SIV envelope gp120 region occurred in chronically infected macaques but were uniform across each T cell subset investigated, indicating that the viruses used the same coreceptors to enter different cell subsets. Early infection of Tfh cells represents an unexpected focus of viral infection. Infection of Tfh cells does not interrupt antibody production but may be a factor that limits the quality of antibody responses and has implications for assessing the size of the viral reservoir.
Collapse
|
5
|
Liu MKP, Hawkins N, Ritchie AJ, Ganusov VV, Whale V, Brackenridge S, Li H, Pavlicek JW, Cai F, Rose-Abrahams M, Treurnicht F, Hraber P, Riou C, Gray C, Ferrari G, Tanner R, Ping LH, Anderson JA, Swanstrom R, Cohen M, Karim SSA, Haynes B, Borrow P, Perelson AS, Shaw GM, Hahn BH, Williamson C, Korber BT, Gao F, Self S, McMichael A, Goonetilleke N. Vertical T cell immunodominance and epitope entropy determine HIV-1 escape. J Clin Invest 2012; 123:380-93. [PMID: 23221345 DOI: 10.1172/jci65330] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/05/2012] [Indexed: 12/26/2022] Open
Abstract
HIV-1 accumulates mutations in and around reactive epitopes to escape recognition and killing by CD8+ T cells. Measurements of HIV-1 time to escape should therefore provide information on which parameters are most important for T cell-mediated in vivo control of HIV-1. Primary HIV-1-specific T cell responses were fully mapped in 17 individuals, and the time to virus escape, which ranged from days to years, was measured for each epitope. While higher magnitude of an individual T cell response was associated with more rapid escape, the most significant T cell measure was its relative immunodominance measured in acute infection. This identified subject-level or "vertical" immunodominance as the primary determinant of in vivo CD8+ T cell pressure in HIV-1 infection. Conversely, escape was slowed significantly by lower population variability, or entropy, of the epitope targeted. Immunodominance and epitope entropy combined to explain half of all the variability in time to escape. These data explain how CD8+ T cells can exert significant and sustained HIV-1 pressure even when escape is very slow and that within an individual, the impacts of other T cell factors on HIV-1 escape should be considered in the context of immunodominance.
Collapse
Affiliation(s)
- Michael K P Liu
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Evolution of RNA viruses occurs through disequilibria of collections of closely related mutant spectra or mutant clouds termed viral quasispecies. Here we review the origin of the quasispecies concept and some biological implications of quasispecies dynamics. Two main aspects are addressed: (i) mutant clouds as reservoirs of phenotypic variants for virus adaptability and (ii) the internal interactions that are established within mutant spectra that render a virus ensemble the unit of selection. The understanding of viruses as quasispecies has led to new antiviral designs, such as lethal mutagenesis, whose aim is to drive viruses toward low fitness values with limited chances of fitness recovery. The impact of quasispecies for three salient human pathogens, human immunodeficiency virus and the hepatitis B and C viruses, is reviewed, with emphasis on antiviral treatment strategies. Finally, extensions of quasispecies to nonviral systems are briefly mentioned to emphasize the broad applicability of quasispecies theory.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/ Nicolás Cabrera, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| | | | | |
Collapse
|
7
|
Replication-competent simian immunodeficiency virus (SIV) Gag escape mutations archived in latent reservoirs during antiretroviral treatment of SIV-infected macaques. J Virol 2011; 85:9167-75. [PMID: 21715484 DOI: 10.1128/jvi.00366-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In response to pressure exerted by major histocompatibility complex (MHC) class I-mediated CD8(+) T cell control, human immunodeficiency virus (HIV) escape mutations often arise in immunodominant epitopes recognized by MHC class I alleles. While the current standard of care for HIV-infected patients is treatment with highly active antiretroviral therapy (HAART), suppression of viral replication in these patients is not absolute and latently infected cells persist as lifelong reservoirs. To determine whether HIV escape from MHC class I-restricted CD8(+) T cell control develops during HAART treatment and then enters latent reservoirs in the periphery and central nervous system (CNS), with the potential to emerge as replication-competent virus, we tracked the longitudinal development of the simian immunodeficiency virus (SIV) Gag escape mutation K165R in HAART-treated SIV-infected pigtailed macaques. Key findings of these studies included: (i) SIV Gag K165R escape mutations emerged in both plasma and cerebrospinal fluid (CSF) during the decaying phase of viremia after HAART initiation before suppression of viral replication, (ii) SIV K165R Gag escape mutations were archived in latent proviral DNA reservoirs, including the brain in animals receiving HAART that suppressed viral replication, and (iii) replication-competent SIV Gag K165R escape mutations were present in the resting CD4(+) T cell reservoir in HAART-treated SIV-infected macaques. Despite early administration of aggressive antiretroviral treatment, HIV immune escape from CD8(+) T cell control can still develop during the decaying phases of viremia and then persist in latent reservoirs, including the brain, with the potential to emerge if HAART therapy is interrupted.
Collapse
|
8
|
Biesinger T, White R, Yu Kimata MT, Wilson BK, Allan JS, Kimata JT. Relative replication capacity of phenotypic SIV variants during primary infections differs with route of inoculation. Retrovirology 2010; 7:88. [PMID: 20942954 PMCID: PMC2964591 DOI: 10.1186/1742-4690-7-88] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 10/13/2010] [Indexed: 01/08/2023] Open
Abstract
Background Previous studies of human and simian immunodeficiency virus (HIV and SIV) have demonstrated that adaptive mutations selected during the course of infection alter viral replicative fitness, persistence, and pathogenicity. What is unclear from those studies is the impact of transmission on the replication and pathogenicity of the founding virus population. Using the SIV-macaque model, we examined whether the route of infection would affect the establishment and replication of two SIVmne variants of distinct in vitro and in vivo biological characteristics. For these studies, we performed dual-virus inoculations of pig-tailed macaques via intrarectal or intravenous routes with SIVmneCl8, a miminally pathogenic virus, and SIVmne027, a highly pathogenic variant that replicates more robustly in CD4+ T cells. Results The data demonstrate that SIVmne027 is the dominant virus regardless of the route of infection, indicating that the capacity to replicate efficiently in CD4+ T cells is important for fitness. Interestingly, in comparison to intravenous co-infection, intrarectal inoculation enabled greater relative replication of the less pathogenic virus, SIVmneCl8. Moreover, a higher level of SIVmneCl8 replication during primary infection of the intrarectally inoculated macaques was associated with lower overall plasma viral load and slower decline in CD4+ T cells, even though SIVmne027 eventually became the dominant virus. Conclusions These results suggest that the capacity to replicate in CD4+ T cells is a significant determinant of SIV fitness and pathogenicity. Furthermore, the data also suggest that mucosal transmission may support early replication of phenotypically diverse variants, while slowing the rate of CD4+ T cell decline during the initial stages of infection.
Collapse
Affiliation(s)
- Tasha Biesinger
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
9
|
Reece JC, Loh L, Alcantara S, Fernandez CS, Stambas J, Sexton A, De Rose R, Petravic J, Davenport MP, Kent SJ. Timing of immune escape linked to success or failure of vaccination. PLoS One 2010; 5. [PMID: 20862289 PMCID: PMC2940906 DOI: 10.1371/journal.pone.0012774] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 08/24/2010] [Indexed: 11/23/2022] Open
Abstract
Successful vaccination against HIV should limit viral replication sufficiently to prevent the emergence of viral immune escape mutations. Broadly directed immunity is likely to be required to limit opportunities for immune escape variants to flourish. We studied the emergence of an SIV Gag cytotoxic T cell immune escape variant in pigtail macaques expressing the Mane-A*10 MHC I allele using a quantitative RT-PCR to measure viral loads of escape and wild type variants. Animals receiving whole Gag expressing vaccines completely controlled an SIVmac251 challenge, had broader CTL responses and exhibited minimal CTL escape. In contrast, animals vaccinated with only a single CTL epitope and challenged with the same SIVmac251 stock had high levels of viral replication and rapid CTL escape. Unvaccinated naïve animals exhibited a slower emergence of immune escape variants. Thus narrowly directed vaccination against a single epitope resulted in rapid immune escape and viral levels equivalent to that of naïve unvaccinated animals. These results emphasize the importance of inducing broadly directed HIV-specific immunity that effectively quashes early viral replication and limits the generation of immune escape variants. This has important implications for the selection of HIV vaccines for expanded human trials.
Collapse
Affiliation(s)
- Jeanette C. Reece
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Liyen Loh
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Sheilajen Alcantara
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Caroline S. Fernandez
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - John Stambas
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Amy Sexton
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Robert De Rose
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Janka Petravic
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Miles P. Davenport
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
- * E-mail:
| |
Collapse
|
10
|
Mathematical modeling of ultradeep sequencing data reveals that acute CD8+ T-lymphocyte responses exert strong selective pressure in simian immunodeficiency virus-infected macaques but still fail to clear founder epitope sequences. J Virol 2010; 84:5802-14. [PMID: 20335256 DOI: 10.1128/jvi.00117-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The prominent role of antiviral cytotoxic CD8(+) T-lymphocytes (CD8-TL) in containing the acute viremia of human and simian immunodeficiency viruses (HIV-1 and SIV) has rationalized the development of T-cell-based vaccines. However, the presence of escape mutations in the acute stage of infection has raised a concern that accelerated escape from vaccine-induced CD8-TL responses might undermine vaccine efficacy. We reanalyzed previously published data of 101,822 viral genomes of three CD8-TL epitopes, Nef(103-111)RM9 (RM9), Tat(28-35)SL8 (SL8), and Gag(181-189)CM9 (CM9), sampled by ultradeep pyrosequencing from eight macaques. Multiple epitope variants appeared during the resolution of acute viremia, followed by the predominance of a single mutant epitope. By fitting a mathematical model, we estimated the first acute escape rate as 0.36 day(-1) within escape-prone epitopes, RM9 and SL8, and the chronic escape rate as 0.014 day(-1) within the CM9 epitope. Our estimate of SIV acute escape rates was found to be comparable to very early HIV-1 escape rates. The timing of the first escape was more highly correlated with the timing of the peak CD8-TL response than with the magnitude of the CD8-TL response. The transmitted epitope decayed more than 400 times faster during the acute viral decline stage than predicted by a neutral evolution model. However, the founder epitope persisted as a minor population even at the viral set point; in contrast, the majority of acute escape epitopes were completely cleared. Our results suggest that a reservoir of SIV infection is preferentially formed by virus with the transmitted epitope.
Collapse
|