1
|
Targeting the Nucleosome Acidic Patch by Viral Proteins: Two Birds with One Stone? mBio 2022; 13:e0173321. [PMID: 35343785 PMCID: PMC9040877 DOI: 10.1128/mbio.01733-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The past decade illuminated the H2A-H2B acidic patch as a cornerstone for both nucleosome recognition and chromatin structure regulation. Higher-order folding of chromatin arrays is mediated by interactions of histone H4 tail with an adjacent nucleosome acidic patch. Dynamic chromatin folding ensures a proper regulation of nuclear functions fundamental to cellular homeostasis. Many cellular factors have been shown to act on chromatin by tethering nucleosomes via an arginine anchor binding to the acidic patch. This tethering mechanism has also been described for several viral proteins. In this minireview, we will discuss the structural basis for acidic patch engagement by viral proteins and the implications during respective viral infections. We will also discuss a model in which acidic patch occupancy by these non-self viral proteins alters the local chromatin state by preventing H4 tail-mediated higher-order chromatin folding.
Collapse
|
2
|
Inferring protein function in an emerging virus: detection of the nucleoprotein in Tilapia Lake Virus. J Virol 2022; 96:e0175721. [PMID: 35107373 DOI: 10.1128/jvi.01757-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Emerging viruses impose global threats to animal and human populations and may bear novel genes with limited homology to known sequences, necessitating the development of novel approaches to infer and test protein functions. This challenge is dramatically evident in tilapia lake virus (TiLV), an emerging orthomyxo-like virus that threatens the global tilapia aquaculture and food security of millions of people. The majority of TiLV proteins have no homology to known sequences, impeding functionality assessments. Using a novel bioinformatics approach, we predicted that TiLV's Protein 4 encodes the nucleoprotein - a factor essential for viral RNA replication. Multiple methodologies revealed the expected properties of orthomyxoviral nucleoproteins. A modified yeast three-hybrid assay detected Protein 4-RNA interactions, which were independent of the RNA sequence, and identified specific positively charged residues involved. Protein 4-RNA interactions were uncovered by R-DeeP and XRNAX methodologies. Immunoelectron microscopy found that multiple Protein 4 copies localized along enriched ribonucleoproteins. TiLV RNA from cells and virions co-immunoprecipitated with Protein 4. Immunofluorescence microscopy detected Protein 4 in the cytoplasm and nuclei, and nuclear Protein 4 increased upon CRM1 inhibition, suggesting CRM1-dependent nuclear export of TiLV RNA. Together, these data reveal TiLV's nucleoprotein and highlight the ability to infer protein functionality, including novel RNA-binding proteins, in emerging pathogens. These are important in light of the expected discovery of many unknown viruses and the zoonotic potential of such pathogens. Importance Tilapia is an important source of dietary protein, especially in developing countries. Massive losses of tilapia were identified worldwide, risking the food security of millions of people. Tilapia lake virus (TiLV) is an emerging pathogen responsible for these disease outbreaks. TiLV's genome encodes ten major proteins, nine of which show no homology to other known viral or cellular proteins, hindering functionality assessment of these proteins. Here we describe a novel bioinformatics approach to infer the functionality of TiLV proteins, which predicted Protein 4 as the nucleoprotein - a factor essential for viral RNA replication. We provided experimental support for this prediction by applying multiple molecular, biochemical, and imaging approaches. Overall, we illustrate a strategy for functional analyses in viral discovery. The strategy is important in light of the expected discovery of many unknown viruses and the zoonotic potential of such pathogens.
Collapse
|
3
|
Passos DO, Li M, Craigie R, Lyumkis D. Retroviral integrase: Structure, mechanism, and inhibition. Enzymes 2021; 50:249-300. [PMID: 34861940 DOI: 10.1016/bs.enz.2021.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The retroviral protein Integrase (IN) catalyzes concerted integration of viral DNA into host chromatin to establish a permanent infection in the target cell. We learned a great deal about the mechanism of catalytic integration through structure/function studies over the previous four decades of IN research. As one of three essential retroviral enzymes, IN has also been targeted by antiretroviral drugs to treat HIV-infected individuals. Inhibitors blocking the catalytic integration reaction are now state-of-the-art drugs within the antiretroviral therapy toolkit. HIV-1 IN also performs intriguing non-catalytic functions that are relevant to the late stages of the viral replication cycle, yet this aspect remains poorly understood. There are also novel allosteric inhibitors targeting non-enzymatic functions of IN that induce a block in the late stages of the viral replication cycle. In this chapter, we will discuss the function, structure, and inhibition of retroviral IN proteins, highlighting remaining challenges and outstanding questions.
Collapse
Affiliation(s)
| | - Min Li
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - Robert Craigie
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - Dmitry Lyumkis
- The Salk Institute for Biological Studies, La Jolla, CA, United States; The Scripps Research Institute, La Jolla, CA, United States.
| |
Collapse
|
4
|
HIV-1 Gag Recruits Oligomeric Vpr via Two Binding Sites in p6, but Both Mature p6 and Vpr Are Rapidly Lost upon Target Cell Entry. J Virol 2021; 95:e0055421. [PMID: 34106747 DOI: 10.1128/jvi.00554-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The p12 region of murine leukemia virus (MLV) Gag and the p6 region of HIV-1 Gag contain late domains required for virus budding. Additionally, the accessory protein Vpr is recruited into HIV particles via p6. Mature p12 is essential for early viral replication events, but the role of mature p6 in early replication is unknown. Using a proviral vector in which the gag and pol reading frames are uncoupled, we have performed the first alanine-scanning mutagenesis screens across p6 to probe its importance for early HIV-1 replication and to further understand its interaction with Vpr. The infectivity of our mutants suggests that, unlike p12, p6 is not important for early viral replication. Consistent with this, we observed that p6 is rapidly lost upon target cell entry in time course immunoblot experiments. By analyzing Vpr incorporation into p6 mutant virions, we identified that the 15-FRFG-18 and 41-LXXLF-45 motifs previously identified as putative Vpr-binding sites are important for Vpr recruitment but that the 34-ELY-36 motif also suggested to be a Vpr-binding site is dispensable. Additionally, disrupting Vpr oligomerization together with removing either binding motif in p6 reduced Vpr incorporation ∼25- to 50-fold more than inhibiting Vpr oligomerization alone and ∼10- to 25-fold more than deleting each p6 motif alone, implying that multivalency/avidity is important for the interaction. Interestingly, using immunoblotting and immunofluorescence, we observed that most Vpr is lost concomitantly with p6 during infection but that a small fraction remains associated with the viral capsid for several hours. This has implications for the function of Vpr in early replication. IMPORTANCE The p12 protein of MLV and the p6 protein of HIV-1 are both supplementary Gag cleavage products that carry proline-rich motifs that facilitate virus budding. Importantly, p12 has also been found to be essential for early viral replication events. However, while Vpr, the only accessory protein packaged into HIV-1 virions, is recruited via the p6 region of Gag, the function of both mature p6 and Vpr in early replication is unclear. Here, we have systematically mutated the p6 region of Gag and have studied the effects on HIV infectivity and Vpr packaging. We have also investigated what happens to p6 and Vpr during early infection. We show that, unlike p12, mature p6 is not required for early replication and that most of the mature p6 and the Vpr that it recruits are lost rapidly upon target cell entry. This has implications for the role of Vpr in target cells.
Collapse
|
5
|
Moloney Murine Leukemia Virus p12 Is Required for Histone Loading onto Retroviral DNAs. J Virol 2021; 95:e0049521. [PMID: 34011543 DOI: 10.1128/jvi.00495-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
During retrovirus infection, a histone-free DNA copy of the viral RNA genome is synthesized and rapidly loaded with nucleosomes de novo upon nuclear entry. The potential role of viral accessory proteins in histone loading onto retroviral DNAs has not been extensively investigated. The p12 protein of Moloney murine leukemia virus (MMLV) is a virion protein that is critical for tethering the incoming viral DNA to host chromatin in the early stages of infection. Infection by virions containing a mutant p12 (PM14) defective in chromatin tethering results in the formation of viral DNAs that do not accumulate in the nucleus. In this report, we show that viral DNAs of these mutants are not loaded with histones. Moreover, the DNA genomes delivered by mutant p12 show prolonged association with viral structural proteins nucleocapsid (NC) and capsid (CA). The histone-poor viral DNA genomes do not become associated with the host RNA polymerase II machinery. These findings provide insights into fundamental aspects of retroviral biology, indicating that tethering to host chromatin by p12 and retention in the nucleus are required to allow loading of histones onto the viral DNA. IMPORTANCE Incoming retroviral DNAs are rapidly loaded with nucleosomal histones upon entry into the nucleus and before integration into the host genome. The entry of murine leukemia virus DNA into the nucleus occurs only upon dissolution of the nuclear membrane in mitosis, and retention in the nucleus requires the action of a viral protein, p12, which tethers the DNA to host chromatin. Data presented here show that the tethering activity of p12 is required for the loading of histones onto the viral DNA. p12 mutants lacking tethering activity fail to acquire histones, retain capsid and nucleocapsid proteins, and are poorly transcribed. The work defines a new requirement for a viral protein to allow chromatinization of viral DNA.
Collapse
|
6
|
Dynein Light-Chain Dynlrb2 Is Essential for Murine Leukemia Virus Traffic and Nuclear Entry. J Virol 2021; 95:e0017021. [PMID: 33980598 DOI: 10.1128/jvi.00170-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Murine leukemia virus (MLV) requires the infected cell to divide to access the nucleus to integrate into the host genome. It has been determined that MLV uses the microtubule and actin network to reach the nucleus at the early stages of infection. Several studies have shown that viruses use the dynein motor protein associated with microtubules for their displacement. We have previously reported that dynein light-chain roadblock type 2 (Dynlrb2) knockdown significantly decreases MLV infection compared to nonsilenced cells, suggesting a functional association between this dynein light chain and MLV preintegration complex (PIC). In this study, we aimed to determine if the dynein complex Dynlrb2 subunit plays an essential role in the retrograde transport of MLV. For this, an MLV mutant containing the green fluorescent protein (GFP) fused to the viral protein p12 was used to assay the PIC localization and speed in cells in which the expression of Dynlrb2 was modulated. We found a significant decrease in the arrival of MLV PIC to the nucleus and a reduced net speed of MLV PICs when Dynlrb2 was knocked down. In contrast, an increase in nuclear localization was observed when Dynlrb2 was overexpressed. Our results suggest that Dynlrb2 plays an essential role in MLV retrograde transport. IMPORTANCE Different viruses use different components of cytoplasmic dynein complex to traffic to their replication site. We have found that murine leukemia virus (MLV) depends on dynein light-chain Dynlrb2 for infection, retrograde traffic, and nuclear entry. Our study provides new information regarding the molecular requirements for retrograde transport of MLV preintegration complex and demonstrates the essential role of Dynlrb2 in MLV infection.
Collapse
|
7
|
Borrenberghs D, Zurnic I, De Wit F, Acke A, Dirix L, Cereseto A, Debyser Z, Hendrix J. Post-mitotic BET-induced reshaping of integrase quaternary structure supports wild-type MLV integration. Nucleic Acids Res 2019; 47:1195-1210. [PMID: 30445610 PMCID: PMC6379647 DOI: 10.1093/nar/gky1157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 10/28/2018] [Accepted: 10/30/2018] [Indexed: 12/29/2022] Open
Abstract
The Moloney murine leukemia virus (MLV) is a prototype gammaretrovirus requiring nuclear disassembly before DNA integration. In the nucleus, integration site selection towards promoter/enhancer elements is mediated by the host factor bromo- and extraterminal domain (BET) proteins (bromodomain (Brd) proteins 2, 3 and 4). MLV-based retroviral vectors are used in gene therapy trials. In some trials leukemia occurred through integration of the MLV vector in close proximity to cellular oncogenes. BET-mediated integration is poorly understood and the nature of integrase oligomers heavily debated. Here, we created wild-type infectious MLV vectors natively incorporating fluorescent labeled IN and performed single-molecule intensity and Förster resonance energy transfer experiments. The nuclear localization of the MLV pre-integration complex neither altered the IN content, nor its quaternary structure. Instead, BET-mediated interaction of the MLV intasome with chromatin in the post-mitotic nucleus reshaped its quaternary structure.
Collapse
Affiliation(s)
- Doortje Borrenberghs
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.,Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Kapucijnenvoer 33, B-3000 Leuven, Flanders, Belgium
| | - Irena Zurnic
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Kapucijnenvoer 33, B-3000 Leuven, Flanders, Belgium
| | - Flore De Wit
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Kapucijnenvoer 33, B-3000 Leuven, Flanders, Belgium
| | - Aline Acke
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Lieve Dirix
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.,Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Kapucijnenvoer 33, B-3000 Leuven, Flanders, Belgium
| | - Anna Cereseto
- Center for Integrative Biology (CIBIO), University of Trento, I-38123 Trento, Italy
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Kapucijnenvoer 33, B-3000 Leuven, Flanders, Belgium
| | - Jelle Hendrix
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.,Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute (BIOMED), Hasselt University, Agoralaan C, B-3590 Diepenbeek, Belgium
| |
Collapse
|
8
|
Wanaguru M, Barry DJ, Benton DJ, O’Reilly NJ, Bishop KN. Murine leukemia virus p12 tethers the capsid-containing pre-integration complex to chromatin by binding directly to host nucleosomes in mitosis. PLoS Pathog 2018; 14:e1007117. [PMID: 29906285 PMCID: PMC6021111 DOI: 10.1371/journal.ppat.1007117] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/27/2018] [Accepted: 05/22/2018] [Indexed: 12/31/2022] Open
Abstract
The murine leukaemia virus (MLV) Gag cleavage product, p12, is essential for both early and late steps in viral replication. The N-terminal domain of p12 binds directly to capsid (CA) and stabilises the mature viral core, whereas defects in the C-terminal domain (CTD) of p12 can be rescued by addition of heterologous chromatin binding sequences (CBSs). We and others hypothesised that p12 tethers the pre-integration complex (PIC) to host chromatin ready for integration. Using confocal microscopy, we have observed for the first time that CA localises to mitotic chromatin in infected cells in a p12-dependent manner. GST-tagged p12 alone, however, did not localise to chromatin and mass-spectrometry analysis of its interactions identified only proteins known to bind the p12 region of Gag. Surprisingly, the ability to interact with chromatin was conferred by a single amino acid change, M63I, in the p12 CTD. Interestingly, GST-p12_M63I showed increased phosphorylation in mitosis relative to interphase, which correlated with an increased interaction with mitotic chromatin. Mass-spectrometry analysis of GST-p12_M63I revealed nucleosomal histones as primary interactants. Direct binding of MLV p12_M63I peptides to histones was confirmed by biolayer-interferometry (BLI) assays using highly-avid recombinant poly-nucleosomal arrays. Excitingly, using this method, we also observed binding between MLV p12_WT and nucleosomes. Nucleosome binding was additionally detected with p12 orthologs from feline and gibbon ape leukemia viruses using both pull-down and BLI assays, indicating that this a common feature of gammaretroviral p12 proteins. Importantly, p12 peptides were able to block the binding of the prototypic foamy virus CBS to nucleosomes and vice versa, implying that their docking sites overlap and suggesting a conserved mode of chromatin tethering for different retroviral genera. We propose that p12 is acting in a similar capacity to CPSF6 in HIV-1 infection by facilitating initial chromatin targeting of CA-containing PICs prior to integration.
Collapse
Affiliation(s)
- Madushi Wanaguru
- Retroviral Replication Laboratory, The Francis Crick Institute, London, United Kingdom
| | - David J. Barry
- Advanced Light Microscopy Facility, The Francis Crick Institute, London, United Kingdom
| | - Donald J. Benton
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Kate N. Bishop
- Retroviral Replication Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
9
|
Abstract
The interactions between a retrovirus and host cell chromatin that underlie integration and provirus expression are poorly understood. The prototype foamy virus (PFV) structural protein GAG associates with chromosomes via a chromatin-binding sequence (CBS) located within its C-terminal region. Here, we show that the PFV CBS is essential and sufficient for a direct interaction with nucleosomes and present a crystal structure of the CBS bound to a mononucleosome. The CBS interacts with the histone octamer, engaging the H2A-H2B acidic patch in a manner similar to other acidic patch-binding proteins such as herpesvirus latency-associated nuclear antigen (LANA). Substitutions of the invariant arginine anchor residue in GAG result in global redistribution of PFV and macaque simian foamy virus (SFVmac) integration sites toward centromeres, dampening the resulting proviral expression without affecting the overall efficiency of integration. Our findings underscore the importance of retroviral structural proteins for integration site selection and the avoidance of genomic junkyards.
Collapse
|
10
|
Guan R, Aiyer S, Cote ML, Xiao R, Jiang M, Acton TB, Roth MJ, Montelione GT. X-ray crystal structure of the N-terminal region of Moloney murine leukemia virus integrase and its implications for viral DNA recognition. Proteins 2017; 85:647-656. [PMID: 28066922 DOI: 10.1002/prot.25245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/15/2016] [Accepted: 11/23/2016] [Indexed: 01/26/2023]
Abstract
The retroviral integrase (IN) carries out the integration of a dsDNA copy of the viral genome into the host DNA, an essential step for viral replication. All IN proteins have three general domains, the N-terminal domain (NTD), the catalytic core domain, and the C-terminal domain. The NTD includes an HHCC zinc finger-like motif, which is conserved in all retroviral IN proteins. Two crystal structures of Moloney murine leukemia virus (M-MuLV) IN N-terminal region (NTR) constructs that both include an N-terminal extension domain (NED, residues 1-44) and an HHCC zinc-finger NTD (residues 45-105), in two crystal forms are reported. The structures of IN NTR constructs encoding residues 1-105 (NTR1-105 ) and 8-105 (NTR8-105 ) were determined at 2.7 and 2.15 Å resolution, respectively and belong to different space groups. While both crystal forms have similar protomer structures, NTR1-105 packs as a dimer and NTR8-105 packs as a tetramer in the asymmetric unit. The structure of the NED consists of three anti-parallel β-strands and an α-helix, similar to the NED of prototype foamy virus (PFV) IN. These three β-strands form an extended β-sheet with another β-strand in the HHCC Zn2+ binding domain, which is a unique structural feature for the M-MuLV IN. The HHCC Zn2+ binding domain structure is similar to that in HIV and PFV INs, with variations within the loop regions. Differences between the PFV and MLV IN NEDs localize at regions identified to interact with the PFV LTR and are compared with established biochemical and virological data for M-MuLV. Proteins 2017; 85:647-656. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rongjin Guan
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854.,Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854.,Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854
| | - Sriram Aiyer
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854
| | - Marie L Cote
- Department of Biochemistry, Robert Wood Johnson Medical School, UMDNJ, Piscataway, New Jersey, 08854
| | - Rong Xiao
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854.,Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854.,Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854
| | - Mei Jiang
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854.,Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854.,Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854
| | - Thomas B Acton
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854.,Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854.,Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854
| | - Monica J Roth
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854
| | - Gaetano T Montelione
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854.,Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854.,Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854.,Department of Biochemistry, Robert Wood Johnson Medical School, UMDNJ, Piscataway, New Jersey, 08854
| |
Collapse
|
11
|
Repression of the Chromatin-Tethering Domain of Murine Leukemia Virus p12. J Virol 2016; 90:11197-11207. [PMID: 27707926 DOI: 10.1128/jvi.01084-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/28/2016] [Indexed: 12/28/2022] Open
Abstract
Murine leukemia virus (MLV) p12, encoded within Gag, binds the viral preintegration complex (PIC) to the mitotic chromatin. This acts to anchor the viral PIC in the nucleus as the nuclear envelope re-forms postmitosis. Mutations within the p12 C terminus (p12 PM13 to PM15) block early stages in viral replication. Within the p12 PM13 region (p12 60PSPMA65), our studies indicated that chromatin tethering was not detected when the wild-type (WT) p12 protein (M63) was expressed as a green fluorescent protein (GFP) fusion; however, constructs bearing p12-I63 were tethered. N-terminal truncations of the activated p12-I63-GFP indicated that tethering increased further upon deletion of p12 25DLLTEDPPPY34, which includes the late domain required for viral assembly. The p12 PM15 sequence (p12 70RREPP74) is critical for wild-type viral viability; however, virions bearing the PM15 mutation (p12 70AAAAA74) with a second M63I mutant were viable, with a titer 18-fold lower than that of the WT. The p12 M63I mutation amplified chromatin tethering and compensated for the loss of chromatin binding of p12 PM15. Rescue of the p12-M63-PM15 nonviable mutant with prototype foamy virus (PFV) and Kaposi's sarcoma herpesvirus (KSHV) tethering sequences confirmed the function of p1270-74 in chromatin binding. Minimally, full-strength tethering was seen with only p12 61SPIASRLRGRR71 fused to GFP. These results indicate that the p12 C terminus alone is sufficient for chromatin binding and that the presence of the p12 25DLLTEDPPPY34 motif in the N terminus suppresses the ability to tether. IMPORTANCE This study defines a regulatory mechanism controlling the differential roles of the MLV p12 protein in early and late replication. During viral assembly and egress, the late domain within the p12 N terminus functions to bind host vesicle release factors. During viral entry, the C terminus of p12 is required for tethering to host mitotic chromosomes. Our studies indicate that the p12 domain including the PPPY late sequence temporally represses the p12 chromatin tethering motif. Maximal p12 tethering was identified with only an 11-amino-acid minimal chromatin tethering motif encoded at p1261-71 Within this region, the p12-M63I substitution switches p12 into a tethering-competent state, partially rescuing the p12-PM15 tethering mutant. A model for how this conformational change regulates early versus late functions is presented.
Collapse
|
12
|
Phosphorylation Requirement of Murine Leukemia Virus p12. J Virol 2016; 90:11208-11219. [PMID: 27707931 DOI: 10.1128/jvi.01178-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/28/2016] [Indexed: 11/20/2022] Open
Abstract
The p12 protein of murine leukemia virus (MLV) Gag is associated with the preintegration complex (PIC), and mutants of p12 (PM14) exhibit defects in nuclear entry/retention. Mutants of the phosphorylated serine 61 also have been reported to have defects in the early life cycle. Here we show that a phosphorylated peptide motif derived from human papillomavirus 8 (HPV-8), the E2 hinge region including residues 240 to 255, can functionally replace the main phosphorylated motif of MLV p12 and can rescue the viral titer of a strain with the lethal p12-PM14 mutation. Complementation with the HPV-8 E2 hinge motif generated multiple second-site mutations in live viral passage assays. Additional p12 phosphorylation sites were detected, including the late domain of p12 (PPPY) as well as the late domain/protease cleavage site of matrix (LYPAL), by mass spectrometry and Western blotting. Chromatin binding of p12-green fluorescent protein (GFP) fusion protein and functional complementation of p12-PM14 occurred in a manner independent of the E2 hinge region phosphorylation. Replacement of serine 61 by alanine within the minimal tethering domain (61SPMASRLRGRR71) maintained tethering, but in the context of the full-length p12, mutants with substitutions in S61 remained untethered and lost infectivity, indicating phosphorylation of p12 serine 61 functions to temporally regulate early and late p12 functions. IMPORTANCE The p12 protein, required for both early and late viral functions, is the predominant phosphorylated viral protein of Moloney MLV and is required for virus viability. Our studies indicate that the N terminus of p12 represses the early function of the chromatin binding domain and that deletion of the N terminus activates chromatin binding in the wild-type Moloney MLV p12 protein. Mass spectrometry and mutagenesis studies suggest that phosphorylation of both the repression domain and the chromatin binding domain acts to temporally regulate this process at the appropriate stages during infection.
Collapse
|
13
|
Functional Interplay Between Murine Leukemia Virus Glycogag, Serinc5, and Surface Glycoprotein Governs Virus Entry, with Opposite Effects on Gammaretroviral and Ebolavirus Glycoproteins. mBio 2016; 7:mBio.01985-16. [PMID: 27879338 PMCID: PMC5120145 DOI: 10.1128/mbio.01985-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gammaretroviruses, such as murine leukemia viruses (MLVs), encode, in addition to the canonical Gag, Pol, and Env proteins that will form progeny virus particles, a protein called “glycogag” (glycosylated Gag). MLV glycogag contains the entire Gag sequence plus an 88-residue N-terminal extension. It has recently been reported that glycogag, like the Nef protein of HIV-1, counteracts the antiviral effects of the cellular protein Serinc5. We have found, in agreement with prior work, that glycogag strongly enhances the infectivity of MLVs with some Env proteins but not those with others. In contrast, however, glycogag was detrimental to MLVs carrying Ebolavirus glycoprotein. Glycogag could be replaced, with respect to viral infectivity, by the unrelated S2 protein of equine infectious anemia virus. We devised an assay for viral entry in which virus particles deliver the Cre recombinase into cells, leading to the expression of a reporter. Data from this assay showed that both the positive and the negative effects of glycogag and S2 upon MLV infectivity are exerted at the level of virus entry. Moreover, transfection of the virus-producing cells with a Serinc5 expression plasmid reduced the infectivity and entry capability of MLV carrying xenotropic MLV Env, particularly in the absence of glycogag. Conversely, Serinc5 expression abrogated the negative effects of glycogag upon the infectivity and entry capability of MLV carrying Ebolavirus glycoprotein. As Serinc5 may influence cellular phospholipid metabolism, it seems possible that all of these effects on virus entry derive from changes in the lipid composition of viral membranes. Many murine leukemia viruses (MLVs) encode a protein called “glycogag.” The function of glycogag is not fully understood, but it can assist HIV-1 replication in the absence of the HIV-1 protein Nef under some circumstances. In turn, Nef counteracts the cellular protein Serinc5. Glycogag enhances the infectivity of MLVs with some but not all MLV Env proteins (which mediate viral entry into the host cell upon binding to cell surface receptors). We now report that glycogag acts by enhancing viral entry and that, like Nef, glycogag antagonizes Serinc5. Surprisingly, the effects of glycogag and Serinc5 upon the entry and infectivity of MLV particles carrying an Ebolavirus glycoprotein are the opposite of those observed with the MLV Env proteins. The unrelated S2 protein of equine infectious anemia virus (EIAV) is functionally analogous to glycogag in our experiments. Thus, three retroviruses (HIV-1, MLV, and EIAV) have independently evolved accessory proteins that counteract Serinc5.
Collapse
|
14
|
Valle-Tenney R, Opazo T, Cancino J, Goff SP, Arriagada G. Dynein Regulators Are Important for Ecotropic Murine Leukemia Virus Infection. J Virol 2016; 90:6896-6905. [PMID: 27194765 PMCID: PMC4944281 DOI: 10.1128/jvi.00863-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/12/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED During the early steps of infection, retroviruses must direct the movement of the viral genome into the nucleus to complete their replication cycle. This process is mediated by cellular proteins that interact first with the reverse transcription complex and later with the preintegration complex (PIC), allowing it to reach and enter the nucleus. For simple retroviruses, such as murine leukemia virus (MLV), the identities of the cellular proteins involved in trafficking of the PIC in infection are unknown. To identify cellular proteins that interact with the MLV PIC, we developed a replication-competent MLV in which the integrase protein was tagged with a FLAG epitope. Using a combination of immunoprecipitation and mass spectrometry, we established that the microtubule motor dynein regulator DCTN2/p50/dynamitin interacts with the MLV preintegration complex early in infection, suggesting a direct interaction between the incoming viral particles and the dynein complex regulators. Further experiments showed that RNA interference (RNAi)-mediated silencing of either DCTN2/p50/dynamitin or another dynein regulator, NudEL, profoundly reduced the efficiency of infection by ecotropic, but not amphotropic, MLV reporters. We propose that the cytoplasmic dynein regulators are a critical component of the host machinery needed for infection by the retroviruses entering the cell via the ecotropic envelope pathway. IMPORTANCE Retroviruses must access the chromatin of host cells to integrate the viral DNA, but before this crucial event, they must reach the nucleus. The movement through the cytoplasm-a crowded environment where diffusion is slow-is thought to utilize retrograde transport along the microtubule network by the dynein complex. Different viruses use different components of this multisubunit complex. We found that the preintegration complex of murine leukemia virus (MLV) interacts with the dynein complex and that regulators of this complex are essential for infection. Our study provides the first insight into the requirements for retrograde transport of the MLV preintegration complex.
Collapse
Affiliation(s)
- Roger Valle-Tenney
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Viña del Mar, Chile
| | - Tatiana Opazo
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Viña del Mar, Chile
| | - Jorge Cancino
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Viña del Mar, Chile
| | - Stephen P Goff
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, New York, USA
| | - Gloria Arriagada
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Viña del Mar, Chile
| |
Collapse
|
15
|
Tang X, Zhu Y, Baker SL, Bowler MW, Chen BJ, Chen C, Hogg JR, Goff SP, Song H. Structural basis of suppression of host translation termination by Moloney Murine Leukemia Virus. Nat Commun 2016; 7:12070. [PMID: 27329342 PMCID: PMC4917968 DOI: 10.1038/ncomms12070] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 05/25/2016] [Indexed: 01/24/2023] Open
Abstract
Retroviral reverse transcriptase (RT) of Moloney murine leukemia virus (MoMLV) is expressed in the form of a large Gag–Pol precursor protein by suppression of translational termination in which the maximal efficiency of stop codon read-through depends on the interaction between MoMLV RT and peptidyl release factor 1 (eRF1). Here, we report the crystal structure of MoMLV RT in complex with eRF1. The MoMLV RT interacts with the C-terminal domain of eRF1 via its RNase H domain to sterically occlude the binding of peptidyl release factor 3 (eRF3) to eRF1. Promotion of read-through by MoMLV RNase H prevents nonsense-mediated mRNA decay (NMD) of mRNAs. Comparison of our structure with that of HIV RT explains why HIV RT cannot interact with eRF1. Our results provide a mechanistic view of how MoMLV manipulates the host translation termination machinery for the synthesis of its own proteins. Retroviral reverse transcriptase from Moloney Murine Leukemia Virus (MoMLV) requires interaction with peptidyl release factor 1. Here, the authors report the crystal structure of this complex, and provide insights into how MoMLV uses the host translation machinery to synthesize its own proteins.
Collapse
Affiliation(s)
- Xuhua Tang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Yiping Zhu
- Department of Biochemistry and Molecular Biophysics, Columbia University, HHSC 1310C, 701 West 168th Street, New York, New York 10032, USA.,Howard Hughes Medical Institute, Columbia University, HHSC 1310C, 701 West 168th Street, New York, NY 10032, USA
| | - Stacey L Baker
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Bethesda, Maryland 20892, USA
| | - Matthew W Bowler
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, Grenoble F-38042, France.,Unit of Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, 71 Avenue des Martyrs, CS 90181, Grenoble F-38042, France
| | - Benjamin Jieming Chen
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Chen Chen
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - J Robert Hogg
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Bethesda, Maryland 20892, USA
| | - Stephen P Goff
- Department of Biochemistry and Molecular Biophysics, Columbia University, HHSC 1310C, 701 West 168th Street, New York, New York 10032, USA.,Howard Hughes Medical Institute, Columbia University, HHSC 1310C, 701 West 168th Street, New York, NY 10032, USA
| | - Haiwei Song
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.,Life Sciences Institute, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058, China.,Department of Biochemistry, National University of Singapore, 14 Science Drive, Singapore 117543, Singapore
| |
Collapse
|
16
|
Abstract
UNLABELLED Tilapia are an important global food source due to their omnivorous diet, tolerance for high-density aquaculture, and relative disease resistance. Since 2009, tilapia aquaculture has been threatened by mass die-offs in farmed fish in Israel and Ecuador. Here we report evidence implicating a novel orthomyxo-like virus in these outbreaks. The tilapia lake virus (TiLV) has a 10-segment, negative-sense RNA genome. The largest segment, segment 1, contains an open reading frame with weak sequence homology to the influenza C virus PB1 subunit. The other nine segments showed no homology to other viruses but have conserved, complementary sequences at their 5' and 3' termini, consistent with the genome organization found in other orthomyxoviruses. In situ hybridization indicates TiLV replication and transcription at sites of pathology in the liver and central nervous system of tilapia with disease. IMPORTANCE The economic impact of worldwide trade in tilapia is estimated at $7.5 billion U.S. dollars (USD) annually. The infectious agent implicated in mass tilapia die-offs in two continents poses a threat to the global tilapia industry, which not only provides inexpensive dietary protein but also is a major employer in the developing world. Here we report characterization of the causative agent as a novel orthomyxo-like virus, tilapia lake virus (TiLV). We also describe complete genomic and protein sequences that will facilitate TiLV detection and containment and enable vaccine development.
Collapse
|
17
|
Aydin I, Schelhaas M. Viral Genome Tethering to Host Cell Chromatin: Cause and Consequences. Traffic 2016; 17:327-40. [PMID: 26787361 DOI: 10.1111/tra.12378] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 12/26/2022]
Abstract
Viruses are small infectious agents that replicate in cells of a host organism and that evolved to use cellular machineries for all stages of the viral life cycle. Here, we critically assess current knowledge on a particular mechanism of persisting viruses, namely, how they tether their genomes to host chromatin, and what consequences arise from this process. A group of persisting DNA viruses, i.e. gamma-herpesviruses and papillomaviruses (PV), uses this tethering strategy to maintain their genomes in the nuclei during cell division. Thus, these viruses face the challenge of viral genome loss during mitosis, as they are transported with the host chromosomes to the nascent daughter nuclei. Incidentally, another group of viruses, certain retroviruses and PV, have adopted this tethering strategy to deliver their genomes into the nuclei of dividing cells during cell entry. By exploiting a phase in the cell cycle when the nuclear envelope is disassembled, viruses bypass the need to engage with the nuclear import machinery. Recent reports suggest that tethering may induce severe cellular consequences that involve activation of mitotic checkpoints, causing missegregation of host chromosomes and genomic instability, which may contribute to cancer.
Collapse
Affiliation(s)
- Inci Aydin
- Cell Biology of Virus Infection Unit, Institutes of Molecular Virology and Medical Biochemistry, ZMBE, University of Münster, Münster, Germany.,Cells in Motion, CiM, Cluster of Excellence EXC 1003, Münster, Germany
| | - Mario Schelhaas
- Cell Biology of Virus Infection Unit, Institutes of Molecular Virology and Medical Biochemistry, ZMBE, University of Münster, Münster, Germany.,Cells in Motion, CiM, Cluster of Excellence EXC 1003, Münster, Germany
| |
Collapse
|
18
|
Elis E, Ehrlich M, Bacharach E. Dynamics and restriction of murine leukemia virus cores in mitotic and interphase cells. Retrovirology 2015; 12:95. [PMID: 26577111 PMCID: PMC4650138 DOI: 10.1186/s12977-015-0220-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/22/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Murine leukemia viruses (MLVs) naturally infect unsynchronized T and B lymphocytes, thus, the incoming virus encounters both interphase and mitotic cells. While it is well accepted that MLV requires cell division to complete its replication cycle, it is not known if ab initio infection of mitotic cells can result in productive infection. This question is highly relevant since the milieu of mitotic cells is markedly different from this of interphase cells; e.g. lacking radial microtubule network and intact nuclear envelope. To follow MLV infection in mitotic and interphase cells in real-time, we employed our recently developed infectious MLV particles with labeled cores, cellular models expressing fluorescence markers of different intracellular compartments and protocols for reversible mitotic arrest of MLV-susceptible cells. RESULTS Multi-wavelength live cell imaging was employed to simultaneously visualize GFP-labeled MLV cores, DiD-labeled viral or cellular membranes, and fluorescently-labeled microtubules or chromosomes. Cells were imaged either at interphase or upon mitotic arrest with microtubule poisons. Analysis of virus localization and trajectories revealed entry by endocytosis at interphase and mitosis, and correlation between viral mobility parameters and presence or absence of polymerized interphase microtubules. The success of infection of viruses that entered cells in mitosis was evidenced by their ability to reverse transcribe, their targeting to condensed chromosomes in the absence of radial microtubule network, and gene expression upon exit from mitosis. Comparison of infection by N, B or NB -tropic viruses in interphase and mitotic human cells revealed reduced restriction of the N-tropic virus, for infection initiated in mitosis. CONCLUSIONS The milieu of the mitotic cells supports all necessary requirements for early stages of MLV infection. Such milieu is suboptimal for restriction of N-tropic viruses, most likely by TRIM5α.
Collapse
Affiliation(s)
- Efrat Elis
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Eran Bacharach
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
19
|
Rice BL, Kaddis RJ, Stake MS, Lochmann TL, Parent LJ. Interplay between the alpharetroviral Gag protein and SR proteins SF2 and SC35 in the nucleus. Front Microbiol 2015; 6:925. [PMID: 26441864 PMCID: PMC4562304 DOI: 10.3389/fmicb.2015.00925] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 08/21/2015] [Indexed: 01/27/2023] Open
Abstract
Retroviruses are positive-sense, single-stranded RNA viruses that reverse transcribe their RNA genomes into double-stranded DNA for integration into the host cell chromosome. The integrated provirus is used as a template for the transcription of viral RNA. The full-length viral RNA can be used for the translation of the Gag and Gag-Pol structural proteins or as the genomic RNA (gRNA) for encapsidation into new virions by the Gag protein. The mechanism by which Gag selectively incorporates unspliced gRNA into virus particles is poorly understood. Although Gag was previously thought to localize exclusively to the cytoplasm and plasma membrane where particles are released, we found that the Gag protein of Rous sarcoma virus, an alpharetrovirus, undergoes transient nuclear trafficking. When the nuclear export signal of RSV Gag is mutated (Gag.L219A), the protein accumulates in discrete subnuclear foci reminiscent of nuclear bodies such as splicing speckles, paraspeckles, and PML bodies. In this report, we observed that RSV Gag.L219A foci appeared to be tethered in the nucleus, partially co-localizing with the splicing speckle components SC35 and SF2. Overexpression of SC35 increased the number of Gag.L219A nucleoplasmic foci, suggesting that SC35 may facilitate the formation of Gag foci. We previously reported that RSV Gag nuclear trafficking is required for efficient gRNA packaging. Together with the data presented herein, our findings raise the intriguing hypothesis that RSV Gag may co-opt splicing factors to localize near transcription sites. Because splicing occurs co-transcriptionally, we speculate that this mechanism could allow Gag to associate with unspliced viral RNA shortly after its transcription initiation in the nucleus, before the viral RNA can be spliced or exported from the nucleus as an mRNA template.
Collapse
Affiliation(s)
- Breanna L Rice
- Division of Infectious Diseases and Epidemiology, Department of Medicine, Penn State College of Medicine Hershey, PA, USA
| | - Rebecca J Kaddis
- Division of Infectious Diseases and Epidemiology, Department of Medicine, Penn State College of Medicine Hershey, PA, USA
| | - Matthew S Stake
- Division of Infectious Diseases and Epidemiology, Department of Medicine, Penn State College of Medicine Hershey, PA, USA
| | - Timothy L Lochmann
- Department of Microbiology and Immunology, Penn State College of Medicine Hershey, PA, USA
| | - Leslie J Parent
- Division of Infectious Diseases and Epidemiology, Department of Medicine, Penn State College of Medicine Hershey, PA, USA ; Department of Microbiology and Immunology, Penn State College of Medicine Hershey, PA, USA
| |
Collapse
|
20
|
Abstract
Retroviruses and LTR retrotransposons are transposable elements that encapsidate the RNAs that are intermediates in the transposition of DNA copies of their genomes (proviruses), from one cell (or one locus) to another. Mechanistic similarities in DNA transposase enzymes and retroviral/retrotransposon integrases underscore the close evolutionary relationship among these elements. The retroviruses are very ancient infectious agents, presumed to have evolved from Ty3/Gypsy LTR retrotransposons (1), and DNA copies of their sequences can be found embedded in the genomes of most, if not all, members of the tree of life. All retroviruses share a specific gene arrangement and similar replication strategies. However, given their ancestries and occupation of diverse evolutionary niches, it should not be surprising that unique sequences have been acquired in some retroviral genomes and that the details of the mechanism by which their transposition is accomplished can vary. While every step in the retrovirus lifecycle is, in some sense, relevant to transposition, this Chapter focuses mainly on the early phase of retroviral replication, during which viral DNA is synthesized and integrated into its host genome. Some of the initial studies that set the stage for current understanding are highlighted, as well as more recent findings obtained through use of an ever-expanding technological toolbox including genomics, proteomics, and siRNA screening. Persistence in the area of structural biology has provided new insight into conserved mechanisms as well as variations in detail among retroviruses, which can also be instructive.
Collapse
Affiliation(s)
- Anna Marie Skalka
- Fox Chase Cancer Center 333 Cottman Avenue Philadelphia, PA 19111 United States 2157282192 2157282778 (fax)
| |
Collapse
|
21
|
The N-terminus of murine leukaemia virus p12 protein is required for mature core stability. PLoS Pathog 2014; 10:e1004474. [PMID: 25356837 PMCID: PMC4214797 DOI: 10.1371/journal.ppat.1004474] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/15/2014] [Indexed: 12/02/2022] Open
Abstract
The murine leukaemia virus (MLV) gag gene encodes a small protein called p12 that is essential for the early steps of viral replication. The N- and C-terminal regions of p12 are sequentially acting domains, both required for p12 function. Defects in the C-terminal domain can be overcome by introducing a chromatin binding motif into the protein. However, the function of the N-terminal domain remains unknown. Here, we undertook a detailed analysis of the effects of p12 mutation on incoming viral cores. We found that both reverse transcription complexes and isolated mature cores from N-terminal p12 mutants have altered capsid complexes compared to wild type virions. Electron microscopy revealed that mature N-terminal p12 mutant cores have different morphologies, although immature cores appear normal. Moreover, in immunofluorescent studies, both p12 and capsid proteins were lost rapidly from N-terminal p12 mutant viral cores after entry into target cells. Importantly, we determined that p12 binds directly to the MLV capsid lattice. However, we could not detect binding of an N-terminally altered p12 to capsid. Altogether, our data imply that p12 stabilises the mature MLV core, preventing premature loss of capsid, and that this is mediated by direct binding of p12 to the capsid shell. In this manner, p12 is also retained in the pre-integration complex where it facilitates tethering to mitotic chromosomes. These data also explain our previous observations that modifications to the N-terminus of p12 alter the ability of particles to abrogate restriction by TRIM5alpha and Fv1, factors that recognise viral capsid lattices. All retroviral genomes contain a gag gene that codes for the Gag polyprotein. Gag is cleaved upon viral maturation to release individual proteins, including matrix, capsid and nucleocapsid, providing the structural components of the virion. In murine leukaemia virus (MLV), Gag cleavage releases an additional protein, named p12, required for both early and late stages of the viral life cycle. The role of p12 during early events is poorly understood, and it is the only MLV protein without a function-associated name. Here, we show that p12 binds to the capsid shell of the viral core and stabilises it. Mutations that give rise to N-terminally altered p12 proteins result in a rapid loss of both p12 and capsid from viral cores, leading to abnormal core morphologies and abolishing the ability of particles to abrogate restriction by cellular factors that target viral capsid lattices. Understanding how the mature retroviral core forms and how it disassembles during infection is important as this determines the infectivity of all retroviruses, including HIV-1. Furthermore, altering core stability has recently become a novel target for HIV-1 therapeutics.
Collapse
|
22
|
Viral and cellular requirements for the nuclear entry of retroviral preintegration nucleoprotein complexes. Viruses 2013; 5:2483-511. [PMID: 24103892 PMCID: PMC3814599 DOI: 10.3390/v5102483] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/26/2013] [Accepted: 10/03/2013] [Indexed: 02/07/2023] Open
Abstract
Retroviruses integrate their reverse transcribed genomes into host cell chromosomes as an obligate step in virus replication. The nuclear envelope separates the chromosomes from the cell cytoplasm during interphase, and different retroviral groups deal with this physical barrier in different ways. Gammaretroviruses are dependent on the passage of target cells through mitosis, where they are believed to access chromosomes when the nuclear envelope dissolves for cell division. Contrastingly, lentiviruses such as HIV-1 infect non-dividing cells, and are believed to enter the nucleus by passing through the nuclear pore complex. While numerous virally encoded elements have been proposed to be involved in HIV-1 nuclear import, recent evidence has highlighted the importance of HIV-1 capsid. Furthermore, capsid was found to be responsible for the viral requirement of various nuclear transport proteins, including transportin 3 and nucleoporins NUP153 and NUP358, during infection. In this review, we describe our current understanding of retroviral nuclear import, with emphasis on recent developments on the role of the HIV-1 capsid protein.
Collapse
|
23
|
Labokha AA, Fassati A. Viruses challenge selectivity barrier of nuclear pores. Viruses 2013; 5:2410-23. [PMID: 24084236 PMCID: PMC3814595 DOI: 10.3390/v5102410] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 01/04/2023] Open
Abstract
Exchange between the nucleus and the cytoplasm occurs through nuclear pore complexes (NPCs) embedded in the double membrane of the nuclear envelope. NPC permeability barrier restricts the entry of inert molecules larger than 5 nm in diameter but allows facilitated entry of selected cargos, whose size can reach up to 39 nm. The translocation of large molecules is facilitated by nuclear transport receptors (NTRs) that have affinity to proteins of NPC permeability barrier. Viruses that enter the nucleus replicate evolved strategies to overcome this barrier. In this review, we will discuss the functional principles of NPC barrier and nuclear transport machinery, as well as the various strategies viruses use to cross the selective barrier of NPCs.
Collapse
Affiliation(s)
- Aksana A. Labokha
- Authors to whom correspondence should be addressed; E-Mails: (A.A.L.); (A.F.); Tel.: (+44(0)2031082141); Fax: (+44(0)2031082123); Tel.: (+44(0)2031082138); Fax: (+44(0)2031082123)
| | - Ariberto Fassati
- Authors to whom correspondence should be addressed; E-Mails: (A.A.L.); (A.F.); Tel.: (+44(0)2031082141); Fax: (+44(0)2031082123); Tel.: (+44(0)2031082138); Fax: (+44(0)2031082123)
| |
Collapse
|
24
|
New insights in the role of nucleoporins: a bridge leading to concerted steps from HIV-1 nuclear entry until integration. Virus Res 2013; 178:187-96. [PMID: 24051001 DOI: 10.1016/j.virusres.2013.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/01/2013] [Accepted: 09/02/2013] [Indexed: 11/22/2022]
Abstract
Human Immunodeficiency virus type 1 (HIV-1), as well as many other viruses that depend on nuclear entry for replication, has developed an evolutionary strategy to dock and translocate through the nuclear pore complex (NPC). In particular, the nuclear pore is not a static window but it is a dynamic structure involved in many vital cellular functions, as nuclear import/export, gene regulation, chromatin organization and genome stability. This review aims to shed light on viral mechanisms developed by HIV-1 to usurp cellular machinery to favor viral gene expression and their replication. In particular, it will be reviewed both what is known and what is speculated about the link between HIV translocation through the nuclear pore and the proviral integration in the host chromatin.
Collapse
|
25
|
Murine leukemia virus p12 functions include hitchhiking into the nucleus. Proc Natl Acad Sci U S A 2013; 110:9195-6. [PMID: 23708120 DOI: 10.1073/pnas.1307399110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
26
|
Viral DNA tethering domains complement replication-defective mutations in the p12 protein of MuLV Gag. Proc Natl Acad Sci U S A 2013; 110:9487-92. [PMID: 23661057 DOI: 10.1073/pnas.1221736110] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The p12 protein of murine leukemia virus (MuLV) group-specific antigen (Gag) is associated with the preintegration complex, and mutants of p12 (PM14) show defects in nuclear entry or retention. Here we show that p12 proteins engineered to encode peptide sequences derived from known viral tethering proteins can direct chromatin binding during the early phase of viral replication and rescue a lethal p12-PM14 mutant. Peptides studied included segments of Kaposi sarcoma herpesvirus latency-associated nuclear antigen (LANA)(1-23), human papillomavirus 8 E2, and prototype foamy virus chromatin-binding sequences. Amino acid substitutions in Kaposi sarcoma herpesvirus LANA and prototype foamy virus chromatin-binding sequences that blocked nucleosome association failed to rescue MuLV p12-PM14. Rescue by a larger LANA peptide, LANA(1-32), required second-site mutations that are predicted to reduce peptide binding affinity to chromosomes, suggesting that excessively high binding affinity interfered with Gag/p12 function. This is supported by confocal microscopy of chimeric p12-GFP fusion constructs showing the reverted proteins had weaker association to condensed mitotic chromosomes. Analysis of the integration-site selection of these chimeric viruses showed no significant change in integration profile compared with wild-type MuLV, suggesting release of the tethered p12 post mitosis, before viral integration.
Collapse
|
27
|
Andersen KB. The retrovirus MA and PreTM proteins follow immature MLV cores. Virus Res 2013; 175:134-42. [PMID: 23643491 DOI: 10.1016/j.virusres.2013.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/17/2013] [Accepted: 04/17/2013] [Indexed: 10/26/2022]
Abstract
We have used mild detergent to analyze the core of Moloney Murine Leukemia Virus (MoMLV) and core-like complexes in infected cells. The immature core consists of the Gag polyprotein (PrGag) and viral RNA (vRNA). It is known to be detergent-resistant, in contrast to the mature Gag core. The core matures by cleavage of PrGag into MA (matrix), p12, CA (capsid) and NC (nucleocapsid) protein. We found that mature Gag proteins were bound to the PrGag cores. The degree of binding differed widely. No (<0.1%) p12 bound, low amount of CA (3-5%), and higher amount of MA (13-20%) bound. Varying NC was bound (5-15%). NC could be released by RNase A in agreement with its binding to viral RNA. The TM (transmembrane) protein was also examined. A low amount of TM was bound to the PrGag core (approximately 5%), whereas a very high amount (65%) of the PreTM (TM with the cytoplasmic R peptide tail) bound. The binding in the PrGag core appears to occur by direct protein-protein interactions as only minute amounts of lipids including raft lipids were observed after detergent treatment.
Collapse
Affiliation(s)
- Klaus B Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK2100 Copenhagen, Denmark.
| |
Collapse
|
28
|
Elis E, Ehrlich M, Prizan-Ravid A, Laham-Karam N, Bacharach E. p12 tethers the murine leukemia virus pre-integration complex to mitotic chromosomes. PLoS Pathog 2012; 8:e1003103. [PMID: 23300449 PMCID: PMC3531515 DOI: 10.1371/journal.ppat.1003103] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 11/09/2012] [Indexed: 01/14/2023] Open
Abstract
The p12 protein of the murine leukemia virus (MLV) is a constituent of the pre-integration complex (PIC) but its function in this complex remains unknown. We developed an imaging system to monitor MLV PIC trafficking in live cells. This allowed the visualization of PIC docking to mitotic chromosomes and its release upon exit from mitosis. Docking occurred concomitantly with nuclear envelope breakdown and was impaired for PICs of viruses with lethal p12 mutations. Insertion of a heterologous chromatin binding module into p12 of one of these mutants restored PICs attachment to the chromosomes and partially rescued virus replication. Capsid dissociated from wild type PICs in mitotic cells but remained associated with PICs harboring tethering-negative p12 mutants. Altogether, these results explain, in part, MLV restriction to dividing cells and reveal a role for p12 as a factor that tethers MLV PIC to mitotic chromosomes. Retroviruses, including the murine leukemia virus (MLV), reverse transcribe their RNA genome to a DNA copy, which travels from the cytoplasm to the nucleus as part of a ‘pre-integration complex’ (PIC), to integrate into cellular chromosomes. The viral p12 protein is a constituent of the MLV PIC, but its function in this complex has remained unknown. We developed a real-time imaging system to detect p12 and MLV PICs in live cells. This revealed that p12 tethers the MLV PIC to mitotic chromosomes. Accordingly, PICs derived from viruses with specific lethal mutations in p12 failed to attach to the chromosomes, and insertion of a heterologous chromatin binding module into p12 restored PICs attachment to the chromosomes and rescued virus replication. In addition, docking of wild type PICs to chromosomes coincided with nuclear envelope breakdown during mitosis, and detachment occurred upon exit from mitosis. Capsid - another viral component of the PIC - dissociated from wild type PICs in mitotic cells but remained associated with PICs harboring tethering-negative p12 mutants, suggesting interplay between these two proteins in regulating targeting of mitotic chromosomes by the PIC. These results highlight steps contributing to the high tropism of MLV to dividing cells.
Collapse
Affiliation(s)
- Efrat Elis
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Adi Prizan-Ravid
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nihay Laham-Karam
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Eran Bacharach
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
29
|
Fassati A. Multiple roles of the capsid protein in the early steps of HIV-1 infection. Virus Res 2012; 170:15-24. [PMID: 23041358 DOI: 10.1016/j.virusres.2012.09.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/10/2012] [Accepted: 09/11/2012] [Indexed: 11/22/2022]
Abstract
The early steps of HIV-1 infection starting after virus entry into cells up to integration of its genome into host chromosomes are poorly understood. From seminal work showing that HIV-1 and oncoretroviruses follow different steps in the early stages post-entry, significant advances have been made in recent years and an important role for the HIV-1 capsid (CA) protein, the constituent of the viral core, has emerged. CA appears to orchestrate several events, such as virus uncoating, recognition by restriction factors and the innate immune system. It also plays a role in nuclear import and integration of HIV-1 and has become a novel target for antiretroviral drugs. Here we describe the different functions of CA and how they may be integrated into one or more coherent models that illuminate the early events in HIV-1 infection and their relations with the host cell.
Collapse
Affiliation(s)
- Ariberto Fassati
- The Wohl Virion Centre and MRC Centre for Medical & Molecular Virology, Division of Infection and Immunity, University College London, Cruciform Building, 90 Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
30
|
Wight DJ, Boucherit VC, Nader M, Allen DJ, Taylor IA, Bishop KN. The gammaretroviral p12 protein has multiple domains that function during the early stages of replication. Retrovirology 2012; 9:83. [PMID: 23035841 PMCID: PMC3492146 DOI: 10.1186/1742-4690-9-83] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 09/19/2012] [Indexed: 01/07/2023] Open
Abstract
Background The Moloney murine leukaemia virus (Mo-MLV) gag gene encodes three main structural proteins, matrix, capsid and nucleocapsid and a protein called p12. In addition to its role during the late stages of infection, p12 has an essential, but undefined, function during early post-entry events. As these stages of retroviral infection remain poorly understood, we set out to investigate the function of p12. Results Examination of the infectivity of Mo-MLV virus-like particles containing a mixture of wild type and mutant p12 revealed that the N- and C-terminal regions of p12 are sequentially acting domains, both required for p12 function, and that the N-terminal activity precedes the C-terminal activity in the viral life cycle. By creating a panel of p12 mutants in other gammaretroviruses, we showed that these domains are conserved in this retroviral genus. We also undertook a detailed mutational analysis of each domain, identifying residues essential for function. These data show that different regions of the N-terminal domain are necessary for infectivity in different gammaretroviruses, in stark contrast to the C-terminal domain where the same region is essential for all viruses. Moreover, chimeras between the p12 proteins of Mo-MLV and gibbon ape leukaemia virus revealed that the C-terminal domains are interchangeable whereas the N-terminal domains are not. Finally, we identified potential functions for each domain. We observed that particles with defects in the N-terminus of p12 were unable to abrogate restriction factors, implying that their cores were impaired. We further showed that defects in the C-terminal domain of p12 could be overcome by introducing a chromatin binding motif into the protein. Conclusions Based on these data, we propose a model for p12 function where the N-terminus of p12 interacts with, and stabilizes, the viral core, allowing the C-terminus of p12 to tether the preintegration complex to host chromatin during mitosis, facilitating integration.
Collapse
Affiliation(s)
- Darren J Wight
- Division of Virology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | |
Collapse
|
31
|
Schneider WM, Wu DT, Amin V, Aiyer S, Roth MJ. MuLV IN mutants responsive to HDAC inhibitors enhance transcription from unintegrated retroviral DNA. Virology 2012; 426:188-96. [PMID: 22365328 DOI: 10.1016/j.virol.2012.01.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 11/12/2011] [Accepted: 01/27/2012] [Indexed: 12/16/2022]
Abstract
For Moloney murine leukemia virus (M-MuLV), sustained viral infections require expression from an integrated provirus. For many applications, non-integrating retroviral vectors have been utilized to avoid the unwanted effects of integration, however, the level of expression from unintegrated DNA is significantly less than that of integrated provirus. We find that unintegrated DNA expression can be increased in the presence of HDAC inhibitors, such as TSA, when applied in combination with integrase (IN) mutations. These mutants include an active site mutation as well as catalytically active INs bearing mutations of K376 in the MuLV C-terminal domain of IN. MuLV IN K376 is homologous to K266 in HIV-1 IN, a known substrate for acetylation. The MuLV IN protein is acetylated by p300 in vitro, however, the effect of HDAC inhibitors on gene expression from unintegrated DNA is not dependent on the acetylation state of MuLV IN K376.
Collapse
Affiliation(s)
- William M Schneider
- University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | | | | | | | | |
Collapse
|
32
|
Symens N, Soenen SJ, Rejman J, Braeckmans K, De Smedt SC, Remaut K. Intracellular partitioning of cell organelles and extraneous nanoparticles during mitosis. Adv Drug Deliv Rev 2012; 64:78-94. [PMID: 22210278 DOI: 10.1016/j.addr.2011.11.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/21/2011] [Accepted: 11/23/2011] [Indexed: 02/06/2023]
Abstract
The nucleocytoplasmic partitioning of nanoparticles as a result of cell division is highly relevant to the field of nonviral gene delivery. We reviewed the literature on the intracellular distribution of cell organelles (the endosomal vesicles, Golgi apparatus, endoplasmic reticulum and nucleus), foreign macromolecules (dextrans and plasmid DNA) and inorganic nanoparticles (gold, quantum dot and iron oxide) during mitosis. For nonviral gene delivery particles (lipid- or polymer-based), indirect proof of nuclear entry during mitosis is provided. We also describe how retroviruses and latent DNA viruses take advantage of mitosis to transfer their viral genome and segregate their episomes into the host daughter nuclei. Based on this knowledge, we propose strategies to improve nonviral gene delivery in dividing cells with the ultimate goal of designing nonviral gene delivery systems that are as efficient as their viral counterparts but non-immunogenic, non-oncogenic and easy and inexpensive to prepare.
Collapse
Affiliation(s)
- Nathalie Symens
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicines, Ghent University, Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
33
|
Murine leukemia viruses: objects and organisms. Adv Virol 2011; 2011:403419. [PMID: 22312342 PMCID: PMC3265304 DOI: 10.1155/2011/403419] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 07/25/2011] [Indexed: 01/12/2023] Open
Abstract
Murine leukemia viruses (MLVs) are among the simplest retroviruses. Prototypical gammaretroviruses encode only the three polyproteins that will be used in the assembly of progeny virus particles. These are the Gag polyprotein, which is the structural protein of a retrovirus particle, the Pol protein, comprising the three retroviral enzymes—protease, which catalyzes the maturation of the particle, reverse transcriptase, which copies the viral RNA into DNA upon infection of a new host cell, and integrase, which inserts the DNA into the chromosomal DNA of the host cell, and the Env polyprotein, which induces the fusion of the viral membrane with that of the new host cell, initiating infection. In general, a productive MLV infection has no obvious effect upon host cells. Although gammaretroviral structure and replication follow the same broad outlines as those of other retroviruses, we point out a number of significant differences between different retroviral genera.
Collapse
|
34
|
Gammaretroviral vectors: biology, technology and application. Viruses 2011; 3:677-713. [PMID: 21994751 PMCID: PMC3185771 DOI: 10.3390/v3060677] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/03/2011] [Accepted: 05/09/2011] [Indexed: 12/11/2022] Open
Abstract
Retroviruses are evolutionary optimized gene carriers that have naturally adapted to their hosts to efficiently deliver their nucleic acids into the target cell chromatin, thereby overcoming natural cellular barriers. Here we will review—starting with a deeper look into retroviral biology—how Murine Leukemia Virus (MLV), a simple gammaretrovirus, can be converted into an efficient vehicle of genetic therapeutics. Furthermore, we will describe how more rational vector backbones can be designed and how these so-called self-inactivating vectors can be pseudotyped and produced. Finally, we will provide an overview on existing clinical trials and how biosafety can be improved.
Collapse
|
35
|
Zhang F, Zang T, Wilson SJ, Johnson MC, Bieniasz PD. Clathrin facilitates the morphogenesis of retrovirus particles. PLoS Pathog 2011; 7:e1002119. [PMID: 21738476 PMCID: PMC3128127 DOI: 10.1371/journal.ppat.1002119] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 04/29/2011] [Indexed: 12/20/2022] Open
Abstract
The morphogenesis of retroviral particles is driven by Gag and GagPol proteins that provide the major structural component and enzymatic activities required for particle assembly and maturation. In addition, a number of cellular proteins are found in retrovirus particles; some of these are important for viral replication, but many lack a known functional role. One such protein is clathrin, which is assumed to be passively incorporated into virions due to its abundance at the plasma membrane. We found that clathrin is not only exceptionally abundant in highly purified HIV-1 particles but is recruited with high specificity. In particular, the HIV-1 Pol protein was absolutely required for clathrin incorporation and point mutations in reverse transcriptase or integrase domains of Pol could abolish incorporation. Clathrin was also specifically incorporated into other retrovirus particles, including members of the lentivirus (simian immunodeficiency virus, SIVmac), gammaretrovirus (murine leukemia virus, MLV) and betaretrovirus (Mason-Pfizer monkey virus, M-PMV) genera. However, unlike HIV-1, these other retroviruses recruited clathrin primarily using peptide motifs in their respective Gag proteins that mimicked motifs found in cellular clathrin adaptors. Perturbation of clathrin incorporation into these retroviruses, via mutagenesis of viral proteins, siRNA based clathrin depletion or adaptor protein (AP180) induced clathrin sequestration, had a range of effects on the accuracy of particle morphogenesis. These effects varied according to which retrovirus was examined, and included Gag and/or Pol protein destabilization, inhibition of particle assembly and reduction in virion infectivity. For each retrovirus examined, clathrin incorporation appeared to be important for optimal replication. These data indicate that a number of retroviruses employ clathrin to facilitate the accurate morphogenesis of infectious particles. We propose a model in which clathrin contributes to the spatial organization of Gag and Pol proteins, and thereby regulates proteolytic processing of virion components during particle assembly.
Collapse
Affiliation(s)
- Fengwen Zhang
- Laboratory of Retrovirology, Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York, United States of America
| | - Trinity Zang
- Laboratory of Retrovirology, Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York, United States of America
- Howard Hughes Medical Institute, Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York, United States of America
| | - Sam J. Wilson
- Laboratory of Retrovirology, Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York, United States of America
- Howard Hughes Medical Institute, Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York, United States of America
| | - Marc C. Johnson
- Department of Molecular Microbiology and Immunology, M616 Medical Sciences Building, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Paul D. Bieniasz
- Laboratory of Retrovirology, Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York, United States of America
- Howard Hughes Medical Institute, Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York, United States of America
| |
Collapse
|