1
|
Nishiyama NC, Silverstein S, Darlington K, Kennedy Ng MM, Clough KM, Bauer M, Beasley C, Bharadwaj A, Ganesan R, Kapadia MR, Lau G, Lian G, Rahbar R, Sadiq TS, Schaner MR, Stem J, Friton J, Faubion WA, Sheikh SZ, Furey TS. eQTL in diseased colon tissue identifies novel target genes associated with IBD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618229. [PMID: 39464142 PMCID: PMC11507739 DOI: 10.1101/2024.10.14.618229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Genome-wide association studies (GWAS) have identified over 300 loci associated with the inflammatory bowel diseases (IBD), but putative causal genes for most are unknown. We conducted the largest disease-focused expression quantitative trait loci (eQTL) analysis using colon tissue from 252 IBD patients to determine genetic effects on gene expression and potential contribution to IBD. Combined with two non-IBD colon eQTL studies, we identified 194 potential target genes for 108 GWAS loci. eQTL in IBD tissue were enriched for IBD GWAS loci colocalizations, provided novel evidence for IBD-associated genes such as ABO and TNFRSF14, and identified additional target genes compared to non-IBD tissue eQTL. IBD-associated eQTL unique to diseased tissue had distinct regulatory and functional characteristics with increased effect sizes. Together, these highlight the importance of eQTL studies in diseased tissue for understanding functional consequences of genetic variants, and elucidating molecular mechanisms and regulation of key genes involved in IBD.
Collapse
Affiliation(s)
- Nina C. Nishiyama
- Curriculum in Bioinformatics and Computational Biology, Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for Gastrointestinal Biology and Disease, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sophie Silverstein
- Center for Gastrointestinal Biology and Disease, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kimberly Darlington
- Center for Gastrointestinal Biology and Disease, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Meaghan M. Kennedy Ng
- Curriculum in Bioinformatics and Computational Biology, Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for Gastrointestinal Biology and Disease, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Katelyn M. Clough
- Center for Gastrointestinal Biology and Disease, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mikaela Bauer
- Center for Gastrointestinal Biology and Disease, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Caroline Beasley
- Center for Gastrointestinal Biology and Disease, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Akshatha Bharadwaj
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rajee Ganesan
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Muneera R. Kapadia
- Department of Surgery, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Gwen Lau
- Center for Gastrointestinal Biology and Disease, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Grace Lian
- Center for Gastrointestinal Biology and Disease, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Reza Rahbar
- Department of Surgery, REX Healthcare of Wakefield, Raleigh, North Carolina, USA
| | - Timothy S. Sadiq
- Department of Surgery, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Matthew R. Schaner
- Center for Gastrointestinal Biology and Disease, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jonathan Stem
- Department of Surgery, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jessica Friton
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - William A. Faubion
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Shehzad Z. Sheikh
- Center for Gastrointestinal Biology and Disease, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Terrence S. Furey
- Curriculum in Bioinformatics and Computational Biology, Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for Gastrointestinal Biology and Disease, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Ma H, Fu B, Zhang X, Wang L, Li Z, Liu D. Expression and subcellular localization of HSPC117 in min pig tissues and the PK15 cell line. Technol Health Care 2019; 27:301-306. [PMID: 31045548 PMCID: PMC6598026 DOI: 10.3233/thc-199028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The human hematopoietic stem/progenitor cell 117 (HSPC117) protein is involved in many important biological processes. OBJECTIVE This study was designed to identify the level of HSPC117 mRNA expression in 10 min pig tissue samples and HSPC117 subcellular localization in the PK15 cell line. METHODS In this study, 10 tissue samples of min pigs were collected, and EGFP-HSPC117 vectors were constructed to express EGFP-HSPC117 fusion proteins in PK15 cells. RESULTS HSPC117 mRNA was expressed in all of the tissue samples, although the levels of expression in fat and lung tissues were significantly lower than in other tissues (P< 0.01). After generating and detecting the EGFP-HSPC117 fusion protein, fluorescence was found to be distributed throughout the cytoplasm and nucleus during interphase; however, the fluorescence was concentrated in the nuclear area in mitotic cells. CONCLUSIONS These results indicate that the HSPC117 gene is expressed in many min pig tissues. The HSPC117 protein was distributed throughout the cells during interphase, but was concentrated in the nuclear area in mitotic cells.
Collapse
Affiliation(s)
| | | | - Xu Zhang
- Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Liang Wang
- Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Zhongqiu Li
- Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Di Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| |
Collapse
|
4
|
Lin X, Chen W, Wei F, Zhou BP, Hung MC, Xie X. Nanoparticle Delivery of miR-34a Eradicates Long-term-cultured Breast Cancer Stem Cells via Targeting C22ORF28 Directly. Theranostics 2017; 7:4805-4824. [PMID: 29187905 PMCID: PMC5706101 DOI: 10.7150/thno.20771] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/16/2017] [Indexed: 12/28/2022] Open
Abstract
Rationale: Cancer stem cells (CSCs) have been implicated as the seeds of therapeutic resistance and metastasis, due to their unique abilities of self-renew, wide differentiation potentials and resistance to most conventional therapies. It is a proactive strategy for cancer therapy to eradicate CSCs. Methods: Tumor tissue-derived breast CSCs (BCSC), including XM322 and XM607, were isolated by fluorescence-activated cell sorting (FACS); while cell line-derived BCSC, including MDA-MB-231.SC and MCF-7.SC, were purified by magnetic-activated cell sorting (MACS). Analyses of microRNA and mRNA expression array profiles were performed in multiple breast cell lines. The mentioned nanoparticles were constructed following the standard molecular cloning protocol. Tissue microarray analysis has been used to study 217 cases of clinical breast cancer specimens. Results: Here, we have successfully established four long-term maintenance BCSC that retain their tumor-initiating biological properties. Our analyses of microarray and qRT-PCR explored that miR-34a is the most pronounced microRNA for investigation of BCSC. We establish hTERT promoter-driven VISA delivery of miR-34a (TV-miR-34a) plasmid that can induce high throughput of miR-34a expression in BCSC. TV-miR-34a significantly inhibited the tumor-initiating properties of long-term-cultured BCSC in vitro and reduced the proliferation of BCSC in vivo by an efficient and safe way. TV-miR-34a synergizes with docetaxel, a standard therapy for invasive breast cancer, to act as a BCSC inhibitor. Further mechanistic investigation indicates that TV-miR-34a directly prevents C22ORF28 accumulation, which abrogates clonogenicity and tumor growth and correlates with low miR-34 and high C22ORF28 levels in breast cancer patients. Conclusion: Taken together, we generated four long-term maintenance BCSC derived from either clinical specimens or cell lines, which would be greatly beneficial to the research progress in breast cancer patients. We further developed the non-viral TV-miR-34a plasmid, which has a great potential to be applied as a clinical application for breast cancer therapy.
Collapse
|