1
|
Mokrousov I, Angelova VT, Slavchev I, Bezruchko MV, Dimitrov S, Polev DE, Dobrikov GM, Valcheva V. Genomic Insight into Primary Adaptation of Mycobacterium tuberculosis to Aroylhydrazones and Nitrofuroylamides In Vitro. Antibiotics (Basel) 2025; 14:225. [PMID: 40149037 PMCID: PMC11939388 DOI: 10.3390/antibiotics14030225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: New anti-tuberculosis compounds are needed to treat patients infected with multi- or extensively drug-resistant Mycobacterium tuberculosis strains. Studies based on spontaneous in vitro mutagenesis can provide insights into the possible modes of action and resistance mechanisms of such new compounds. We evaluated the primary response of M. tuberculosis in vitro to the action of new aroylhydrazones and nitrofuroylamides. Methods: The reference strain H37Rv was cultured on solid media with compounds at increased concentrations relative to MIC. Resistant clones were investigated using whole-genome sequencing and bioinformatics tools to assess the role and potential impact of identified mutations. Results: Some of the mutations are significant (based on in silico analysis), located in essential genes, and therefore of particular interest. Frameshift mutations were observed in (i) Rv2702/ppgK, which is associated with starvation-induced drug tolerance and persistence in mice, and (ii) Rv3696c/glpK, which has been described as a switch on/off mutation associated with drug tolerance. Nonsynonymous substitutions were found in Rv0506/mmpS2, which belongs to the Mmp protein family involved in transport and drug efflux, and in infB, encoding the translation initiation factor IF-2. Conclusions: The primary adaptation of M. tuberculosis to the selective pressure of the tested compounds is complex and multifaceted. It involves multiple unrelated genes and pathways linked to non-specific drug tolerance, efflux systems, or mechanisms counteracting oxidative stress.
Collapse
Affiliation(s)
- Igor Mokrousov
- St. Petersburg Pasteur Institute, 197101 St. Petersburg, Russia; (M.V.B.); (D.E.P.)
| | | | - Ivaylo Slavchev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.S.); (G.M.D.)
| | - Mikhail V. Bezruchko
- St. Petersburg Pasteur Institute, 197101 St. Petersburg, Russia; (M.V.B.); (D.E.P.)
| | - Simeon Dimitrov
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Dmitrii E. Polev
- St. Petersburg Pasteur Institute, 197101 St. Petersburg, Russia; (M.V.B.); (D.E.P.)
| | - Georgi M. Dobrikov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.S.); (G.M.D.)
| | - Violeta Valcheva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| |
Collapse
|
2
|
Zhao H, Dong H, Zhao Q, Zhu S, Jia L, Zhang S, Feng Q, Yu Y, Wang J, Huang B, Han H. Integrated application of transcriptomics and metabolomics provides insight into the mechanism of Eimeria tenella resistance to maduramycin. Int J Parasitol Drugs Drug Resist 2024; 24:100526. [PMID: 38382267 PMCID: PMC10885789 DOI: 10.1016/j.ijpddr.2024.100526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/11/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Avian coccidiosis, caused by Eimeria parasites, continues to devastate the poultry industry and results in significant economic losses. Ionophore coccidiostats, such as maduramycin and monensin, are widely used for prophylaxis of coccidiosis in poultry. Nevertheless, their efficacy has been challenged by widespread drug resistance. However, the underlying mechanisms have not been revealed. Understanding the targets and resistance mechanisms to anticoccidials is critical to combat this major parasitic disease. In the present study, maduramycin-resistant (MRR) and drug-sensitive (DS) sporozoites of Eimeria tenella were purified for transcriptomic and metabolomic analysis. The transcriptome analysis revealed 5016 differentially expressed genes (DEGs) in MRR compared to DS, and KEGG pathway enrichment analysis indicated that DEGs were involved in spliceosome, carbon metabolism, glycolysis, and biosynthesis of amino acids. In the untargeted metabolomics assay, 297 differentially expressed metabolites (DEMs) were identified in MRR compared to DS, and KEGG pathway enrichment analysis indicated that these DEMs were involved in 10 pathways, including fructose and mannose metabolism, cysteine and methionine metabolism, arginine and proline metabolism, and glutathione metabolism. Targeted metabolomic analysis revealed 14 DEMs in MRR compared to DS, and KEGG pathway analysis indicated that these DEMs were involved in 20 pathways, including fructose and mannose metabolism, glycolysis/gluconeogenesis, and carbon metabolism. Compared to DS, energy homeostasis and amino acid metabolism were differentially regulated in MRR. Our results provide gene and metabolite expression landscapes of E. tenella following maduramycin induction. This study is the first work involving integrated transcriptomic and metabolomic analyses to identify the key pathways to understand the molecular and metabolic mechanisms underlying drug resistance to polyether ionophores in coccidia.
Collapse
Affiliation(s)
- Huanzhi Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Hui Dong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Qiping Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Shunhai Zhu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Liushu Jia
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Sishi Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Qian Feng
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Yu Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Jinwen Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Bing Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Hongyu Han
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| |
Collapse
|
3
|
Singha B, Murmu S, Nair T, Rawat RS, Sharma AK, Soni V. Metabolic Rewiring of Mycobacterium tuberculosis upon Drug Treatment and Antibiotics Resistance. Metabolites 2024; 14:63. [PMID: 38248866 PMCID: PMC10820029 DOI: 10.3390/metabo14010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant global health challenge, further compounded by the issue of antimicrobial resistance (AMR). AMR is a result of several system-level molecular rearrangements enabling bacteria to evolve with better survival capacities: metabolic rewiring is one of them. In this review, we present a detailed analysis of the metabolic rewiring of Mtb in response to anti-TB drugs and elucidate the dynamic mechanisms of bacterial metabolism contributing to drug efficacy and resistance. We have discussed the current state of AMR, its role in the prevalence of the disease, and the limitations of current anti-TB drug regimens. Further, the concept of metabolic rewiring is defined, underscoring its relevance in understanding drug resistance and the biotransformation of drugs by Mtb. The review proceeds to discuss the metabolic adaptations of Mtb to drug treatment, and the pleiotropic effects of anti-TB drugs on Mtb metabolism. Next, the association between metabolic changes and antimycobacterial resistance, including intrinsic and acquired drug resistance, is discussed. The review concludes by summarizing the challenges of anti-TB treatment from a metabolic viewpoint, justifying the need for this discussion in the context of novel drug discovery, repositioning, and repurposing to control AMR in TB.
Collapse
Affiliation(s)
- Biplab Singha
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA;
| | - Sumit Murmu
- Regional Centre of Biotechnology, Faridabad 121001, India;
| | - Tripti Nair
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA;
| | - Rahul Singh Rawat
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi 110067, India;
| | - Aditya Kumar Sharma
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Vijay Soni
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
4
|
Gwin CM, Gupta KR, Lu Y, Shao L, Rego EH. Spatial segregation and aging of metabolic processes underlie phenotypic heterogeneity in mycobacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569614. [PMID: 38076906 PMCID: PMC10705497 DOI: 10.1101/2023.12.01.569614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Individual cells within clonal populations of mycobacteria vary in size, growth rate, and antibiotic susceptibility. Heterogeneity is, in part, determined by LamA, a protein found exclusively in mycobacteria. LamA localizes to sites of new cell wall synthesis where it recruits proteins important for polar growth and establishing asymmetry. Here, we report that in addition to this function, LamA interacts with complexes involved in oxidative phosphorylation (OXPHOS) at a subcellular location distinct from cell wall synthesis. Importantly, heterogeneity depends on a unique extension of the mycobacterial ATP synthase, and LamA mediates the coupling between ATP production and cell growth in single cells. Strikingly, as single cells age, concentrations of proteins important for oxidative phosphorylation become less abundant, and older cells rely less on oxidative phosphorylation for growth. Together, our data reveal that central metabolism is spatially organized within a single mycobacterium and varies within a genetically identical population of mycobacteria. Designing therapeutic regimens to account for this heterogeneity may help to treat mycobacterial infections faster and more completely.
Collapse
Affiliation(s)
- Celena M. Gwin
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| | - Kuldeepkumar R. Gupta
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| | - Yao Lu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| | - Lin Shao
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| | - E. Hesper Rego
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| |
Collapse
|
5
|
Shee S, Veetil RT, Mohanraj K, Das M, Malhotra N, Bandopadhyay D, Beig H, Birua S, Niphadkar S, Nagarajan SN, Sinha VK, Thakur C, Rajmani RS, Chandra N, Laxman S, Singh M, Samal A, Seshasayee AN, Singh A. Biosensor-integrated transposon mutagenesis reveals rv0158 as a coordinator of redox homeostasis in Mycobacterium tuberculosis. eLife 2023; 12:e80218. [PMID: 37642294 PMCID: PMC10501769 DOI: 10.7554/elife.80218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/25/2023] [Indexed: 08/31/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is evolutionarily equipped to resist exogenous reactive oxygen species (ROS) but shows vulnerability to an increase in endogenous ROS (eROS). Since eROS is an unavoidable consequence of aerobic metabolism, understanding how Mtb manages eROS levels is essential yet needs to be characterized. By combining the Mrx1-roGFP2 redox biosensor with transposon mutagenesis, we identified 368 genes (redoxosome) responsible for maintaining homeostatic levels of eROS in Mtb. Integrating redoxosome with a global network of transcriptional regulators revealed a hypothetical protein (Rv0158) as a critical node managing eROS in Mtb. Disruption of rv0158 (rv0158 KO) impaired growth, redox balance, respiration, and metabolism of Mtb on glucose but not on fatty acids. Importantly, rv0158 KO exhibited enhanced growth on propionate, and the Rv0158 protein directly binds to methylmalonyl-CoA, a key intermediate in propionate catabolism. Metabolite profiling, ChIP-Seq, and gene-expression analyses indicate that Rv0158 manages metabolic neutralization of propionate toxicity by regulating the methylcitrate cycle. Disruption of rv0158 enhanced the sensitivity of Mtb to oxidative stress, nitric oxide, and anti-TB drugs. Lastly, rv0158 KO showed poor survival in macrophages and persistence defect in mice. Our results suggest that Rv0158 is a metabolic integrator for carbon metabolism and redox balance in Mtb.
Collapse
Affiliation(s)
- Somnath Shee
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
- Centre for Infectious Disease Research, Indian Institute of Science BangaloreKarnatakaIndia
| | | | - Karthikeyan Mohanraj
- The Institute of Mathematical Sciences, A CI of Homi Bhabha National InstituteChennaiIndia
| | - Mayashree Das
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
- Centre for Infectious Disease Research, Indian Institute of Science BangaloreKarnatakaIndia
| | | | | | - Hussain Beig
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
- Centre for Infectious Disease Research, Indian Institute of Science BangaloreKarnatakaIndia
| | - Shalini Birua
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
- Centre for Infectious Disease Research, Indian Institute of Science BangaloreKarnatakaIndia
| | - Shreyas Niphadkar
- Institute for Stem Cell Science and Regenerative MedicineBangaloreIndia
| | - Sathya Narayanan Nagarajan
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
- Centre for Infectious Disease Research, Indian Institute of Science BangaloreKarnatakaIndia
| | - Vikrant Kumar Sinha
- Molecular Biophysics Unit, Indian Institute of Science BangaloreBangaloreIndia
| | - Chandrani Thakur
- Department of Biochemistry, Indian Institute of Science BangaloreBangaloreIndia
| | - Raju S Rajmani
- Centre for Infectious Disease Research, Indian Institute of Science BangaloreKarnatakaIndia
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science BangaloreBangaloreIndia
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative MedicineBangaloreIndia
| | - Mahavir Singh
- Molecular Biophysics Unit, Indian Institute of Science BangaloreBangaloreIndia
| | - Areejit Samal
- The Institute of Mathematical Sciences, A CI of Homi Bhabha National InstituteChennaiIndia
| | | | - Amit Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
- Centre for Infectious Disease Research, Indian Institute of Science BangaloreKarnatakaIndia
| |
Collapse
|
6
|
Wang Y, He X, Zheng D, He Q, Sun L, Jin J. Integration of Metabolomics and Transcriptomics Reveals Major Metabolic Pathways and Potential Biomarkers Involved in Pulmonary Tuberculosis and Pulmonary Tuberculosis-Complicated Diabetes. Microbiol Spectr 2023; 11:e0057723. [PMID: 37522815 PMCID: PMC10434036 DOI: 10.1128/spectrum.00577-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/07/2023] [Indexed: 08/01/2023] Open
Abstract
Pulmonary tuberculosis (PTB) and diabetes mellitus (DM) are common chronic diseases that threaten human health. Patients with DM are susceptible to PTB, an important factor that aggravates the complications of diabetes. However, the molecular regulatory mechanism underlying the susceptibility of patients with DM to PTB infection remains unknown. In this study, healthy subjects, patients with primary PTB, and patients with primary PTB complicated by DM were recruited according to inclusion and exclusion criteria. Peripheral whole blood was collected, and alteration profiles and potential molecular mechanisms were further analyzed using integrated bioinformatics analysis of metabolomics and transcriptomics. Transcriptional data revealed that lipocalin 2 (LCN2), defensin alpha 1 (DEFA1), peptidoglycan recognition protein 1 (PGLYRP1), and integrin subunit alpha 2b (ITGA2B) were significantly upregulated, while chloride intracellular channel 3 (CLIC3) was significantly downregulated in the group with PTB and DM (PTB_DM) in contrast to the healthy control (HC) group. Additionally, the interleukin 17 (IL-17), phosphatidylinositol 3-kinase (PI3K)-AKT, and peroxisome proliferator-activated receptor (PPAR) signaling pathways are important for PTB infection and regulation of PTB-complicated diabetes. Metabolomic data showed that glycerophospholipid metabolism, carbon metabolism, and fat digestion and absorption processes were enriched in the differential metabolic analysis. Finally, integrated analysis of both metabolomic and transcriptomic data indicated that the NOTCH1/JAK/STAT signaling pathway is important in PTB complicated by DM. In conclusion, PTB infection altered the transcriptional and metabolic profiles of patients with DM. Metabolomic and transcriptomic changes were highly correlated in PTB patients with DM. Peripheral metabolite levels may be used as biomarkers for PTB management in patients with DM. IMPORTANCE The comorbidity of diabetes mellitus (DM) significantly increases the risk of tuberculosis infection and adverse tuberculosis treatment outcomes. Most previous studies have focused on the relationship between the effect of blood glucose control and the outcome of antituberculosis treatment in pulmonary tuberculosis (PTB) with DM (PTB_DM); however, early prediction and the underlying molecular mechanism of susceptibility to PTB infection in patients with DM remain unclear. In this study, transcriptome sequencing and untargeted metabolomics were performed to elucidate the key molecules and signaling pathways involved in PTB infection and the susceptibility of patients with diabetes to PTB. Our findings contribute to the development of vital diagnostic biomarkers for PTB or PTB_DM and provide a comprehensive understanding of molecular regulation during disease progression.
Collapse
Affiliation(s)
- Yunguang Wang
- Department of Critical Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Xinxin He
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Danna Zheng
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, People’s Republic of China
| | - Qiang He
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, People’s Republic of China
| | - Lifang Sun
- Department of Tuberculosis, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Department of Tuberculosis, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Juan Jin
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
7
|
Mycobacterium tuberculosis Requires the Outer Membrane Lipid Phthiocerol Dimycocerosate for Starvation-Induced Antibiotic Tolerance. mSystems 2023; 8:e0069922. [PMID: 36598240 PMCID: PMC9948706 DOI: 10.1128/msystems.00699-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Tolerance of Mycobacterium tuberculosis to antibiotics contributes to the long duration of tuberculosis (TB) treatment and the emergence of drug-resistant strains. M. tuberculosis drug tolerance is induced by nutrient restriction, but the genetic determinants that promote antibiotic tolerance triggered by nutrient limitation have not been comprehensively identified. Here, we show that M. tuberculosis requires production of the outer membrane lipid phthiocerol dimycocerosate (PDIM) to tolerate antibiotics under nutrient-limited conditions. We developed an arrayed transposon (Tn) mutant library in M. tuberculosis Erdman and used orthogonal pooling and transposon sequencing (Tn-seq) to map the locations of individual mutants in the library. We screened a subset of the library (~1,000 mutants) by Tn-seq and identified 32 and 102 Tn mutants with altered tolerance to antibiotics under stationary-phase and phosphate-starved conditions, respectively. Two mutants recovered from the arrayed library, ppgK::Tn and clpS::Tn, showed increased susceptibility to two different drug combinations under both nutrient-limited conditions, but their phenotypes were not complemented by the Tn-disrupted gene. Whole-genome sequencing revealed single nucleotide polymorphisms in both the ppgK::Tn and clpS::Tn mutants that prevented PDIM production. Complementation of the clpS::Tn ppsD Q291* mutant with ppsD restored PDIM production and antibiotic tolerance, demonstrating that loss of PDIM sensitized M. tuberculosis to antibiotics. Our data suggest that drugs targeting production of PDIM, a critical M. tuberculosis virulence determinant, have the potential to enhance the efficacy of existing antibiotics, thereby shortening TB treatment and limiting development of drug resistance. IMPORTANCE Mycobacterium tuberculosis causes 10 million cases of active TB disease and over 1 million deaths worldwide each year. TB treatment is complex, requiring at least 6 months of therapy with a combination of antibiotics. One factor that contributes to the length of TB treatment is M. tuberculosis phenotypic antibiotic tolerance, which allows the bacteria to survive prolonged drug exposure even in the absence of genetic mutations causing drug resistance. Here, we report a genetic screen to identify M. tuberculosis genes that promote drug tolerance during nutrient starvation. Our study revealed the outer membrane lipid phthiocerol dimycocerosate (PDIM) as a key determinant of M. tuberculosis antibiotic tolerance triggered by nutrient starvation. Our study implicates PDIM synthesis as a potential target for development of new TB drugs that would sensitize M. tuberculosis to existing antibiotics to shorten TB treatment.
Collapse
|
8
|
Samuels AN, Wang ER, Harrison GA, Valenta JC, Stallings CL. Understanding the contribution of metabolism to Mycobacterium tuberculosis drug tolerance. Front Cell Infect Microbiol 2022; 12:958555. [PMID: 36072222 PMCID: PMC9441742 DOI: 10.3389/fcimb.2022.958555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Treatment of Mycobacterium tuberculosis (Mtb) infections is particularly arduous. One challenge to effectively treating tuberculosis is that drug efficacy in vivo often fails to match drug efficacy in vitro. This is due to multiple reasons, including inadequate drug concentrations reaching Mtb at the site of infection and physiological changes of Mtb in response to host derived stresses that render the bacteria more tolerant to antibiotics. To more effectively and efficiently treat tuberculosis, it is necessary to better understand the physiologic state of Mtb that promotes drug tolerance in the host. Towards this end, multiple studies have converged on bacterial central carbon metabolism as a critical contributor to Mtb drug tolerance. In this review, we present the evidence that changes in central carbon metabolism can promote drug tolerance, depending on the environment surrounding Mtb. We posit that these metabolic pathways could be potential drug targets to stymie the development of drug tolerance and enhance the efficacy of current antimicrobial therapy.
Collapse
Affiliation(s)
| | | | | | | | - Christina L. Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
9
|
Eoh H, Liu R, Lim J, Lee JJ, Sell P. Central carbon metabolism remodeling as a mechanism to develop drug tolerance and drug resistance in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:958240. [PMID: 36072228 PMCID: PMC9441700 DOI: 10.3389/fcimb.2022.958240] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Suboptimal efficacy of the current antibiotic regimens and frequent emergence of antibiotic-resistant Mycobacterium tuberculosis (Mtb), an etiological agent of tuberculosis (TB), render TB the world’s deadliest infectious disease before the COVID-19 outbreak. Our outdated TB treatment method is designed to eradicate actively replicating populations of Mtb. Unfortunately, accumulating evidence suggests that a small population of Mtb can survive antimycobacterial pressure of antibiotics by entering a “persister” state (slowly replicating or non-replicating and lacking a stably heritable antibiotic resistance, termed drug tolerance). The formation of drug-tolerant Mtb persisters is associated with TB treatment failure and is thought to be an adaptive strategy for eventual development of permanent genetic mutation-mediated drug resistance. Thus, the molecular mechanisms behind persister formation and drug tolerance acquisition are a source of new antibiotic targets to eradicate both Mtb persisters and drug-resistant Mtb. As Mtb persisters are genetically identical to antibiotic susceptible populations, metabolomics has emerged as a vital biochemical tool to differentiate these populations by determining phenotypic shifts and metabolic reprogramming. Metabolomics, which provides detailed insights into the molecular basis of drug tolerance and resistance in Mtb, has unique advantages over other techniques by its ability to identify specific metabolic differences between the two genetically identical populations. This review summarizes the recent advances in our understanding of the metabolic adaptations used by Mtb persisters to achieve intrinsic drug tolerance and facilitate the emergence of drug resistance. These findings present metabolomics as a powerful tool to identify previously unexplored antibiotic targets and improved combinations of drug regimens against drug-resistant TB infection.
Collapse
|
10
|
Bangalore PK, Pedapati RK, Pranathi AN, Batchu UR, Misra S, Estharala M, Sriram D, Kantevari S. Aryl-n-hexanamide linked enaminones of usnic acid as promising antimicrobial agents. Mol Divers 2022; 27:811-836. [PMID: 35608808 DOI: 10.1007/s11030-022-10456-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/28/2022] [Indexed: 11/30/2022]
Abstract
Lichen secondary metabolites are well explored medicinal agents with diverse pharmacological properties. One of the important antibiotic lichen secondary metabolites is usnic acid. Its diverse medicinal profiles prompted us to explore it as a potential antitubercular molecule. Towards this direction, continuing our efforts on the discovery and development of new analogs with potent antitubercular properties we designed, synthesized, and evaluated a set of 37 usnic acid enaminone-coupled aryl-n-hexanamides (3-39). The study yielded a 3,4-dimethoxyphenyl compound (13, 5.3 µM) as the most active anti-TB molecule. The docking studies were performed on 7 different enzymes to better understand the binding modes, where it was observed that compound 13 bound strongly with glucose dehydrogenase (Gscore: - 9.03). Further antibacterial investigations revealed compound 2 with potent inhibition on Salmonella typhi and Bacillus subtilis (MIC 3 µM) and MIC values of 7 and 14 µM on Streptococcus mutans and Escherichia coli respectively. Compound 19 (3-F-5-CF3-phenyl) displayed encouraging antibacterial profiles against E. coli, S. typhi and S. mutans with MIC values of 10 µM respectively. Interestingly, compound 20 (2,6-difluorophenyl) also displayed good antibacterial activity against E. coli with an MIC value of 6 µM. These encouraging pharmacological results will help for better designing and developing usnic acid-based semi-synthetic derivatives as potential antimicrobial agents. A set of 37 new usnic acid enaminone-coupled aryl-n-hexanamides were synthesized and evaluated as potential antimicrobial agents. Compound 13 was identified as the most active antitubercular molecule. 13 was further docked against 7 different enzymes of tuberculosis. The molecule displayed maximum binding energy with the enzyme Glucose dehydrogenase (Gscore: - 9.03), indicating that these hexanamides possibly act by inhibiting the glucose metabolic pathway of the bacterium. Surprisingly, the intermediate hexanoic acid 2 was identified as potent antibacterial agent, acting on both gram-positive and gram-negative bacterial strains (3-14 μM). The active compounds may be subjected to structural iterations to develop further leads.
Collapse
Affiliation(s)
- Pavan Kumar Bangalore
- Fluoro and Agrochemicals Division, CSIR- Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India. .,Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA.
| | - Ravi Kumar Pedapati
- Fluoro and Agrochemicals Division, CSIR- Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Abburi Naga Pranathi
- Fluoro and Agrochemicals Division, CSIR- Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Uma Rajeswari Batchu
- Applied Biology Division, CSIR- Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
| | - Sunil Misra
- Applied Biology Division, CSIR- Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
| | - Madhurekha Estharala
- Medicinal Chemistry and Antimycobacterial Research Laboratory, Pharmacy Group, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad, Telangana, 500078, India
| | - Dharmarajan Sriram
- Medicinal Chemistry and Antimycobacterial Research Laboratory, Pharmacy Group, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad, Telangana, 500078, India
| | - Srinivas Kantevari
- Fluoro and Agrochemicals Division, CSIR- Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
11
|
Agaronyan K, Sharma L, Vaidyanathan B, Glenn K, Yu S, Annicelli C, Wiggen TD, Penningroth MR, Hunter RC, Dela Cruz CS, Medzhitov R. Tissue remodeling by an opportunistic pathogen triggers allergic inflammation. Immunity 2022; 55:895-911.e10. [PMID: 35483356 PMCID: PMC9123649 DOI: 10.1016/j.immuni.2022.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 01/04/2022] [Accepted: 04/04/2022] [Indexed: 01/01/2023]
Abstract
Different effector arms of the immune system are optimized to protect from different classes of pathogens. In some cases, pathogens manipulate the host immune system to promote the wrong type of effector response-a phenomenon known as immune deviation. Typically, immune deviation helps pathogens to avoid destructive immune responses. Here, we report on a type of immune deviation whereby an opportunistic pathogen, Pseudomonas aeruginosa (P. aeruginosa), induces the type 2 immune response resulting in mucin production that is used as an energy source by the pathogen. Specifically, P. aeruginosa-secreted toxin, LasB, processed and activated epithelial amphiregulin to induce type 2 inflammation and mucin production. This "niche remodeling" by P. aeruginosa promoted colonization and, as a by-product, allergic sensitization. Our study thus reveals a type of bacterial immune deviation by increasing nutrient supply. It also uncovers a mechanism of allergic sensitization by a bacterial virulence factor.
Collapse
Affiliation(s)
- Karen Agaronyan
- Howard Hughes Medical Institute and Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lokesh Sharma
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Bharat Vaidyanathan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Keith Glenn
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shuang Yu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Charles Annicelli
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Talia D Wiggen
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Mitchell R Penningroth
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Ryan C Hunter
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Charles S Dela Cruz
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Ruslan Medzhitov
- Howard Hughes Medical Institute and Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
12
|
Rosenberg G, Riquelme S, Prince A, Avraham R. Immunometabolic crosstalk during bacterial infection. Nat Microbiol 2022; 7:497-507. [PMID: 35365784 DOI: 10.1038/s41564-022-01080-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/03/2022] [Indexed: 01/22/2023]
Abstract
Following detection of bacteria, macrophages switch their metabolism from oxidative respiration through the tricarboxylic acid cycle to high-rate aerobic glycolysis. This immunometabolic shift enables pro-inflammatory and antimicrobial responses and is facilitated by the accumulation of fatty acids, tricarboxylic acid-derived metabolites and catabolism of amino acids. Recent studies have shown that these immunometabolites are co-opted by pathogens as environmental cues for expression of virulence genes. We review mechanisms by which host immunometabolites regulate bacterial pathogenicity and discuss opportunities for the development of therapeutics targeting metabolic host-pathogen crosstalk.
Collapse
Affiliation(s)
- Gili Rosenberg
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | - Alice Prince
- Columbia University Medical Center, New York, NY, USA.
| | - Roi Avraham
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
13
|
Joshi H, Kandari D, Bhatnagar R. Insights into the molecular determinants involved in Mycobacterium tuberculosis persistence and their therapeutic implications. Virulence 2021; 12:2721-2749. [PMID: 34637683 PMCID: PMC8565819 DOI: 10.1080/21505594.2021.1990660] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/17/2021] [Accepted: 10/05/2021] [Indexed: 01/08/2023] Open
Abstract
The establishment of persistent infections and the reactivation of persistent bacteria to active bacilli are the two hurdles in effective tuberculosis treatment. Mycobacterium tuberculosis, an etiologic tuberculosis agent, adapts to numerous antibiotics and resists the host immune system causing a disease of public health concern. Extensive research has been employed to combat this disease due to its sheer ability to persist in the host system, undetected, waiting for the opportunity to declare itself. Persisters are a bacterial subpopulation that possesses transient tolerance to high doses of antibiotics. There are certain inherent mechanisms that facilitate the persister cell formation in Mycobacterium tuberculosis, some of those had been characterized in the past namely, stringent response, transcriptional regulators, energy production pathways, lipid metabolism, cell wall remodeling enzymes, phosphate metabolism, and proteasome protein degradation. This article reviews the recent advancements made in various in vitro persistence models that assist to unravel the mechanisms involved in the persister cell formation and to hunt for the possible preventive or treatment measures. To tackle the persister population the immunodominant proteins that express specifically at the latent phase of infection can be used for diagnosis to distinguish between the active and latent tuberculosis, as well as to select potential drug or vaccine candidates. In addition, we discuss the genes engaged in the persistence to get more insights into resuscitation and persister cell formation. The in-depth understanding of persistent cells of mycobacteria can certainly unravel novel ways to target the pathogen and tackle its persistence.
Collapse
Affiliation(s)
- Hemant Joshi
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Divya Kandari
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Amity University of Rajasthan, Jaipur, Rajasthan, India
| |
Collapse
|
14
|
Zheng J, Liu L, Wei C, Liu B, Jin Q. Characterization of O-mannosylated proteins profiling in bacillus Calmette-Guérin via gel-based and gel-free approaches. IUBMB Life 2021; 74:221-234. [PMID: 34773437 DOI: 10.1002/iub.2578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 09/06/2021] [Accepted: 10/11/2021] [Indexed: 11/08/2022]
Abstract
Posttranslational modifications (PTMs) could influence many aspects of protein behavior and function in organisms. Protein glycosylation is one of the major PTMs observed in bacteria, which is crucial for functional regulations of many prokaryotic and eukaryotic organisms. Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccine has been recognized as an indispensable tool in the global fight against tuberculosis (TB) worldwide over several decades. Nevertheless, analysis of glycoprotein profiles of BCG has not been clearly investigated. In this study, we performed O-mannosylated protein analysis in BCG bacteria using gel-based and gel-free approaches. In total, 1,670 hexosylated peptides derived from 754 mannosylated proteins were identified. Furthermore, 20 novel protein products supported by 78 unique peptides not annotated in the BCG database were detected. Additionally, the translational start sites of 384 proteins were confirmed, and 78 proteins were validated through the extension of translational start sites based on N-terminus-derived peptides. The bioinformatic analysis of the O-mannosylated proteins was performed and the expression profiles of four randomly selected proteins were validated through Western blotting. A number of proteins involved in metabolic pathways, including the tricarboxylic acid cycle, glycolysis, oxidative phosphorylation, and two-component system, are discussed. Taken together, these results offer the first O-mannosylated protein analysis of a member of mycobacteria reported to date by using complementary gel-based and gel-free approaches. Some of the proteins identified in this study have important roles involved in metabolic pathways, which could provide insight into the immune molecular mechanisms of this recognized vaccine strain.
Collapse
Affiliation(s)
- Jianhua Zheng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liguo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Candong Wei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Khurana H, Srivastava M, Chaudhary D, Gosain TP, Kumari R, Bean AC, Chugh S, Maiti TK, Stephens CE, Asthana S, Singh R. Identification of diphenyl furan derivatives via high throughput and computational studies as ArgA inhibitors of Mycobacterium tuberculosis. Int J Biol Macromol 2021; 193:1845-1858. [PMID: 34762917 DOI: 10.1016/j.ijbiomac.2021.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/20/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022]
Abstract
Microbial amino acid biosynthetic pathways are underexploited for the development of anti-bacterial agents. N-acetyl glutamate synthase (ArgA) catalyses the first committed step in L-arginine biosynthesis and is essential for M. tuberculosis growth. Here, we have purified and optimized assay conditions for the acetylation of l-glutamine by ArgA. Using the optimized conditions, high throughput screening was performed to identify ArgA inhibitors. We identified 2,5-Bis (2-chloro-4-guanidinophenyl) furan, a dicationic diaryl furan derivatives, as ArgA inhibitor, with a MIC99 values of 1.56 μM against M. tuberculosis. The diaryl furan derivative displayed bactericidal killing against both M. bovis BCG and M. tuberculosis. Inhibition of ArgA by the lead compound resulted in transcriptional reprogramming and accumulation of reactive oxygen species. The lead compound and its derivatives showed micromolar binding with ArgA as observed in surface plasmon resonance and tryptophan quenching experiments. Computational and dynamic analysis revealed that these scaffolds share similar binding site residues with L-arginine, however, with slight variations in their interaction pattern. Partial restoration of growth upon supplementation of liquid cultures with either L-arginine or N-acetyl cysteine suggests a multi-target killing mechanism for the lead compound. Taken together, we have identified small molecule inhibitors against ArgA enzyme from M. tuberculosis.
Collapse
Affiliation(s)
- Harleen Khurana
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Mitul Srivastava
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Deepika Chaudhary
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India; Manipal academy of higher education, Manipal, Karnataka 576104. India
| | - Tannu Priya Gosain
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Raniki Kumari
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Andrew C Bean
- Department of Chemistry and Physics, Augusta University, 2500 Walton Way, Augusta, GA 30904, USA
| | - Saurabh Chugh
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Tushar Kanti Maiti
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Chad E Stephens
- Department of Chemistry and Physics, Augusta University, 2500 Walton Way, Augusta, GA 30904, USA.
| | - Shailendra Asthana
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India.
| | - Ramandeep Singh
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India.
| |
Collapse
|
16
|
Khonde LP, Müller R, Boyle GA, Reddy V, Nchinda AT, Eyermann CJ, Fienberg S, Singh V, Myrick A, Abay E, Njoroge M, Lawrence N, Su Q, Myers TG, Boshoff HIM, Barry CE, Sirgel FA, van Helden PD, Massoudi LM, Robertson GT, Lenaerts AJ, Basarab GS, Ghorpade SR, Chibale K. 1,3-Diarylpyrazolyl-acylsulfonamides as Potent Anti-tuberculosis Agents Targeting Cell Wall Biosynthesis in Mycobacterium tuberculosis. J Med Chem 2021; 64:12790-12807. [PMID: 34414766 PMCID: PMC10500703 DOI: 10.1021/acs.jmedchem.1c00837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phenotypic whole cell high-throughput screening of a ∼150,000 diverse set of compounds against Mycobacterium tuberculosis (Mtb) in cholesterol-containing media identified 1,3-diarylpyrazolyl-acylsulfonamide 1 as a moderately active hit. Structure-activity relationship (SAR) studies demonstrated a clear scope to improve whole cell potency to MIC values of <0.5 μM, and a plausible pharmacophore model was developed to describe the chemical space of active compounds. Compounds are bactericidal in vitro against replicating Mtb and retained activity against multidrug-resistant clinical isolates. Initial biology triage assays indicated cell wall biosynthesis as a plausible mode-of-action for the series. However, no cross-resistance with known cell wall targets such as MmpL3, DprE1, InhA, and EthA was detected, suggesting a potentially novel mode-of-action or inhibition. The in vitro and in vivo drug metabolism and pharmacokinetics profiles of several active compounds from the series were established leading to the identification of a compound for in vivo efficacy proof-of-concept studies.
Collapse
Affiliation(s)
- Lutete Peguy Khonde
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Rudolf Müller
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Grant A. Boyle
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Virsinha Reddy
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Aloysius T. Nchinda
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Charles J. Eyermann
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Stephen Fienberg
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Vinayak Singh
- Drug Discovery and Development Centre (H3D), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Alissa Myrick
- Drug Discovery and Development Centre (H3D), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Efrem Abay
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Mathew Njoroge
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Nina Lawrence
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Qin Su
- Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Timothy G Myers
- Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Helena I. M. Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Clifton E. Barry
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Frederick A Sirgel
- South African Medical Research Council Centre for Tuberculosis Research / DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg, Cape Town, 7505, South Africa
| | - Paul D van Helden
- South African Medical Research Council Centre for Tuberculosis Research / DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg, Cape Town, 7505, South Africa
| | - Lisa M. Massoudi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Gregory T. Robertson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Anne J. Lenaerts
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Gregory S. Basarab
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Sandeep R. Ghorpade
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
17
|
Osei-Wusu S, Otchere ID, Morgan P, Musah AB, Siam IM, Asandem D, Afum T, Asare P, Asante-Poku A, Kusi KA, Gagneux S, Yeboah-Manu D. Genotypic and phenotypic diversity of Mycobacterium tuberculosis complex genotypes prevalent in West Africa. PLoS One 2021; 16:e0255433. [PMID: 34437584 PMCID: PMC8389432 DOI: 10.1371/journal.pone.0255433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022] Open
Abstract
Findings from previous comparative genomics studies of the Mycobacterium tuberculosis complex (MTBC) suggest genomic variation among the genotypes may have phenotypic implications. We investigated the diversity in the phenotypic profiles of the main prevalent MTBC genotypes in West Africa. Thirty-six whole genome sequenced drug susceptible MTBC isolates belonging to lineages 4, 5 and 6 were included in this study. The isolates were phenotypically characterized for urease activity, tween hydrolysis, Thiophen-2-Carboxylic Acid Hydrazide (TCH) susceptibility, nitric oxide production, and growth rate in both liquid (7H9) and solid media (7H11 and Löwenstein-Jensen (L-J)). Lineage 4 isolates showed the highest growth rate in both liquid (p = 0.0003) and on solid (L-J) media supplemented with glycerol (p<0.001) or pyruvate (p = 0.005). L6 isolates optimally utilized pyruvate compared to glycerol (p<0.001), whereas L5 isolates grew similarly on both media (p = 0.05). Lineage 4 isolates showed the lowest average time to positivity (TTP) (p = 0.01; Average TTP: L4 = 15days, L5 = 16.7days, L6 = 29.7days) and the highest logCFU/mL (p = 0.04; average logCFU/mL L4 = 5.9, L5 = 5.0, L6 = 4.4) on 7H11 supplemented with glycerol, but there was no significant difference in growth on 7H11 supplemented with pyruvate (p = 0.23). The highest release of nitrite was recorded for L5 isolates, followed by L4 and L6 isolates. However, the reverse was observed in the urease activity for the lineages. All isolates tested were resistant to TCH except for one L6 isolate. Comparative genomic analyses revealed several mutations that might explain the diverse phenotypic profiles of these isolates. Our findings showed significant phenotypic diversity among the MTBC lineages used for this study.
Collapse
Affiliation(s)
- Stephen Osei-Wusu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Isaac Darko Otchere
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Portia Morgan
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Abdul Basit Musah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Ishaque Mintah Siam
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Diana Asandem
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Theophilus Afum
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Prince Asare
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Adwoa Asante-Poku
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Kwadwo Asamoah Kusi
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| |
Collapse
|
18
|
Parker HL, Tomás RMF, Furze CM, Guy CS, Fullam E. Asymmetric trehalose analogues to probe disaccharide processing pathways in mycobacteria. Org Biomol Chem 2021; 18:3607-3612. [PMID: 32350493 DOI: 10.1039/d0ob00253d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The uptake and metabolism of the disaccharide trehalose by Mycobacterium tuberculosis is essential for the virulence of this pathogen. Here we describe the chemoenzymatic synthesis of new azido-functionalised asymmetric trehalose probes that resist degradation by mycobacterial enzymes and are used to probe trehalose processing pathways in mycobacteria.
Collapse
Affiliation(s)
- Hadyn L Parker
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| | | | | | | | | |
Collapse
|
19
|
Bokolia NP, Khan IA. Regulation of polyphosphate glucokinase gene expression through co-transcriptional processing in Mycobacterium tuberculosis H37Rv. J Biochem 2021; 170:593-609. [PMID: 34247237 DOI: 10.1093/jb/mvab080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/01/2021] [Indexed: 11/14/2022] Open
Abstract
Transcription is a molecular process that involves the synthesis of RNA chain into the 5'-3' direction, and simultaneously nascent RNA chain tends to form geometric structures, known as co-transcriptional folding. This folding determines the functional properties of RNA molecules and possibly has a critical role during the synthesis. This functioning includes the characterized properties of riboswitches and ribozymes, which are significant when the transcription rate is comparable to the cellular environment. This study reports a novel non-coding region important in the genetic expression of polyphosphate glucokinase (ppgk) in Mycobacterium tuberculosis. This non-coding element of ppgk gene undergoes cleavage activity during the transcriptional process in Mycobacterium tuberculosis. We revealed that cleavage occurs within the nascent RNA, and the resultant cleaved 3'RNA fragment carries the Shine- Dalgarno (SD) sequence and expression platform. We concluded co-transcriptional processing at the non-coding region as the required mechanism for ppgk expression that remains constitutive within the bacterial environment. This study defines the molecular mechanism dependent on the transient but highly active structural features of the nascent RNA.
Collapse
Affiliation(s)
- Naveen Prakash Bokolia
- Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Inshad Ali Khan
- Department of Microbiology, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| |
Collapse
|
20
|
Laval T, Chaumont L, Demangel C. Not too fat to fight: The emerging role of macrophage fatty acid metabolism in immunity to Mycobacterium tuberculosis. Immunol Rev 2021; 301:84-97. [PMID: 33559209 DOI: 10.1111/imr.12952] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/23/2022]
Abstract
While the existence of a special relationship between Mycobacterium tuberculosis (Mtb) and host lipids has long been known, it remains a challenging enigma. It was clearly established that Mtb requires host fatty acids (FAs) and cholesterol to produce energy, build its distinctive lipid-rich cell wall, and produce lipid virulence factors. It was also observed that in infected hosts, Mtb constantly resides in a FA-rich environment that the pathogen contributes to generate by inducing a lipid-laden "foamy" phenotype in host macrophages. These observations and the proximity between lipid droplets and phagosomes containing bacteria within infected macrophages gave rise to the hypothesis that Mtb reprograms host cell lipid metabolism to ensure a continuous supply of essential nutrients and its long-term persistence in vivo. However, recent studies question this principle by indicating that in Mtb-infected macrophages, lipid droplet formation prevents bacterial acquisition of host FAs while supporting the production of FA-derived protective lipid mediators. Further, in vivo investigations reveal discrete macrophage phenotypes linking the FA metabolisms of host cell and intracellular pathogen. Notably, FA storage within lipid droplets characterizes both macrophages controlling Mtb infection and dormant intracellular Mtb. In this review, we integrate findings from immunological and microbiological studies illustrating the new concept that cytoplasmic accumulation of FAs is a metabolic adaptation of macrophages to Mtb infection, which potentiates their antimycobacterial responses and forces the intracellular pathogen to shift into fat-saving, survival mode.
Collapse
Affiliation(s)
- Thomas Laval
- Immunobiology of Infection Unit, Institut Pasteur, INSERM U1221, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Lise Chaumont
- Immunobiology of Infection Unit, Institut Pasteur, INSERM U1221, Paris, France
| | - Caroline Demangel
- Immunobiology of Infection Unit, Institut Pasteur, INSERM U1221, Paris, France
| |
Collapse
|
21
|
Bansal R, Khan MM, Dasari S, Verma I, Goodlett DR, Manes NP, Nita-Lazar A, Sharma SP, Kumar A, Singh N, Chakraborti A, Gupta V, Dogra MR, Ram J, Gupta A. Proteomic profile of vitreous in patients with tubercular uveitis. Tuberculosis (Edinb) 2021; 126:102036. [PMID: 33359883 PMCID: PMC11005023 DOI: 10.1016/j.tube.2020.102036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/31/2020] [Accepted: 11/29/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To elucidate disease-specific host protein profile in vitreous fluid of patients with intraocular inflammation due to tubercular uveitis (TBU). METHODS Vitreous samples from 13 patients with TBU (group A), 7 with non-TBU (group B) and 9 with no uveitis (group C) were analysed by shotgun proteomics using Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS). Differentially expressed proteins (DEPs) were subjected to pathway analysis using WEB-based Gene SeT Analysis Toolkit software. RESULTS Compared to control groups (B + C combined), group A (TBU) displayed 32 (11 upregulated, 21 downregulated) DEPs, which revealed an upregulation of coagulation cascades, complement and classic pathways, and downregulation of metabolism of carbohydrates, gluconeogenesis, glucose metabolism and glycolysis/gluconeogenesis pathways. When compared to group B (non-TBU) alone, TBU displayed 58 DEPs (21 upregulated, 37 downregulated), with an upregulation of apoptosis, KRAS signaling, diabetes pathways, classic pathways, and downregulation of MTORC1 signaling, glycolysis/gluconeogenesis, and glucose metabolism. CONCLUSION This differential protein profile provides novel insights into the molecular mechanisms of TBU and a baseline to explore vitreous biomarkers to differentiate TBU from non-TBU, warranting future studies to identify and validate them as a diagnostic tool in TBU. The enriched pathways generate interesting hypotheses and drive further research.
Collapse
Affiliation(s)
- Reema Bansal
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Mohd M Khan
- University of Maryland, School of Medicine, Baltimore, MD, USA; Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Surendra Dasari
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.
| | - Indu Verma
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | | | - Nathan P Manes
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Aleksandra Nita-Lazar
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Surya P Sharma
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Aman Kumar
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Nirbhai Singh
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Anuradha Chakraborti
- Department of Experimental Medicine & Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Vishali Gupta
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - M R Dogra
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Jagat Ram
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Amod Gupta
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
22
|
Abstract
Enzymes fuel the biochemical activities of all cells. Their substrates and products thus represent a potential window into the physiologic state of a cell. Metabolomics focuses on the global, or systems-level, study of small molecules in a given biological system and has thus provided an experimental tool with which to study cellular physiology, including the biochemistry within pathogenic microorganisms. While metabolomic studies of Mycobacterium tuberculosis are still in their infancy, recent studies have begun to deliver unique insights into the composition, organization, activity, and regulation of the bacterium's physiologic network not accessible by other approaches. Here, we outline practical methods for the culture, collection, and analysis of metabolomic samples from M. tuberculosis that emphasize minimally perturbing sample handling, broad and native metabolite recovery, and sensitive, biologically agnostic metabolite detection.
Collapse
Affiliation(s)
- Kyle A Planck
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Kyu Rhee
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
23
|
Osada-Oka M, Goda N, Saiga H, Yamamoto M, Takeda K, Ozeki Y, Yamaguchi T, Soga T, Tateishi Y, Miura K, Okuzaki D, Kobayashi K, Matsumoto S. Metabolic adaptation to glycolysis is a basic defense mechanism of macrophages for Mycobacterium tuberculosis infection. Int Immunol 2020; 31:781-793. [PMID: 31201418 PMCID: PMC6839748 DOI: 10.1093/intimm/dxz048] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 06/26/2019] [Indexed: 12/17/2022] Open
Abstract
Macrophages are major components of tuberculosis (TB) granulomas and are responsible for host defenses against the intracellular pathogen, Mycobacterium tuberculosis. We herein showed the strong expression of hypoxia-inducible factor-1α (HIF-1α) in TB granulomas and more rapid death of HIF-1α-conditional knockout mice than wild-type (WT) mice after M. tuberculosis infection. Although interferon-γ (IFN-γ) is a critical host-protective cytokine against intracellular pathogens, HIF-1-deficient macrophages permitted M. tuberculosis growth even after activation with IFN-γ. These results prompted us to investigate the role of HIF-1α in host defenses against infection. We found that the expression of lactate dehydrogenase-A (LDH-A) was controlled by HIF-1α in M. tuberculosis-infected macrophages IFN-γ independently. LDH-A is an enzyme that converts pyruvate to lactate and we found that the intracellular level of pyruvate in HIF-1α-deficient bone marrow-derived macrophages (BMDMs) was significantly higher than in WT BMDMs. Intracellular bacillus replication was enhanced by an increase in intracellular pyruvate concentrations, which were decreased by LDH-A. Mycobacteria in phagosomes took up exogenous pyruvate more efficiently than glucose, and used it as the feasible carbon source for intracellular growth. These results demonstrate that HIF-1α prevents the hijacking of pyruvate in macrophages, making it a fundamental host-protective mechanism against M. tuberculosis.
Collapse
Affiliation(s)
- Mayuko Osada-Oka
- Food Hygiene and Environmental Health, Graduate School of Life and Environmental Science, Kyoto Prefectural University, Kyoto, Kyoto, Japan
| | - Nobuhito Goda
- Department of Life Science and Medical BioScience, Waseda University School of Advanced Science and Engineering, Shinjuku-ku, Tokyo, Japan
| | - Hiroyuki Saiga
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Masahiro Yamamoto
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kiyoshi Takeda
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuriko Ozeki
- Department of Bacteriology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Takehiro Yamaguchi
- Department of Bacteriology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Yu Tateishi
- Department of Applied Pharmacology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Osaka, Japan
| | - Katsuyuki Miura
- Department of Applied Pharmacology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Osaka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kazuo Kobayashi
- Division of Public Health, Osaka Institute of Public Health, Osaka, Osaka, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| |
Collapse
|
24
|
Parish T. In vitro drug discovery models for Mycobacterium tuberculosis relevant for host infection. Expert Opin Drug Discov 2020; 15:349-358. [PMID: 31899974 DOI: 10.1080/17460441.2020.1707801] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction: Tuberculosis is the leading cause of death from infectious disease. Current drug therapy requires a combination of antibiotics taken over >6 months. An urgent need for new agents that can shorten therapy is required. In order to develop new drugs, simple in vitro assays are required that can identify efficacious compounds rapidly and predict in vivo activity in the human.Areas covered: This review focusses on the most relevant in vitro assays that can be utilized in a drug discovery program and which mimic different aspects of infection or disease. The focus is largely on assays used to test >1000s of compounds reliably and robustly. However, some assays used for 10s to 100s of compounds are included where the utility outweighs the low capacity. Literature searches for high throughput screening, models and in vitro assays were undertaken.Expert opinion: Drug discovery and development in tuberculosis is extremely challenging due to the requirement for predicting drug efficacy in a disease with complex pathology in which bacteria exist in heterogeneous states in inaccesible locations. A combination of assays can be used to determine profiles against replicating, non-replicating, intracellular and tolerant bacteria.
Collapse
Affiliation(s)
- Tanya Parish
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, USA
| |
Collapse
|
25
|
Metabolic principles of persistence and pathogenicity in Mycobacterium tuberculosis. Nat Rev Microbiol 2019; 16:496-507. [PMID: 29691481 DOI: 10.1038/s41579-018-0013-4] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Metabolism was once relegated to the supply of energy and biosynthetic precursors, but it has now become clear that it is a specific mediator of nearly all physiological processes. In the context of microbial pathogenesis, metabolism has expanded outside its canonical role in bacterial replication. Among human pathogens, this expansion has emerged perhaps nowhere more visibly than for Mycobacterium tuberculosis, the causative agent of tuberculosis. Unlike most pathogens, M. tuberculosis has evolved within humans, which are both host and reservoir. This makes unrestrained replication and perpetual quiescence equally incompatible strategies for survival as a species. In this Review, we summarize recent work that illustrates the diversity of metabolic functions that not only enable M. tuberculosis to establish and maintain a state of chronic infection within the host but also facilitate its survival in the face of drug pressure and, ultimately, completion of its life cycle.
Collapse
|
26
|
Traven A, Naderer T. Central metabolic interactions of immune cells and microbes: prospects for defeating infections. EMBO Rep 2019; 20:e47995. [PMID: 31267653 PMCID: PMC6607010 DOI: 10.15252/embr.201947995] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/22/2019] [Accepted: 05/27/2019] [Indexed: 12/16/2022] Open
Abstract
Antimicrobial drug resistance is threatening to take us to the "pre-antibiotic era", where people are dying from preventable and treatable diseases and the risk of hospital-associated infections compromises the success of surgery and cancer treatments. Development of new antibiotics is slow, and alternative approaches to control infections have emerged based on insights into metabolic pathways in host-microbe interactions. Central carbon metabolism of immune cells is pivotal in mounting an effective response to invading pathogens, not only to meet energy requirements, but to directly activate antimicrobial responses. Microbes are not passive players here-they remodel their metabolism to survive and grow in host environments. Sometimes, microbes might even benefit from the metabolic reprogramming of immune cells, and pathogens such as Candida albicans, Salmonella Typhimurium and Staphylococcus aureus can compete with activated host cells for sugars that are needed for essential metabolic pathways linked to inflammatory processes. Here, we discuss how metabolic interactions between innate immune cells and microbes determine their survival during infection, and ways in which metabolism could be manipulated as a therapeutic strategy.
Collapse
Affiliation(s)
- Ana Traven
- Infection and Immunity Program and the Department of Biochemistry & Molecular BiologyBiomedicine Discovery InstituteMonash UniversityClaytonVic.Australia
| | - Thomas Naderer
- Infection and Immunity Program and the Department of Biochemistry & Molecular BiologyBiomedicine Discovery InstituteMonash UniversityClaytonVic.Australia
| |
Collapse
|
27
|
Mashabela GT, de Wet TJ, Warner DF. Mycobacterium tuberculosis Metabolism. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0067-2019. [PMID: 31350832 PMCID: PMC10957194 DOI: 10.1128/microbiolspec.gpp3-0067-2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Indexed: 02/06/2023] Open
Abstract
Mycobacterium tuberculosis is the cause of tuberculosis (TB), a disease which continues to overwhelm health systems in endemic regions despite the existence of effective combination chemotherapy and the widespread use of a neonatal anti-TB vaccine. For a professional pathogen, M. tuberculosis retains a surprisingly large proportion of the metabolic repertoire found in nonpathogenic mycobacteria with very different lifestyles. Moreover, evidence that additional functions were acquired during the early evolution of the M. tuberculosis complex suggests the organism has adapted (and augmented) the metabolic pathways of its environmental ancestor to persistence and propagation within its obligate human host. A better understanding of M. tuberculosis pathogenicity, however, requires the elucidation of metabolic functions under disease-relevant conditions, a challenge complicated by limited knowledge of the microenvironments occupied and nutrients accessed by bacilli during host infection, as well as the reliance in experimental mycobacteriology on a restricted number of experimental models with variable relevance to clinical disease. Here, we consider M. tuberculosis metabolism within the framework of an intimate host-pathogen coevolution. Focusing on recent advances in our understanding of mycobacterial metabolic function, we highlight unusual adaptations or departures from the better-characterized model intracellular pathogens. We also discuss the impact of these mycobacterial "innovations" on the susceptibility of M. tuberculosis to existing and experimental anti-TB drugs, as well as strategies for targeting metabolic pathways. Finally, we offer some perspectives on the key gaps in the current knowledge of fundamental mycobacterial metabolism and the lessons which might be learned from other systems.
Collapse
Affiliation(s)
- Gabriel T Mashabela
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Current address: Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, University of Stellenbosch, South Africa
| | - Timothy J de Wet
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Department of Integrative Biomedical Sciences, University of Cape Town, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research in Africa, University of Cape Town, South Africa
| |
Collapse
|
28
|
Fieweger RA, Wilburn KM, VanderVen BC. Comparing the Metabolic Capabilities of Bacteria in the Mycobacterium tuberculosis Complex. Microorganisms 2019; 7:E177. [PMID: 31216777 PMCID: PMC6617402 DOI: 10.3390/microorganisms7060177] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/10/2019] [Accepted: 06/15/2019] [Indexed: 02/06/2023] Open
Abstract
Pathogenic mycobacteria are known for their ability to maintain persistent infections in various mammals. The canonical pathogen in this genus is Mycobacterium tuberculosis and this bacterium is particularly successful at surviving and replicating within macrophages. Here, we will highlight the metabolic processes that M. tuberculosis employs during infection in macrophages and compare these findings with what is understood for other pathogens in the M. tuberculosis complex.
Collapse
Affiliation(s)
- Rachael A Fieweger
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA.
| | - Kaley M Wilburn
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA.
| | - Brian C VanderVen
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
29
|
The hydrolase LpqI primes mycobacterial peptidoglycan recycling. Nat Commun 2019; 10:2647. [PMID: 31201321 PMCID: PMC6572805 DOI: 10.1038/s41467-019-10586-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 05/14/2019] [Indexed: 12/26/2022] Open
Abstract
Growth and division by most bacteria requires remodelling and cleavage of their cell wall. A byproduct of this process is the generation of free peptidoglycan (PG) fragments known as muropeptides, which are recycled in many model organisms. Bacteria and hosts can harness the unique nature of muropeptides as a signal for cell wall damage and infection, respectively. Despite this critical role for muropeptides, it has long been thought that pathogenic mycobacteria such as Mycobacterium tuberculosis do not recycle their PG. Herein we show that M. tuberculosis and Mycobacterium bovis BCG are able to recycle components of their PG. We demonstrate that the core mycobacterial gene lpqI, encodes an authentic NagZ β-N-acetylglucosaminidase and that it is essential for PG-derived amino sugar recycling via an unusual pathway. Together these data provide a critical first step in understanding how mycobacteria recycle their peptidoglycan. Bacterial growth and division require remodelling of the cell wall, which generates free peptidoglycan fragments. Here, Moynihan et al. show that Mycobacterium tuberculosis can recycle components of their peptidoglycan, and characterise a crucial enzyme required for this process.
Collapse
|
30
|
Kalia NP, Shi Lee B, Ab Rahman NB, Moraski GC, Miller MJ, Pethe K. Carbon metabolism modulates the efficacy of drugs targeting the cytochrome bc 1:aa 3 in Mycobacterium tuberculosis. Sci Rep 2019; 9:8608. [PMID: 31197236 PMCID: PMC6565617 DOI: 10.1038/s41598-019-44887-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/23/2019] [Indexed: 11/30/2022] Open
Abstract
The influence of carbon metabolism on oxidative phosphorylation is poorly understood in mycobacteria. M. tuberculosis expresses two respiratory terminal oxidases, the cytochrome bc1:aa3 and the cytochrome bd oxidase, which are jointly required for oxidative phosphorylation and mycobacterial viability. The essentiality of the cytochrome bc1:aa3 for optimum growth is illustrated by its vulnerability to chemical inhibition by the clinical drug candidate Q203 and several other chemical series. The cytochrome bd oxidase is not strictly essential for growth but is required to maintain bioenergetics when the function of the cytochrome bc1:aa3 is compromised. In this study, we observed that the potency of drugs targeting the cytochrome bc1:aa3 is influenced by carbon metabolism. The efficacy of Q203 and related derivatives was alleviated by glycerol supplementation. The negative effect of glycerol supplementation on Q203 potency correlated with an upregulation of the cytochrome bd oxidase-encoding cydABDC operon. Upon deletion of cydAB, the detrimental effect of glycerol on the potency of Q203 was abrogated. The same phenomenon was also observed in recent clinical isolates, but to a lesser extent compared to the laboratory-adapted strain H37Rv. This study reinforces the importance of optimizing in vitro culture conditions for drug evaluation in mycobacteria, a factor which appeared to be particularly essential for drugs targeting the cytochrome bc1:aa3 terminal oxidase.
Collapse
Affiliation(s)
- Nitin P Kalia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Bei Shi Lee
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Nurlilah B Ab Rahman
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Garrett C Moraski
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Marvin J Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kevin Pethe
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore. .,School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
31
|
Abstract
It is generally regarded that the progression of an infection within host macrophages is the consequence of a failed immune response. However, recent appreciation of macrophage heterogeneity, with respect to both development and metabolism, indicates that the reality is more complex. Different lineages of tissue-resident macrophages respond divergently to microbial, environmental and immunological stimuli. The emerging picture that the developmental origin of macrophages determines their responses to immune stimulation and to infection stresses the importance of in vivo infection models. Recent investigations into the metabolism of infecting microorganisms and host macrophages indicate that their metabolic interface can be a major determinant of pathogen growth or containment. This Review focuses on the integration of data from existing studies, the identification of challenges in generating and interpreting data from ongoing studies and a discussion of the technologies and tools that are required to best address future questions in the field.
Collapse
Affiliation(s)
- David G Russell
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | - Lu Huang
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Brian C VanderVen
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
32
|
Sun L, Zhang L, Wang T, Jiao W, Li Q, Yin Q, Li J, Qi H, Xu F, Shen C, Xiao J, Liu S, Mokrousov I, Huang H, Shen A. Mutations of Mycobacterium tuberculosis induced by anti-tuberculosis treatment result in metabolism changes and elevation of ethambutol resistance. INFECTION GENETICS AND EVOLUTION 2018; 72:151-158. [PMID: 30292007 DOI: 10.1016/j.meegid.2018.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/12/2018] [Accepted: 09/30/2018] [Indexed: 10/28/2022]
Abstract
Selective pressure from antibiotic use is one of the most important risk factors associated with the development of drug resistance in Mycobacterium tuberculosis (MTB). However, the mechanisms underlying drug resistance at the molecular level remain partly unclear. Therefore, the purpose of this study was to investigate the potential functional effect of novel mutations arising from anti-tuberculosis treatment. We analyzed two multidrug-resistant TB (MDR-TB) isolates from the same patient; one collected before and one almost a year after commencing MDR-TB treatment. The post-treatment isolate exhibited elevated ethambutol resistance. We sequenced the whole genomes of the two clinical isolates and detected six novel polymorphisms affecting the genes Rv1026, nc0021, Rv2155c, Rv2437, and Rv3696c, and the intergenic region between Rv2764c and Rv2765. Metabolomics approach was used to reveal the effect of the found variation on the metabolic pathways of MTB. Partial least squares-discriminant analysis showed a clear differentiation between the two isolates, involving a total of 175 metabolites. Pathway analysis showed that these metabolites are mainly involved in amino sugar and nucleotide sugar metabolism, β-alanine metabolism, sulfur metabolism, and galactose metabolism. The increased ethambutol resistance exhibited by the post-treatment MDR-TB strain could speculatively be linked to the identified genetic variations, which affected the synthesis of a number of metabolites associated with sources of carbon and energy. This may have been the main factor underlying the increased ethambutol resistance of this isolate.
Collapse
Affiliation(s)
- Lin Sun
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Liqun Zhang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Ting Wang
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Weiwei Jiao
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Qinjing Li
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Qingqin Yin
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Jieqiong Li
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Hui Qi
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Fang Xu
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Chen Shen
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Jing Xiao
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Shuping Liu
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Igor Mokrousov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St Petersburg Pasteur Institute, St Petersburg, Russia.
| | - Hairong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China.
| | - Adong Shen
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China.
| |
Collapse
|
33
|
Trutneva K, Shleeva M, Nikitushkin V, Demina G, Kaprelyants A. Protein Composition of Mycobacterium smegmatis Differs Significantly Between Active Cells and Dormant Cells With Ovoid Morphology. Front Microbiol 2018; 9:2083. [PMID: 30233550 PMCID: PMC6131537 DOI: 10.3389/fmicb.2018.02083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/14/2018] [Indexed: 01/07/2023] Open
Abstract
Mycobacteria are able to form dormant cells, which survive for a long time without multiplication. The molecular mechanisms behind prolonged survival of dormant cells are not fully described. In particular, little information is known on biochemical processes which might take place in cells under dormancy. To gain insight into this problem, Mycobacterium smegmatis cells in deep dormant state were obtained after gradual acidification of the growth medium in prolonged stationary phase followed by 1 month of storage at room temperature. Such cells were characterized by low metabolic activity, including respiration, resistance to antibiotics, and altered morphology. The protein composition of cytoplasm and membrane fractions obtained from active and dormant cells were compared by 2D electrophoresis. Almost half of the proteins found in the proteome of dormant cells were absent in that of active cells. This result differs significantly from published results obtained in other studies employing different models of mycobacterium dormancy. This discrepancy could be explained by a deeper dormancy developed in the present model. A feature of a “dormant proteome” is high representation of enzymes involved in glycolysis and defense systems that inactivate or detoxify reactive oxygen and nitrogen species, aldehydes, and oxidized lipids. Dormant mycobacteria are enriched by degradative enzymes, which could eliminate damaged molecules, or the products of such degradation could be reutilized by the cell during prolonged storage. We suggest that some enzymes in dormant cells are inactive, having been used upon transition to the dormant state, or proteins stored in dormant cells for further cell reactivation. At the same time, some proteins could be functional and play roles in maintenance of cell metabolism, albeit at a very slow rate. This study provides a clue as to which biochemical processes could be active under dormancy to ensure long-term viability of dormant mycobacteria.
Collapse
Affiliation(s)
- Kseniya Trutneva
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Margarita Shleeva
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Vadim Nikitushkin
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Galina Demina
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Arseny Kaprelyants
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
34
|
Lee JJ, Lim J, Gao S, Lawson CP, Odell M, Raheem S, Woo J, Kang SH, Kang SS, Jeon BY, Eoh H. Glutamate mediated metabolic neutralization mitigates propionate toxicity in intracellular Mycobacterium tuberculosis. Sci Rep 2018; 8:8506. [PMID: 29855554 PMCID: PMC5981324 DOI: 10.1038/s41598-018-26950-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/23/2018] [Indexed: 11/09/2022] Open
Abstract
Metabolic networks in biological systems are interconnected, such that malfunctioning parts can be corrected by other parts within the network, a process termed adaptive metabolism. Unlike Bacillus Calmette-Guérin (BCG), Mycobacterium tuberculosis (Mtb) better manages its intracellular lifestyle by executing adaptive metabolism. Here, we used metabolomics and identified glutamate synthase (GltB/D) that converts glutamine to glutamate (Q → E) as a metabolic effort used to neutralize cytoplasmic pH that is acidified while consuming host propionate carbon through the methylcitrate cycle (MCC). Methylisocitrate lyase, the last step of the MCC, is intrinsically downregulated in BCG, leading to obstruction of carbon flux toward central carbon metabolism, accumulation of MCC intermediates, and interference with GltB/D mediated neutralizing activity against propionate toxicity. Indeed, vitamin B12 mediated bypass MCC and additional supplement of glutamate led to selectively correct the phenotypic attenuation in BCG and restore the adaptive capacity of BCG to the similar level of Mtb phenotype. Collectively, a defective crosstalk between MCC and Q → E contributes to attenuation of intracellular BCG. Furthermore, GltB/D inhibition enhances the level of propionate toxicity in Mtb. Thus, these findings revealed a new adaptive metabolism and propose GltB/D as a synergistic target to improve the antimicrobial outcomes of MCC inhibition in Mtb.
Collapse
Affiliation(s)
- Jae Jin Lee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Juhyeon Lim
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Shengjia Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Christopher P Lawson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, United Kingdom
| | - Mark Odell
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, United Kingdom.,Department of Life Sciences, Faculty of Science and Technology, University of Westminster, W1W 6UV, London, United Kingdom
| | - Saki Raheem
- Department of Life Sciences, Faculty of Science and Technology, University of Westminster, W1W 6UV, London, United Kingdom
| | - JeongIm Woo
- Department of Biomedical Laboratory Science, College of Health Science, Yonsei University, Wonju, 26493, Korea
| | - Sung-Ho Kang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Shin-Seok Kang
- Chungbuk Veterinary Service Laboratory, 380-230, Chungju, Republic of Korea
| | - Bo-Young Jeon
- Department of Biomedical Laboratory Science, College of Health Science, Yonsei University, Wonju, 26493, Korea
| | - Hyungjin Eoh
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
35
|
Abstract
After decades of relative inactivity, a large increase in efforts to discover antitubercular therapeutics has brought insights into the biology of Mycobacterium tuberculosis (Mtb) and promising new drugs such as bedaquiline, which inhibits ATP synthase, and the nitroimidazoles delamanid and pretomanid, which inhibit both mycolic acid synthesis and energy production. Despite these advances, the drug discovery pipeline remains underpopulated. The field desperately needs compounds with novel mechanisms of action capable of inhibiting multi- and extensively drug -resistant Mtb (M/XDR-TB) and, potentially, nonreplicating Mtb with the hope of shortening the duration of required therapy. New knowledge about Mtb, along with new methods and technologies, has driven exploration into novel target areas, such as energy production and central metabolism, that diverge from the classical targets in macromolecular synthesis. Here, we review new small molecule drug candidates that act on these novel targets to highlight the methods and perspectives advancing the field. These new targets bring with them the aspiration of shortening treatment duration as well as a pipeline of effective regimens against XDR-TB, positioning Mtb drug discovery to become a model for anti-infective discovery.
Collapse
Affiliation(s)
- Samantha Wellington
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Deborah T. Hung
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| |
Collapse
|
36
|
Zhang P, Zhang W, Lang Y, Qu Y, Chu F, Chen J, Cui L. Mass spectrometry-based metabolomics for tuberculosis meningitis. Clin Chim Acta 2018; 483:57-63. [PMID: 29678632 DOI: 10.1016/j.cca.2018.04.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 04/14/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023]
Abstract
Tuberculosis meningitis (TBM) is a prevalent form of extra-pulmonary tuberculosis that causes substantial morbidity and mortality. Diagnosis of TBM is difficult because of the limited sensitivity of existing laboratory techniques. A metabolomics approach can be used to investigate the sets of metabolites of both bacteria and host, and has been used to clarify the mechanisms underlying disease development, and identify metabolic changes, leadings to improved methods for diagnosis, treatment, and prognostication. Mass spectrometry (MS) is a major analysis platform used in metabolomics, and MS-based metabolomics provides wide metabolite coverage, because of its high sensitivity, and is useful for the investigation of Mycobacterium tuberculosis (Mtb) and related diseases. It has been used to investigate TBM diagnosis; however, the processes involved in the MS-based metabolomics approach are complex and flexible, and often consist of several steps, and small changes in the methods used can have a huge impact on the final results. Here, the process of MS-based metabolomics is summarized and its applications in Mtb and Mtb-related diseases discussed. Moreover, the current status of TBM metabolomics is described.
Collapse
Affiliation(s)
- Peixu Zhang
- Department of Neurology, First Hospital, Jilin University, Changchun 130021, PR China
| | - Weiguanliu Zhang
- Department of Neurology, First Hospital, Jilin University, Changchun 130021, PR China
| | - Yue Lang
- Department of Neurology, First Hospital, Jilin University, Changchun 130021, PR China
| | - Yan Qu
- Blood Bank, Jilin Women and Children Health Hospital, Changchun 130021, PR China
| | - Fengna Chu
- Department of Neurology, First Hospital, Jilin University, Changchun 130021, PR China
| | - Jiafeng Chen
- Department of Neurology, First Hospital, Jilin University, Changchun 130021, PR China
| | - Li Cui
- Department of Neurology, First Hospital, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
37
|
Vijay S, Hai HT, Thu DDA, Johnson E, Pielach A, Phu NH, Thwaites GE, Thuong NTT. Ultrastructural Analysis of Cell Envelope and Accumulation of Lipid Inclusions in Clinical Mycobacterium tuberculosis Isolates from Sputum, Oxidative Stress, and Iron Deficiency. Front Microbiol 2018; 8:2681. [PMID: 29379477 PMCID: PMC5770828 DOI: 10.3389/fmicb.2017.02681] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/22/2017] [Indexed: 11/13/2022] Open
Abstract
Introduction: Mycobacteria have several unique cellular characteristics, such as multiple cell envelope layers, elongation at cell poles, asymmetric cell division, and accumulation of intracytoplasmic lipid inclusions, which contributes to their survival under stress conditions. However, the understanding of these characteristics in clinical Mycobacterium tuberculosis (M. tuberculosis) isolates and under host stress is limited. We previously reported the influence of host stress on the cell length distribution in a large set of clinical M. tuberculosis isolates (n = 158). Here, we investigate the influence of host stress on the cellular ultrastructure of few clinical M. tuberculosis isolates (n = 8) from that study. The purpose of this study is to further understand the influence of host stress on the cellular adaptations of clinical M. tuberculosis isolates. Methods: We selected few M. tuberculosis isolates (n = 8) for analyzing the cellular ultrastructure ex vivo in sputum and under in vitro stress conditions by transmission electron microscopy. The cellular adaptations of M. tuberculosis in sputum were correlated with the ultrastructure of antibiotic sensitive and resistant isolates in liquid culture, under oxidative stress, iron deficiency, and exposure to isoniazid. Results: In sputum, M. tuberculosis accumulated intracytoplasmic lipid inclusions. In liquid culture, clinical M. tuberculosis revealed isolate to isolate variation in the extent of intracytoplasmic lipid inclusions, which were absent in the laboratory strain H37Rv. Oxidative stress, iron deficiency, and exposure to isoniazid increased the accumulation of lipid inclusions and decreased the thickness of the cell envelope electron transparent layer in M. tuberculosis cells. Furthermore, intracytoplasmic compartments were observed in iron deficient cells. Conclusion: Our ultrastructural analysis has revealed significant influence of host stress on the cellular adaptations in clinical M. tuberculosis isolates. These adaptations may contribute to the survival of M. tuberculosis under host and antibiotic stress conditions. Variation in the cellular adaptations among clinical M. tuberculosis isolates may correlate with their ability to persist in tuberculosis patients during antibiotic treatment. These observations indicate the need for further analyzing these cellular adaptations in a large set of clinical M. tuberculosis isolates. This will help to determine the significance of these cellular adaptations in the tuberculosis treatment.
Collapse
Affiliation(s)
- Srinivasan Vijay
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Hoang T Hai
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Do D A Thu
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Errin Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Anna Pielach
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Nguyen H Phu
- Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nguyen T T Thuong
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
38
|
Multifaceted remodeling by vitamin C boosts sensitivity of Mycobacterium tuberculosis subpopulations to combination treatment by anti-tubercular drugs. Redox Biol 2018; 15:452-466. [PMID: 29413958 PMCID: PMC5975079 DOI: 10.1016/j.redox.2017.12.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/28/2017] [Accepted: 12/30/2017] [Indexed: 12/03/2022] Open
Abstract
Bacterial dormancy is a major impediment to the eradication of tuberculosis (TB), because currently used drugs primarily target actively replicating bacteria. Therefore, decoding of the critical survival pathways in dormant tubercle bacilli is a research priority to formulate new approaches for killing these bacteria. Employing a network-based gene expression analysis approach, we demonstrate that redox active vitamin C (vit C) triggers a multifaceted and robust adaptation response in Mycobacterium tuberculosis (Mtb) involving ~ 67% of the genome. Vit C-adapted bacteria display well-described features of dormancy, including growth stasis and progression to a viable but non-culturable (VBNC) state, loss of acid-fastness and reduction in length, dissipation of reductive stress through triglyceride (TAG) accumulation, protective response to oxidative stress, and tolerance to first line TB drugs. VBNC bacteria are reactivatable upon removal of vit C and they recover drug susceptibility properties. Vit C synergizes with pyrazinamide, a unique TB drug with sterilizing activity, to kill dormant and replicating bacteria, negating any tolerance to rifampicin and isoniazid in combination treatment in both in-vitro and intracellular infection models. Finally, the vit C multi-stress redox models described here also offer a unique opportunity for concurrent screening of compounds/combinations active against heterogeneous subpopulations of Mtb. These findings suggest a novel strategy of vit C adjunctive therapy by modulating bacterial physiology for enhanced efficacy of combination chemotherapy with existing drugs, and also possible synergies to guide new therapeutic combinations towards accelerating TB treatment. Vitamin C induces dormancy and reversible VBNC state in M. tuberculosis. Dormancy is achieved through a well-coordinated multifaceted bacterial response. Vitamin C synergy with pyrazinamide negates bacterial tolerance to other TB drugs. Vitamin C adjunctive therapy is a potential strategy for shortening chemotherapy. Vitamin C-based models are novel screening platforms for new compounds/combinations.
Collapse
|
39
|
Allosteric pyruvate kinase-based "logic gate" synergistically senses energy and sugar levels in Mycobacterium tuberculosis. Nat Commun 2017; 8:1986. [PMID: 29215013 PMCID: PMC5719368 DOI: 10.1038/s41467-017-02086-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/06/2017] [Indexed: 01/16/2023] Open
Abstract
Pyruvate kinase (PYK) is an essential glycolytic enzyme that controls glycolytic flux and is critical for ATP production in all organisms, with tight regulation by multiple metabolites. Yet the allosteric mechanisms governing PYK activity in bacterial pathogens are poorly understood. Here we report biochemical, structural and metabolomic evidence that Mycobacterium tuberculosis (Mtb) PYK uses AMP and glucose-6-phosphate (G6P) as synergistic allosteric activators that function as a molecular "OR logic gate" to tightly regulate energy and glucose metabolism. G6P was found to bind to a previously unknown site adjacent to the canonical site for AMP. Kinetic data and structural network analysis further show that AMP and G6P work synergistically as allosteric activators. Importantly, metabolome profiling in the Mtb surrogate, Mycobacterium bovis BCG, reveals significant changes in AMP and G6P levels during nutrient deprivation, which provides insights into how a PYK OR gate would function during the stress of Mtb infection.
Collapse
|
40
|
López-Agudelo VA, Baena A, Ramirez-Malule H, Ochoa S, Barrera LF, Ríos-Estepa R. Metabolic adaptation of two in silico mutants of Mycobacterium tuberculosis during infection. BMC SYSTEMS BIOLOGY 2017; 11:107. [PMID: 29157227 PMCID: PMC5697012 DOI: 10.1186/s12918-017-0496-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 11/13/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Up to date, Mycobacterium tuberculosis (Mtb) remains as the worst intracellular killer pathogen. To establish infection, inside the granuloma, Mtb reprograms its metabolism to support both growth and survival, keeping a balance between catabolism, anabolism and energy supply. Mtb knockouts with the faculty of being essential on a wide range of nutritional conditions are deemed as target candidates for tuberculosis (TB) treatment. Constraint-based genome-scale modeling is considered as a promising tool for evaluating genetic and nutritional perturbations on Mtb metabolic reprogramming. Nonetheless, few in silico assessments of the effect of nutritional conditions on Mtb's vulnerability and metabolic adaptation have been carried out. RESULTS A genome-scale model (GEM) of Mtb, modified from the H37Rv iOSDD890, was used to explore the metabolic reprogramming of two Mtb knockout mutants (pfkA- and icl-mutants), lacking key enzymes of central carbon metabolism, while exposed to changing nutritional conditions (oxygen, and carbon and nitrogen sources). A combination of shadow pricing, sensitivity analysis, and flux distributions patterns allowed us to identify metabolic behaviors that are in agreement with phenotypes reported in the literature. During hypoxia, at high glucose consumption, the Mtb pfkA-mutant showed a detrimental growth effect derived from the accumulation of toxic sugar phosphate intermediates (glucose-6-phosphate and fructose-6-phosphate) along with an increment of carbon fluxes towards the reductive direction of the tricarboxylic acid cycle (TCA). Furthermore, metabolic reprogramming of the icl-mutant (icl1&icl2) showed the importance of the methylmalonyl pathway for the detoxification of propionyl-CoA, during growth at high fatty acid consumption rates and aerobic conditions. At elevated levels of fatty acid uptake and hypoxia, we found a drop in TCA cycle intermediate accumulation that might create redox imbalance. Finally, findings regarding Mtb-mutant metabolic adaptation associated with asparagine consumption and acetate, succinate and alanine production, were in agreement with literature reports. CONCLUSIONS This study demonstrates the potential application of genome-scale modeling, flux balance analysis (FBA), phenotypic phase plane (PhPP) analysis and shadow pricing to generate valuable insights about Mtb metabolic reprogramming in the context of human granulomas.
Collapse
Affiliation(s)
- Víctor A. López-Agudelo
- Grupo de Bioprocesos, Departamento de Ingeniería Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Andres Baena
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | | | - Silvia Ochoa
- Grupo de investigación en Simulación, Diseño, Control y Optimización de Procesos (SIDCOP), Departamento de Ingeniería Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Luis F. Barrera
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
- Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Rigoberto Ríos-Estepa
- Grupo de Bioprocesos, Departamento de Ingeniería Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| |
Collapse
|
41
|
Integration of Metabolomics and Transcriptomics Reveals a Complex Diet of Mycobacterium tuberculosis during Early Macrophage Infection. mSystems 2017; 2:mSystems00057-17. [PMID: 28845460 PMCID: PMC5566787 DOI: 10.1128/msystems.00057-17] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 07/28/2017] [Indexed: 11/20/2022] Open
Abstract
The nutrients consumed by intracellular pathogens are mostly unknown. This is mainly due to the challenge of disentangling host and pathogen metabolism sharing the majority of metabolic pathways and hence metabolites. Here, we investigated the metabolic changes of Mycobacterium tuberculosis, the causative agent of tuberculosis, and its human host cell during early infection. To this aim, we combined gene expression data of both organisms and metabolite changes during the course of infection through integration into a genome-wide metabolic network. This led to the identification of infection-specific metabolic alterations, which we further exploited to model host-pathogen interactions quantitatively by flux balance analysis. These in silico data suggested that tubercle bacilli consume up to 33 different nutrients during early macrophage infection, which the bacteria utilize to generate energy and biomass to establish intracellular growth. Such multisubstrate fueling strategy renders the pathogen’s metabolism robust toward perturbations, such as innate immune responses or antibiotic treatments. Nutrient acquisition from the host environment is crucial for the survival of intracellular pathogens, but conceptual and technical challenges limit our knowledge of pathogen diets. To overcome some of these technical roadblocks, we exploited an experimentally accessible model for early infection of human macrophages by Mycobacterium tuberculosis, the etiological agent of tuberculosis, to study host-pathogen interactions with a multi-omics approach. We collected metabolomics and complete transcriptome RNA sequencing (dual RNA-seq) data of the infected macrophages, integrated them in a genome-wide reaction pair network, and identified metabolic subnetworks in host cells and M. tuberculosis that are modularly regulated during infection. Up- and downregulation of these metabolic subnetworks suggested that the pathogen utilizes a wide range of host-derived compounds, concomitant with the measured metabolic and transcriptional changes in both bacteria and host. To quantify metabolic interactions between the host and intracellular pathogen, we used a combined genome-scale model of macrophage and M. tuberculosis metabolism constrained by the dual RNA-seq data. Metabolic flux balance analysis predicted coutilization of a total of 33 different carbon sources and enabled us to distinguish between the pathogen’s substrates directly used as biomass precursors and the ones further metabolized to gain energy or to synthesize building blocks. This multiple-substrate fueling confers high robustness to interventions with the pathogen’s metabolism. The presented approach combining multi-omics data as a starting point to simulate system-wide host-pathogen metabolic interactions is a useful tool to better understand the intracellular lifestyle of pathogens and their metabolic robustness and resistance to metabolic interventions. IMPORTANCE The nutrients consumed by intracellular pathogens are mostly unknown. This is mainly due to the challenge of disentangling host and pathogen metabolism sharing the majority of metabolic pathways and hence metabolites. Here, we investigated the metabolic changes of Mycobacterium tuberculosis, the causative agent of tuberculosis, and its human host cell during early infection. To this aim, we combined gene expression data of both organisms and metabolite changes during the course of infection through integration into a genome-wide metabolic network. This led to the identification of infection-specific metabolic alterations, which we further exploited to model host-pathogen interactions quantitatively by flux balance analysis. These in silico data suggested that tubercle bacilli consume up to 33 different nutrients during early macrophage infection, which the bacteria utilize to generate energy and biomass to establish intracellular growth. Such multisubstrate fueling strategy renders the pathogen’s metabolism robust toward perturbations, such as innate immune responses or antibiotic treatments.
Collapse
|
42
|
Lactate oxidation facilitates growth of Mycobacterium tuberculosis in human macrophages. Sci Rep 2017; 7:6484. [PMID: 28744015 PMCID: PMC5526930 DOI: 10.1038/s41598-017-05916-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 06/06/2017] [Indexed: 11/09/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) uses alveolar macrophages as primary host cells during infection. In response to an infection, macrophages switch from pyruvate oxidation to reduction of pyruvate into lactate. Lactate might present an additional carbon substrate for Mtb. Here, we demonstrate that Mtb can utilize L-lactate as sole carbon source for in vitro growth. Lactate conversion is strictly dependent on one of two potential L-lactate dehydrogenases. A knock-out mutant lacking lldD2 (Rv1872c) was unable to utilize L-lactate. In contrast, the lldD1 (Rv0694) knock-out strain was not affected in growth on lactate and retained full enzymatic activity. On the basis of labelling experiments using [U-13C3]-L-lactate as a tracer the efficient uptake of lactate by Mtb and its conversion into pyruvate could be demonstrated. Moreover, carbon flux from lactate into the TCA cycle, and through gluconeogenesis was observed. Gluconeogenesis during lactate consumption depended on the phosphoenolpyruvate carboxykinase, a key enzyme for intracellular survival, showing that lactate utilization requires essential metabolic pathways. We observed that the ΔlldD2 mutant was impaired in replication in human macrophages, indicating a critical role for lactate oxidation during intracellular growth.
Collapse
|
43
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. To Eat and to Be Eaten: Mutual Metabolic Adaptations of Immune Cells and Intracellular Bacterial Pathogens upon Infection. Front Cell Infect Microbiol 2017; 7:316. [PMID: 28752080 PMCID: PMC5508010 DOI: 10.3389/fcimb.2017.00316] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022] Open
Abstract
Intracellular bacterial pathogens (IBPs) invade and replicate in different cell types including immune cells, in particular of the innate immune system (IIS) during infection in the acute phase. However, immune cells primarily function as essential players in the highly effective and integrated host defense systems comprising the IIS and the adaptive immune system (AIS), which cooperatively protect the host against invading microbes including IBPs. As countermeasures, the bacterial pathogens (and in particular the IBPs) have developed strategies to evade or reprogram the IIS at various steps. The intracellular replication capacity and the anti-immune defense responses of the IBP's as well as the specific antimicrobial responses of the immune cells of the innate and the AIS depend on specific metabolic programs of the IBPs and their host cells. The metabolic programs of the immune cells supporting or counteracting replication of the IBPs appear to be mutually exclusive. Indeed, recent studies show that upon interaction of naïve, metabolically quiescent immune cells with IBPs, different metabolic activation processes occur which may result in the provision of a survival and replication niche for the pathogen or its eradication. It is therefore likely that within a possible host cell population subsets exist that are metabolically programmed for pro- or anti-microbial conditions. These metabolic programs may be triggered by the interactions between different bacterial agonistic components and host cell receptors. In this review, we summarize the current status in the field and discuss metabolic adaptation processes within immune cells of the IIS and the IBPs that support or restrict the intracellular replication of the pathogens.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Department of Chemistry, Chair of Biochemistry, Technische Universität MünchenGarching, Germany
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of WürzburgWürzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Chair of Medical Microbiology and Hospital Epidemiology, Ludwig Maximilian University of MunichMünchen, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Chair of Medical Microbiology and Hospital Epidemiology, Ludwig Maximilian University of MunichMünchen, Germany
| |
Collapse
|
44
|
Mycobacterium tuberculosis Proteome Response to Antituberculosis Compounds Reveals Metabolic "Escape" Pathways That Prolong Bacterial Survival. Antimicrob Agents Chemother 2017; 61:AAC.00430-17. [PMID: 28416555 DOI: 10.1128/aac.00430-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/31/2017] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis (TB) continues to be one of the most common bacterial infectious diseases and is the leading cause of death in many parts of the world. A major limitation of TB therapy is slow killing of the infecting organism, increasing the risk for the development of a tolerance phenotype and drug resistance. Studies indicate that Mycobacterium tuberculosis takes several days to be killed upon treatment with lethal concentrations of antibiotics both in vitro and in vivo To investigate how metabolic remodeling can enable transient bacterial survival during exposure to bactericidal concentrations of compounds, M. tuberculosis strain H37Rv was exposed to twice the MIC of isoniazid, rifampin, moxifloxacin, mefloquine, or bedaquiline for 24 h, 48 h, 4 days, and 6 days, and the bacterial proteomic response was analyzed using quantitative shotgun mass spectrometry. Numerous sets of de novo bacterial proteins were identified over the 6-day treatment. Network analysis and comparisons between the drug treatment groups revealed several shared sets of predominant proteins and enzymes simultaneously belonging to a number of diverse pathways. Overexpression of some of these proteins in the nonpathogenic Mycobacterium smegmatis extended bacterial survival upon exposure to bactericidal concentrations of antimicrobials, and inactivation of some proteins in M. tuberculosis prevented the pathogen from escaping the fast killing in vitro and in macrophages, as well. Our biology-driven approach identified promising bacterial metabolic pathways and enzymes that might be targeted by novel drugs to reduce the length of tuberculosis therapy.
Collapse
|
45
|
Richard-Greenblatt M, Av-Gay Y. Epigenetic Phosphorylation Control of Mycobacterium tuberculosis Infection and Persistence. Microbiol Spectr 2017; 5:10.1128/microbiolspec.tbtb2-0005-2015. [PMID: 28281439 PMCID: PMC11687473 DOI: 10.1128/microbiolspec.tbtb2-0005-2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Indexed: 01/20/2023] Open
Abstract
Reversible protein phosphorylation is the most common type of epigenetic posttranslational modification in living cells used as a major regulation mechanism of biological processes. The Mycobacterium tuberculosis genome encodes for 11 serine/threonine protein kinases that are responsible for sensing environmental signals to coordinate a cellular response to ensure the pathogen's infectivity, survival, and growth. To overcome killing mechanisms generated within the host during infection, M. tuberculosis enters a state of nonreplicating persistence that is characterized by arrested growth, limited metabolic activity, and phenotypic resistance to antimycobacterial drugs. In this article we focus our attention on the role of M. tuberculosis serine/threonine protein kinases in sensing the host environment to coordinate the bacilli's physiology, including growth, cell wall components, and central metabolism, to establish a persistent infection.
Collapse
Affiliation(s)
- Melissa Richard-Greenblatt
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Yossef Av-Gay
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| |
Collapse
|
46
|
Ruecker N, Jansen R, Trujillo C, Puckett S, Jayachandran P, Piroli GG, Frizzell N, Molina H, Rhee KY, Ehrt S. Fumarase Deficiency Causes Protein and Metabolite Succination and Intoxicates Mycobacterium tuberculosis. Cell Chem Biol 2017; 24:306-315. [PMID: 28219662 DOI: 10.1016/j.chembiol.2017.01.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/07/2016] [Accepted: 01/19/2017] [Indexed: 12/22/2022]
Abstract
Enzymes of central carbon metabolism are essential mediators of Mycobacterium tuberculosis (Mtb) physiology and pathogenicity, but are often perceived to lack sufficient species selectivity to be pursued as potential drug targets. Fumarase (Fum) is an enzyme of the canonical tricarboxylic acid cycle and is dispensable in many organisms. Transposon mutagenesis studies in Mtb, however, indicate that Fum is required for optimal growth. Here, we report the generation and characterization of a genetically engineered Mtb strain in which Fum expression is conditionally regulated. This revealed that Fum deficiency is bactericidal in vitro and during both the acute and chronic phases of mouse infection. This essentiality is linked to marked accumulations of fumarate resulting in protein and metabolite succination, a covalent modification of cysteine thiol residues. These results identify Mtb Fum as a potentially species-specific drug target whose inactivation may kill Mtb through a covalently irreversible form of metabolic toxicity.
Collapse
Affiliation(s)
- Nadine Ruecker
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Robert Jansen
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Carolina Trujillo
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Susan Puckett
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Pradeepa Jayachandran
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Gerardo G Piroli
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Norma Frizzell
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Henrik Molina
- Proteomics Resource Center, Rockefeller University, New York, NY 10065, USA
| | - Kyu Y Rhee
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
47
|
Hartman TE, Wang Z, Jansen RS, Gardete S, Rhee KY. Metabolic Perspectives on Persistence. Microbiol Spectr 2017; 5:10.1128/microbiolspec.TBTB2-0026-2016. [PMID: 28155811 PMCID: PMC5302851 DOI: 10.1128/microbiolspec.tbtb2-0026-2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence has left little doubt about the importance of persistence or metabolism in the biology and chemotherapy of tuberculosis. However, knowledge of the intersection between these two factors has only recently begun to emerge. Here, we provide a focused review of metabolic characteristics associated with Mycobacterium tuberculosis persistence. We focus on metabolism because it is the biochemical foundation of all physiologic processes and a distinguishing hallmark of M. tuberculosis physiology and pathogenicity. In addition, it serves as the chemical interface between host and pathogen. Existing knowledge, however, derives largely from physiologic contexts in which replication is the primary biochemical objective. The goal of this review is to reframe current knowledge of M. tuberculosis metabolism in the context of persistence, where quiescence is often a key distinguishing characteristic. Such a perspective may help ongoing efforts to develop more efficient cures and inform on novel strategies to break the cycle of transmission sustaining the pandemic.
Collapse
Affiliation(s)
- Travis E. Hartman
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| | - Zhe Wang
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| | - Robert S. Jansen
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| | - Susana Gardete
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| | - Kyu Y. Rhee
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
- Department of Microbiology & Immunology, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
48
|
Montoya-Rosales A, Castro-Garcia P, Torres-Juarez F, Enciso-Moreno JA, Rivas-Santiago B. Glucose levels affect LL-37 expression in monocyte-derived macrophages altering the Mycobacterium tuberculosis intracellular growth control. Microb Pathog 2016; 97:148-53. [PMID: 27263098 DOI: 10.1016/j.micpath.2016.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 05/25/2016] [Accepted: 06/01/2016] [Indexed: 01/06/2023]
Abstract
Diabetes mellitus (DM)-2 patients have an increased susceptibility to develop pulmonary tuberculosis; this is partly due to the impairment of the innate immunity because of their higher glucose concentrations. In the present study, we determined the effect of the glucose concentrations in the LL-37 expression in infected and non-infected macrophages. Our results showed that the increasing glucose concentrations correlates with the low cathelicidin expression in non-infected cells, however in Mycobacterium tuberculosis infected cells, LL-37 expression was substantially increased in higher glucose concentrations, nevertheless the mycobacterial burden also increased, this phenomena can be associated with the cathelicidin immunomodulatory activity. Further evaluation for LL-37 needs to be done to determine whether this peptide can be used as a biomarker of tuberculosis progression in DM2 patients.
Collapse
Affiliation(s)
| | - Pamela Castro-Garcia
- Medical Research Unit Zacatecas, Mexican Institute for Social Security, Zacatecas, Mexico
| | - Flor Torres-Juarez
- Medical Research Unit Zacatecas, Mexican Institute for Social Security, Zacatecas, Mexico
| | | | - Bruno Rivas-Santiago
- Medical Research Unit Zacatecas, Mexican Institute for Social Security, Zacatecas, Mexico.
| |
Collapse
|
49
|
Oxadiazoles Have Butyrate-Specific Conditional Activity against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2016; 60:3608-16. [PMID: 27044545 DOI: 10.1128/aac.02896-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/24/2016] [Indexed: 12/31/2022] Open
Abstract
Mycobacterium tuberculosis is a global pathogen of huge importance which can adapt to several host niche environments in which carbon source availability is likely to vary. We developed and ran a phenotypic screen using butyrate as the sole carbon source to be more reflective of the host lung environment. We screened a library of ∼87,000 small compounds and identified compounds which demonstrated good antitubercular activity against M. tuberculosis grown with butyrate but not with glucose as the carbon source. Among the hits, we identified an oxadiazole series (six compounds) which had specific activity against M. tuberculosis but which lacked cytotoxicity against mammalian cells.
Collapse
|
50
|
Olive AJ, Sassetti CM. Metabolic crosstalk between host and pathogen: sensing, adapting and competing. Nat Rev Microbiol 2016; 14:221-34. [PMID: 26949049 DOI: 10.1038/nrmicro.2016.12] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Our understanding of bacterial pathogenesis is dominated by the cell biology of the host-pathogen interaction. However, the majority of metabolites that are used in prokaryotic and eukaryotic physiology and signalling are chemically similar or identical. Therefore, the metabolic crosstalk between pathogens and host cells may be as important as the interactions between bacterial effector proteins and their host targets. In this Review we focus on host-pathogen interactions at the metabolic level: chemical signalling events that enable pathogens to sense anatomical location and the local physiology of the host; microbial metabolic pathways that are dedicated to circumvent host immune mechanisms; and a few metabolites as central points of competition between the host and bacterial pathogens.
Collapse
Affiliation(s)
- Andrew J Olive
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| |
Collapse
|