1
|
Candor K, Ding L, Balchand S, Hammonds JE, Spearman P. The CLIC/GEEC pathway regulates particle uptake and formation of the virus-containing compartment (VCC) in HIV-1-infected macrophages. PLoS Pathog 2025; 21:e1012564. [PMID: 40067817 PMCID: PMC11925468 DOI: 10.1371/journal.ppat.1012564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/20/2025] [Accepted: 02/12/2025] [Indexed: 03/22/2025] Open
Abstract
HIV-1 particles are captured by the immunoglobulin superfamily member Siglec-1 on the surface of macrophages and dendritic cells, leading to particle internalization and facilitating trans-infection of CD4+ T cells. HIV-1-infected macrophages develop a unique intracellular compartment termed the virus-containing compartment (VCC) that exhibits characteristic markers of the late endosome and is enriched in components of the plasma membrane (PM). The VCC has been proposed as the major site of particle assembly in macrophages. Depleting Siglec-1 from macrophages significantly reduces VCC formation, implying a link between the capture and uptake of external HIV-1 particles and the development of VCCs within HIV-infected cells. We found that internalization of particles to the VCC was independent of clathrin, but required dynamin-2. CD98 and CD44, classical markers of the CLIC/GEEC pathway, colocalized with Siglec-1 and HIV-1 particles within the VCC. Virus-like particles (VLPs) were taken up within CD98 and Siglec-1-enriched tubular membranes that migrated centripetally over time to form VCC-like structures. Inhibition of CLIC/GEEC-mediated endocytosis resulted in the arrest of captured HIV-1 particles on the macrophage cell surface, prevented VCC formation, and significantly reduced the efficiency of trans-infection of T cells. These findings indicate that following capture of virus by Siglec-1, particles follow an endocytic route to the VCC that requires both the CLIC/GEEC pathway and dynamin-2. We propose a model in which internalization of HIV-1 particles together with CLIC/GEEC membranes leads to the formation of the VCC in HIV-infected macrophages, creating an intracellular platform that facilitates further particle assembly and budding.
Collapse
Affiliation(s)
- Kathleen Candor
- Immunology Graduate Program, University of Cincinnati, and Infectious Diseases Division, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Infectious Diseases Division, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio United States of America
| | - Lingmei Ding
- Infectious Diseases Division, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio United States of America
| | - Sai Balchand
- Infectious Diseases Division, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio United States of America
| | - Jason E. Hammonds
- Infectious Diseases Division, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio United States of America
| | - Paul Spearman
- Infectious Diseases Division, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio United States of America
| |
Collapse
|
2
|
Warner van Dijk FA, Bertram KM, O’Neil TR, Li Y, Buffa DJ, Harman AN, Cunningham AL, Nasr N. Recent Advances in Our Understanding of Human Inflammatory Dendritic Cells in Human Immunodeficiency Virus Infection. Viruses 2025; 17:105. [PMID: 39861894 PMCID: PMC11768623 DOI: 10.3390/v17010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Anogenital inflammation is a critical risk factor for HIV acquisition. The primary preventative HIV intervention, pre-exposure prophylaxis (PrEP), is ineffective in blocking transmission in anogenital inflammation. Pre-existing sexually transmitted diseases (STIs) and anogenital microbiota dysbiosis are the leading causes of inflammation, where inflammation is extensive and often asymptomatic and undiagnosed. Dendritic cells (DCs), as potent antigen-presenting cells, are among the first to capture HIV upon its entry into the mucosa, and they subsequently transport the virus to CD4 T cells, the primary HIV target cells. This increased HIV susceptibility in inflamed tissue likely stems from a disrupted epithelial barrier integrity, phenotypic changes in resident DCs and an influx of inflammatory HIV target cells, including DCs and CD4 T cells. Gaining insight into how HIV interacts with specific inflammatory DC subsets could inform the development of new therapeutic strategies to block HIV transmission. However, little is known about the early stages of HIV capture and transmission in inflammatory environments. Here, we review the currently characterised inflammatory-tissue DCs and their interactions with HIV.
Collapse
Affiliation(s)
- Freja A. Warner van Dijk
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (F.A.W.v.D.); (K.M.B.); (T.R.O.); (Y.L.); (D.J.B.); (A.N.H.)
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Kirstie M. Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (F.A.W.v.D.); (K.M.B.); (T.R.O.); (Y.L.); (D.J.B.); (A.N.H.)
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Thomas R. O’Neil
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (F.A.W.v.D.); (K.M.B.); (T.R.O.); (Y.L.); (D.J.B.); (A.N.H.)
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Yuchen Li
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (F.A.W.v.D.); (K.M.B.); (T.R.O.); (Y.L.); (D.J.B.); (A.N.H.)
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Daniel J. Buffa
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (F.A.W.v.D.); (K.M.B.); (T.R.O.); (Y.L.); (D.J.B.); (A.N.H.)
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Andrew N. Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (F.A.W.v.D.); (K.M.B.); (T.R.O.); (Y.L.); (D.J.B.); (A.N.H.)
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (F.A.W.v.D.); (K.M.B.); (T.R.O.); (Y.L.); (D.J.B.); (A.N.H.)
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (F.A.W.v.D.); (K.M.B.); (T.R.O.); (Y.L.); (D.J.B.); (A.N.H.)
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
3
|
Laguía F, Chojnacki J, Erkizia I, Geli MI, Enrich C, Martinez-Picado J, Resa-Infante P. Massive endocytosis mechanisms are involved in uptake of HIV-1 particles by monocyte-derived dendritic cells. Front Immunol 2025; 15:1505840. [PMID: 39867902 PMCID: PMC11757119 DOI: 10.3389/fimmu.2024.1505840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/11/2024] [Indexed: 01/28/2025] Open
Abstract
Introduction HIV-1 exploits dendritic cells (DCs) to spread throughout the body via specific recognition of gangliosides present on the viral envelope by the CD169/Siglec-1 membrane receptor. This interaction triggers the internalization of HIV-1 within a structure known as the sac-like compartment. While the mechanism underlying sac-like compartment formation remains elusive, prior research indicates that the process is clathrin-independent and cell membrane cholesterol-dependent and involves transient disruption of cortical actin. Here, we investigate the potential involvement of massive endocytosis (MEND) in this process. Methods We used live cell confocal imaging to measure the dimensions and dynamics of the compartment. We assessed the role of actin and cholesterol in fixed and live cells using confocal microscopy and evaluated the effect of PI3K and protein palmytoilation inhibitors during viral uptake. Results Our data demonstrate extensive plasma membrane invagination based on sac-like compartment dimensions (2.9 μm in diameter and 20 μm3 in volume). We showed that the cholesterol concentration doubles within the regions of viral uptake, suggesting lipid-phase separation, and that development of the sac-like compartment is accompanied by transient depolarization of cortical actin. Moreover, we observed that protein palmitoylation and PI3K inhibition reduce the sac-like compartment formation rate from 70% to 20% and 40%, respectively. Conclusions Our results indicate the involvement of MEND mechanisms during sac-like compartment formation.
Collapse
Affiliation(s)
| | - Jakub Chojnacki
- IrsiCaixa, Badalona, Spain
- CIBERINFEC, Madrid, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | | | - María Isabel Geli
- Department of Cell Biology, Institute for Molecular Biology of Barcelona (IBMB, CSIC), Barcelona, Spain
| | - Carlos Enrich
- Cell Compartments and Signaling Group, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa, Badalona, Spain
- CIBERINFEC, Madrid, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Patricia Resa-Infante
- IrsiCaixa, Badalona, Spain
- CIBERINFEC, Madrid, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| |
Collapse
|
4
|
Resa-Infante P, Erkizia I, Muñiz-Trabudua X, Linty F, Bentlage AEH, Perez-Zsolt D, Muñoz-Basagoiti J, Raïch-Regué D, Izquierdo-Useros N, Rispens T, Vidarsson G, Martinez-Picado J. Preclinical development of humanized monoclonal antibodies against CD169 as a broad antiviral therapeutic strategy. Biomed Pharmacother 2024; 175:116726. [PMID: 38754263 DOI: 10.1016/j.biopha.2024.116726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
New therapies to treat or prevent viral infections are essential, as recently observed during the COVID-19 pandemic. Here, we propose a therapeutic strategy based on monoclonal antibodies that block the specific interaction between the host receptor Siglec-1/CD169 and gangliosides embedded in the viral envelope. Antibodies are an excellent option for treating infectious diseases based on their high specificity, strong targeting affinity, and relatively low toxicity. Through a process of humanization, we optimized monoclonal antibodies to eliminate sequence liabilities and performed biophysical characterization. We demonstrated that they maintain their ability to block viral entry into myeloid cells. These molecular improvements during the discovery stage are key if we are to maximize efforts to develop new therapeutic strategies. Humanized monoclonal antibodies targeting CD169 provide new opportunities in the treatment of infections caused by ganglioside-containing enveloped viruses, which pose a constant threat to human health. In contrast with current neutralizing antibodies that bind antigens on the infectious particle, our antibodies can prevent several types of enveloped viruses interacting with host cells because they target the host CD169 protein, thus becoming a potential pan-antiviral therapy.
Collapse
Affiliation(s)
- Patricia Resa-Infante
- IrsiCaixa, Hospital Germans Trias i Pujol, Badalona 08916, Spain; University of Vic-Central University of Catalonia (UVic-UCC), Vic 08500, Spain; Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Badalona 08916, Spain; CIBERINFEC, Madrid 28029, Spain.
| | - Itziar Erkizia
- IrsiCaixa, Hospital Germans Trias i Pujol, Badalona 08916, Spain
| | | | - Federica Linty
- Sanquin Research, Amsterdam 1066 CX, the Netherlands; Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht 3584 CH, the Netherlands
| | - Arthur E H Bentlage
- Sanquin Research, Amsterdam 1066 CX, the Netherlands; Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht 3584 CH, the Netherlands
| | | | | | | | | | - Theo Rispens
- Sanquin Research, Amsterdam 1066 CX, the Netherlands; Landsteiner Laboratory, Amsterdam University Medical Center, Amsterdam 1066 CX, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Gestur Vidarsson
- Sanquin Research, Amsterdam 1066 CX, the Netherlands; Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht 3584 CH, the Netherlands
| | - Javier Martinez-Picado
- IrsiCaixa, Hospital Germans Trias i Pujol, Badalona 08916, Spain; University of Vic-Central University of Catalonia (UVic-UCC), Vic 08500, Spain; Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Badalona 08916, Spain; CIBERINFEC, Madrid 28029, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain.
| |
Collapse
|
5
|
Gu Y, Reinhard BM. Membrane fluidity properties of lipid-coated polylactic acid nanoparticles. NANOSCALE 2024; 16:8533-8545. [PMID: 38595322 PMCID: PMC11064779 DOI: 10.1039/d3nr06464f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/31/2024] [Indexed: 04/11/2024]
Abstract
Lipid coating is considered a versatile strategy to equip nanoparticles (NPs) with a biomimetic surface coating, but the membrane properties of these nanoassemblies remain in many cases insufficiently understood. In this work, we apply C-Laurdan generalized polarization (GP) measurements to probe the temperature-dependent polarity of hybrid membranes consisting of a lipid monolayer adsorbed onto a polylactic acid (PLA) polymer core as function of lipid composition and compare the behavior of the lipid coated NPs (LNPs) with that of liposomes assembled from identical lipid mixtures. The LNPs were generated by nanoprecipitation of the polymer in aqueous solutions containing two types of lipid mixtures: (i) cholesterol, dipalmitoylphosphatidylcholine (DPPC), and the ganglioside GM3, as well as (ii) dioleoylphosphatidylcholine (DOPC), DPPC and GM3. LNPs were found to exhibit more distinct and narrower phase transitions than corresponding liposomes and to retain detectable phase transitions even for cholesterol or DOPC concentrations that yielded no detectable transitions in liposomes. These findings together with higher GP values in the case of the LNPs for temperatures above the phase transition temperature indicate a stabilization of the membrane through the polymer core. LNP binding studies to GM3-recognizing cells indicate that differences in the membrane fluidity affect binding avidity in the investigated model system.
Collapse
Affiliation(s)
- Yuanqing Gu
- Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215, USA.
| | - Björn M Reinhard
- Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
6
|
Domma AJ, Henderson LA, Nurdin JA, Kamil JP. Uncloaking the viral glycocalyx: How do viruses exploit glycoimmune checkpoints? Adv Virus Res 2024; 119:63-110. [PMID: 38897709 PMCID: PMC11192240 DOI: 10.1016/bs.aivir.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The surfaces of cells and enveloped viruses alike are coated in carbohydrates that play multifarious roles in infection and immunity. Organisms across all kingdoms of life make use of a diverse set of monosaccharide subunits, glycosidic linkages, and branching patterns to encode information within glycans. Accordingly, sugar-patterning enzymes and glycan binding proteins play integral roles in cell and organismal biology, ranging from glycoprotein quality control within the endoplasmic reticulum to lymphocyte migration, coagulation, inflammation, and tissue homeostasis. Unsurprisingly, genes involved in generating and recognizing oligosaccharide patterns are playgrounds for evolutionary conflicts that abound in cross-species interactions, exemplified by the myriad plant lectins that function as toxins. In vertebrates, glycans bearing acidic nine-carbon sugars called sialic acids are key regulators of immune responses. Various bacterial and fungal pathogens adorn their cells in sialic acids that either mimic their hosts' or are stolen from them. Yet, how viruses commandeer host sugar-patterning enzymes to thwart immune responses remains poorly studied. Here, we review examples of viruses that interact with sialic acid-binding immunoglobulin-like lectins (Siglecs), a family of immune cell receptors that regulate toll-like receptor signaling and govern glycoimmune checkpoints, while highlighting knowledge gaps that merit investigation. Efforts to illuminate how viruses leverage glycan-dependent checkpoints may translate into new clinical treatments that uncloak viral antigens and infected cell surfaces by removing or masking immunosuppressive sialoglycans, or by inhibiting viral gene products that induce their biosynthesis. Such approaches may hold the potential to unleash the immune system to clear long intractable chronic viral infections.
Collapse
Affiliation(s)
- Anthony J Domma
- LSU Health Sciences Center at Shreveport, Shreveport, LA, United States
| | | | - Jeffery A Nurdin
- LSU Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Jeremy P Kamil
- LSU Health Sciences Center at Shreveport, Shreveport, LA, United States.
| |
Collapse
|
7
|
Mai H, Yang X, Xie Y, Zhou J, Wei Y, Luo T, Yang J, Cui P, Ye L, Liang H, Huang J. Identification of the shared hub gene signatures and molecular mechanisms between HIV-1 and pulmonary arterial hypertension. Sci Rep 2024; 14:7048. [PMID: 38528047 DOI: 10.1038/s41598-024-55645-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/26/2024] [Indexed: 03/27/2024] Open
Abstract
The close link between HIV-1 infection and the occurrence of pulmonary arterial hypertension (PAH). However, the underlying molecular mechanisms of their interrelation remain unclear. The microarray data of HIV-1 and PAH were downloaded from GEO database. We utilized WGCNA to identify shared genes between HIV-1 and PAH, followed by conducting GO and pathway enrichment analyses. Subsequently, differentially genes analysis was performed using external validation datasets to further filter hub genes. Immunoinfiltration analysis was performed using CIBERSORT. Finally, hub gene expression was validated using scRNA-seq data. We identified 109 shared genes through WGCNA, primarily enriched in type I interferon (IFN) pathways. By taking the intersection of WGCNA important module genes and DEGs, ISG15 and IFI27 were identified as pivotal hub genes. Immunoinfiltration analysis and scRNA-seq results indicated the significant role of monocytes in the shared molecular mechanisms of HIV-1 and PAH. In summary, our study illustrated the possible mechanism of PAH secondary to HIV-1 and showed that the heightened IFN response in HIV-1 might be a crucial susceptibility factor for PAH, with monocytes being pivotal cells involved in the type I IFN response pathway. This provides potential new insights for further investigating the molecular mechanisms connecting HIV-1 and PAH.
Collapse
Affiliation(s)
- Huanzhuo Mai
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, 530021, China
| | - Xing Yang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, 530021, China
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Yulan Xie
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, 530021, China
| | - Jie Zhou
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, 530021, China
| | - Yiru Wei
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, 530021, China
| | - Tingyan Luo
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, 530021, China
| | - Jing Yang
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, 530021, China
| | - Ping Cui
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, 530021, China
- Life Science Institute, Guangxi Medical University, Nanning, 530021, China
| | - Li Ye
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, 530021, China
| | - Hao Liang
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, 530021, China
- Life Science Institute, Guangxi Medical University, Nanning, 530021, China
| | - Jiegang Huang
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
8
|
Fanelli M, Petrone V, Maracchioni C, Chirico R, Cipriani C, Coppola L, Malagnino V, Teti E, Sorace C, Zordan M, Vitale P, Iannetta M, Balestrieri E, Rasi G, Grelli S, Malergue F, Sarmati L, Minutolo A, Matteucci C. Persistence of circulating CD169+monocytes and HLA-DR downregulation underline the immune response impairment in PASC individuals: the potential contribution of different COVID-19 pandemic waves. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 6:100215. [PMID: 38187999 PMCID: PMC10767315 DOI: 10.1016/j.crmicr.2023.100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
The use of CD169 as a marker of viral infection has been widely discussed in the context of COVID-19, and in particular, its crucial role in the early detection of SARS-CoV-2 infection and its association with the severity and clinical outcome of COVID-19 were demonstrated. COVID-19 patients show relevant systemic alteration and immunological dysfunction that persists in individuals with post-acute sequelae of SARS-CoV-2 infection (PASC). It is critical to implement the characterization of the disease, focusing also on the possible impact of the different COVID-19 waves and the consequent effects found after infection. On this basis, we evaluated by flow cytometry the expression of CD169 and HLA-DR on monocytes from COVID-19 patients and PASC individuals to better elucidate their involvement in immunological dysfunction, also evaluating the possible impact of different pandemic waves. The results confirm CD169 RMFI is a good marker of viral infection. Moreover, COVID-19 patients and PASC individuals showed high percentage of CD169+ monocytes, but low percentage of HLA-DR+ monocytes and the alteration of systemic inflammatory indices. We have also observed alterations of CD169 and HLA-DR expression and indices of inflammation upon different COVID-19 waves. The persistence of specific myeloid subpopulations suggests a role of CD169+ monocytes and HLA-DR in COVID-19 disease and chronic post-infection inflammation, opening new opportunities to evaluate the impact of specific pandemic waves on the immune response impairment and systemic alterations with the perspective to provide new tools to monitoring new variants and diseases associated to emerging respiratory viruses.
Collapse
Affiliation(s)
- Marialaura Fanelli
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Vita Petrone
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Christian Maracchioni
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Rossella Chirico
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Chiara Cipriani
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Luigi Coppola
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Vincenzo Malagnino
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Elisabetta Teti
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Chiara Sorace
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Marta Zordan
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Pietro Vitale
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Marco Iannetta
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Emanuela Balestrieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Guido Rasi
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Sandro Grelli
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
- Virology Unit, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Fabrice Malergue
- Global Research Organization, Beckman Coulter Life Sciences, Marseille, 13009, France
| | - Loredana Sarmati
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Antonella Minutolo
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| |
Collapse
|
9
|
Tang X, Zhang J, Sui D, Yang Q, Wang T, Xu Z, Li X, Gao X, Yan X, Liu X, Song Y, Deng Y. Simultaneous dendritic cells targeting and effective endosomal escape enhance sialic acid-modified mRNA vaccine efficacy and reduce side effects. J Control Release 2023; 364:529-545. [PMID: 37949317 DOI: 10.1016/j.jconrel.2023.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/20/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
mRNA vaccines are attractive prospects for the development of DC-targeted vaccines; however, no clinical success has been realized because, currently, it is difficult to simultaneously achieve DC targeting and efficient endosomal/lysosomal escape. Herein, we developed a sialic acid (SA)-modified mRNA vaccine that simultaneously achieved both. The SA modification promoted DCs uptake of lipid nanoparticles (LNPs) by 2 times, >90% of SA-modified LNPs rapidly escaped from early endosomes (EEs), avoided entering lysosomes, achieved mRNA simultaneously translated in ribosomes distributed in the cytoplasm and endoplasmic reticulum (ER), significantly improved the transfection efficiency of mRNA LNPs in DCs. Additionally, we applied cleavable PEG-lipids in mRNA vaccines for the first time and found this conducive to cellular uptake and DC targeting. In summary, SA-modified mRNA vaccines targeted DCs efficiently, and showed significantly higher EEs/lysosomal escape efficiency (90% vs 50%), superior tumor treatment effect, and lower side effects than commercially formulated mRNA vaccines.
Collapse
Affiliation(s)
- Xueying Tang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jiashuo Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Dezhi Sui
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qiongfen Yang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Tianyu Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zihan Xu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiaoya Li
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xin Gao
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xinyang Yan
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
10
|
Calado M, Pires D, Conceição C, Santos-Costa Q, Anes E, Azevedo-Pereira JM. Human immunodeficiency virus transmission-Mechanisms underlying the cell-to-cell spread of human immunodeficiency virus. Rev Med Virol 2023; 33:e2480. [PMID: 37698498 DOI: 10.1002/rmv.2480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Despite the success of combined antiretroviral therapy in controlling viral load and reducing the risk of human immunodeficiency virus (HIV) transmission, an estimated 1.5 million new infections occurred worldwide in 2021. These new infections are mainly the result of sexual intercourse and thus involve cells present on the genital mucosa, such as dendritic cells (DCs), macrophages (Mø) and CD4+ T lymphocytes. Understanding the mechanisms by which HIV interacts with these cells and how HIV exploits these interactions to establish infection in a new human host is critical to the development of strategies to prevent and control HIV transmission. In this review, we explore how HIV has evolved to manipulate some of the physiological roles of these cells, thereby gaining access to strategic cellular niches that are critical for the spread and pathogenesis of HIV infection. The interaction of HIV with DCs, Mø and CD4+ T lymphocytes, and the role of the intercellular transfer of viral particles through the establishment of the infectious or virological synapses, but also through membrane protrusions such as filopodia and tunnelling nanotubes (TNTs), and cell fusion or cell engulfment processes are presented and discussed.
Collapse
Affiliation(s)
- Marta Calado
- Faculty of Pharmacy, Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Universidade de Lisboa, Lisboa, Portugal
| | - David Pires
- Faculty of Pharmacy, Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Universidade de Lisboa, Lisboa, Portugal
- Center for Interdisciplinary Research in Health, Católica Medical School, Universidade Católica Portuguesa, Rio de Mouro, Portugal
| | - Carolina Conceição
- Faculty of Pharmacy, Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Quirina Santos-Costa
- Faculty of Pharmacy, Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Elsa Anes
- Faculty of Pharmacy, Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Universidade de Lisboa, Lisboa, Portugal
| | - José Miguel Azevedo-Pereira
- Faculty of Pharmacy, Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
11
|
Ikeogu N, Ajibola O, Zayats R, Murooka TT. Identifying physiological tissue niches that support the HIV reservoir in T cells. mBio 2023; 14:e0205323. [PMID: 37747190 PMCID: PMC10653859 DOI: 10.1128/mbio.02053-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
Successful antiretroviral therapy (ART) can efficiently suppress Human Immunodeficiency Virus-1 (HIV-1) replication to undetectable levels, but rare populations of infected memory CD4+ T cells continue to persist, complicating viral eradication efforts. Memory T cells utilize distinct homing and adhesion molecules to enter, exit, or establish residence at diverse tissue sites, integrating cellular and environmental cues that maintain homeostasis and life-long protection against pathogens. Critical roles for T cell receptor and cytokine signals driving clonal expansion and memory generation during immunity generation are well established, but whether HIV-infected T cells can utilize similar mechanisms for their own long-term survival is unclear. How infected, but transcriptionally silent T cells maintain their recirculation potential through blood and peripheral tissues, or whether they acquire new capabilities to establish unique peripheral tissue niches, is also not well understood. In this review, we will discuss the cellular and molecular cues that are important for memory T cell homeostasis and highlight opportunities for HIV to hijack normal immunological processes to establish long-term viral persistence.
Collapse
Affiliation(s)
- Nnamdi Ikeogu
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Oluwaseun Ajibola
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Romaniya Zayats
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Thomas T. Murooka
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
12
|
Gerberick A, Rinaldo CR, Sluis-Cremer N. Antigen Presenting Cell-Mediated HIV-1 Trans Infection in the Establishment and Maintenance of the Viral Reservoir. MEDICAL RESEARCH ARCHIVES 2023; 11:10.18103/mra.v11i7.1.4064. [PMID: 39634038 PMCID: PMC11616617 DOI: 10.18103/mra.v11i7.1.4064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Despite potent antiretroviral therapy, an HIV-1 reservoir persists that represents a major barrier to a cure. Understanding the mechanisms by which the HIV-1 reservoir is established and maintained is critical for the discovery of effective treatments to significantly reduce or eliminate the viral reservoir. In addition to cis infection, in which HIV-1 directly infects target CD4+ T cells, cell-to-cell transmission, or trans infection, can also occur. HIV-1 trans infection is significantly more efficient than cis infection, mostly due to the occurrence of multiple infections per cell during transfer. Additionally, trans infection is efficient even in the presence of ART and/or neutralizing antibodies. Cell-to-cell transmission is mediated by CD4+ T cells and professional antigen presenting cells (APC). Here we focus on APC, i.e., myeloid dendritic cells, B lymphocytes, and monocytes/macrophages, that bind, internalize, and transfer HIV-1 to target CD4+ T cells via various proposed mechanisms. We assess the potential impact of trans infection on the establishment and maintenance of the HIV-1 reservoir including its role in disease progression. We consider the natural interactions between APC and CD4+ T cells in vivo that HIV-1 may hijack, allowing for the highly efficient trans infection of CD4+ T cells, maintaining the viral reservoirs in tissue despite undetectable plasma viral loads in peripheral blood. We propose that these modes of viral pathogenesis need to be addressed in potential cure strategies to ensure eradication of the viral reservoir.
Collapse
Affiliation(s)
- Abigail Gerberick
- University of Pittsburgh School of Medicine, Department of Medicine, Division of Infectious Diseases, Pittsburgh, PA, 15261, USA
| | - Charles R Rinaldo
- University of Pittsburgh School of Medicine, Department of Medicine, Division of Infectious Diseases, Pittsburgh, PA, 15261, USA
| | - Nicolas Sluis-Cremer
- University of Pittsburgh School of Medicine, Department of Medicine, Division of Infectious Diseases, Pittsburgh, PA, 15261, USA
| |
Collapse
|
13
|
Raïch-Regué D, Resa-Infante P, Gallemí M, Laguia F, Muñiz-Trabudua X, Muñoz-Basagoiti J, Perez-Zsolt D, Chojnacki J, Benet S, Clotet B, Martinez-Picado J, Izquierdo-Useros N. Role of Siglecs in viral infections: A double-edged sword interaction. Mol Aspects Med 2023; 90:101113. [PMID: 35981912 PMCID: PMC9923124 DOI: 10.1016/j.mam.2022.101113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 01/21/2023]
Abstract
Sialic-acid-binding immunoglobulin-like lectins are cell surface immune receptors known as Siglecs that play a paramount role as modulators of immunity. In recent years, research has underscored how the underlaying biology of this family of receptors influences the outcome of viral infections. While Siglecs are needed to promote effective antiviral immune responses, they can also pave the way to viral dissemination within tissues. Here, we review how recent preclinical findings focusing on the interplay between Siglecs and viruses may translate into promising broad-spectrum therapeutic interventions or key biomarkers to monitor the course of viral infections.
Collapse
Affiliation(s)
- Dàlia Raïch-Regué
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain
| | - Patricia Resa-Infante
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain; University of Vic-Central University of Catalonia (UVic-UCC), 08500, Vic, Spain
| | - Marçal Gallemí
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain
| | - Fernando Laguia
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain
| | - Xabier Muñiz-Trabudua
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain
| | | | - Daniel Perez-Zsolt
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain
| | - Jakub Chojnacki
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain; Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain
| | - Susana Benet
- Fundació lluita contra la SIDA, Infectious Diseases Department, Hospital Germans Trias i Pujol, 08916, Badalona, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain; University of Vic-Central University of Catalonia (UVic-UCC), 08500, Vic, Spain; Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain; Fundació lluita contra la SIDA, Infectious Diseases Department, Hospital Germans Trias i Pujol, 08916, Badalona, Spain; Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain; University of Vic-Central University of Catalonia (UVic-UCC), 08500, Vic, Spain; Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain; Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain; Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain; Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain; Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
14
|
Prenzler S, Rudrawar S, Waespy M, Kelm S, Anoopkumar-Dukie S, Haselhorst T. The role of sialic acid-binding immunoglobulin-like-lectin-1 (siglec-1) in immunology and infectious disease. Int Rev Immunol 2023; 42:113-138. [PMID: 34494938 DOI: 10.1080/08830185.2021.1931171] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Siglec-1, also known as Sialoadhesin (Sn) and CD169 is highly conserved among vertebrates and with 17 immunoglobulin-like domains is Siglec-1 the largest member of the Siglec family. Expression of Siglec-1 is found primarily on dendritic cells (DCs), macrophages and interferon induced monocyte. The structure of Siglec-1 is unique among siglecs and its function as a receptor is also different compared to other receptors in this class as it contains the most extracellular domains out of all the siglecs. However, the ability of Siglec-1 to internalize antigens and to pass them on to lymphocytes by allowing dendritic cells and macrophages to act as antigen presenting cells, is the main reason that has granted Siglec-1's key role in multiple human disease states including atherosclerosis, coronary artery disease, autoimmune diseases, cell-cell signaling, immunology, and more importantly bacterial and viral infections. Enveloped viruses for example have been shown to manipulate Siglec-1 to increase their virulence by binding to sialic acids present on the virus glycoproteins allowing them to spread or evade immune response. Siglec-1 mediates dissemination of HIV-1 in activated tissues enhancing viral spread via infection of DC/T-cell synapses. Overall, the ability of Siglec-1 to bind a variety of target cells within the immune system such as erythrocytes, B-cells, CD8+ granulocytes and NK cells, highlights that Siglec-1 is a unique player in these essential processes.
Collapse
Affiliation(s)
- Shane Prenzler
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Santosh Rudrawar
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Mario Waespy
- Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Sørge Kelm
- Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Shailendra Anoopkumar-Dukie
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Thomas Haselhorst
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
15
|
CD169 + Macrophages in Primary Breast Tumors Associate with Tertiary Lymphoid Structures, T regs and a Worse Prognosis for Patients with Advanced Breast Cancer. Cancers (Basel) 2023; 15:cancers15041262. [PMID: 36831605 PMCID: PMC9954705 DOI: 10.3390/cancers15041262] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The presence of CD169+ macrophages in the draining lymph nodes of cancer patients is, for unknown reasons, associated with a beneficial prognosis. We here investigated the prognostic impact of tumor-infiltrating CD169+ macrophages in primary tumors (PTs) and their spatial relation to tumor-infiltrating B and T cells. Using two breast cancer patient cohorts, we show that CD169+ macrophages were spatially associated with the presence of B and T cell tertiary lymphoid-like structures (TLLSs) in both PTs and lymph node metastases (LNMs). While co-infiltration of CD169+/TLLS in PTs correlated with a worse prognosis, the opposite was found when present in LNMs. RNA sequencing of breast tumors further confirmed that SIGLEC1 (CD169) expression was associated with mature tertiary lymphoid structure (TLS), and Treg and Breg signatures. We propose that the negative prognostic value related to CD169+ macrophages in PTs is a consequence of an immunosuppressive tumor environment rich in TLSs, Tregs and Bregs.
Collapse
|
16
|
In silico transcriptional analysis of asymptomatic and severe COVID-19 patients reveals the susceptibility of severe patients to other comorbidities and non-viral pathological conditions. HUMAN GENE 2023; 35. [PMID: 37521006 PMCID: PMC9754755 DOI: 10.1016/j.humgen.2022.201135] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
COVID-19 is a severe respiratory disease caused by SARS-CoV-2, a novel human coronavirus. Patients infected with SARS-CoV-2 exhibit heterogeneous symptoms that pose pragmatic hurdles for implementing appropriate therapy and management of the COVID-19 patients and their post-COVID complications. Thus, understanding the impact of infection severity at the molecular level in the host is vital to understand the host response and accordingly it's precise management. In the current study, we performed a comparative transcriptomics analysis of publicly available seven asymptomatic and eight severe COVID-19 patients. Exploratory data analysis employing Principal Component Analysis (PCA) showed the distinct clusters of asymptomatic and severe patients. Subsequently, the differential gene expression analysis using DESeq2 identified 1224 significantly upregulated genes (logFC≥ 1.5, p-adjusted value <0.05) and 268 significantly downregulated genes (logFC≤ −1.5, p-adjusted value <0.05) in severe samples in comparison to asymptomatic samples. Eventually, Gene Set Enrichment Analysis (GSEA) revealed the upregulation of anti-viral and anti-inflammatory pathways, secondary infections, Iron homeostasis, anemia, cardiac-related, etc.; while, downregulation of lipid metabolism, adaptive immune response, translation, recurrent respiratory infections, heme-biosynthetic pathways, etc. Conclusively, these findings provide insight into the enhanced susceptibility of severe COVID-19 patients to other health comorbidities including non-viral pathogenic infections, atherosclerosis, autoinflammatory diseases, anemia, male infertility, etc. owing to the activation of biological processes, pathways and molecular functions associated with them. We anticipate this study will facilitate the researchers in finding efficient therapeutic targets and eventually the clinicians in management of COVID-19 patients and post-COVID-19 effects in them.
Collapse
|
17
|
Preglej T, Brinkmann M, Steiner G, Aletaha D, Göschl L, Bonelli M. Advanced immunophenotyping: A powerful tool for immune profiling, drug screening, and a personalized treatment approach. Front Immunol 2023; 14:1096096. [PMID: 37033944 PMCID: PMC10080106 DOI: 10.3389/fimmu.2023.1096096] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Various autoimmune diseases are characterized by distinct cell subset distributions and activation profiles of peripheral blood mononuclear cells (PBMCs). PBMCs can therefore serve as an ideal biomarker material, which is easily accessible and allows for screening of multiple cell types. A detailed understanding of the immune landscape is critical for the diagnosis of patients with autoimmune diseases, as well as for a personalized treatment approach. In our study, we investigate the potential of multi-parameter spectral flow cytometry for the identification of patients suffering from autoimmune diseases and its power as an evaluation tool for in vitro drug screening approaches (advanced immunophenotyping). We designed a combination of two 22-color immunophenotyping panels for profiling cell subset distribution and cell activation. Downstream bioinformatics analyses included percentages of individual cell populations and median fluorescent intensity of defined markers which were then visualized as heatmaps and in dimensionality reduction approaches. In vitro testing of epigenetic immunomodulatory drugs revealed an altered activation status upon treatment, which supports the use of spectral flow cytometry as a high-throughput drug screening tool. Advanced immunophenotyping might support the exploration of novel therapeutic drugs and contribute to future personalized treatment approaches in autoimmune diseases and beyond.
Collapse
Affiliation(s)
| | | | | | | | - Lisa Göschl
- *Correspondence: Lisa Göschl, ; Michael Bonelli,
| | | |
Collapse
|
18
|
Zang H, Siddiqui M, Gummuluru S, Wong WW, Reinhard BM. Ganglioside-Functionalized Nanoparticles for Chimeric Antigen Receptor T-Cell Activation at the Immunological Synapse. ACS NANO 2022; 16:18408-18420. [PMID: 36282488 PMCID: PMC9815837 DOI: 10.1021/acsnano.2c06516] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Chimeric Antigen Receptor (CAR) T cell therapy has proven to be an effective strategy against hematological malignancies but persistence and activity against solid tumors must be further improved. One emerging strategy for enhancing efficacy is based on directing CAR T cells to antigen presenting cells (APCs). Activation of CAR T cells at the immunological synapse (IS) formed between APC and T cell is thought to promote strong, persistent antigen-specific T cell-mediated immune responses but requires integration of CAR ligands into the APC/T-cell interface. Here, we demonstrate that CAR ligand functionalized, lipid-coated, biodegradable polymer nanoparticles (NPs) that contain the ganglioside GM3 (GM3-NPs) bind to CD169 (Siglec-1)-expressing APCs and localize to the cell contact site between APCs and CAR T cells upon initiation of cell conjugates. The CD169+ APC/CAR T-cell interface is characterized by a strong optical colocalization of GM3-NPs and CARs, enrichment of F-actin, and recruitment of ZAP-70, indicative of integration of GM3-NPs into a functional IS. Ligands associated with GM3-NPs localized to the APC/T-cell contact site remain accessible to CARs and result in robust T-cell activation. Overall, this work identifies GM3-NPs as a potential antigen delivery platform for active targeting of CD169 expressing APCs and enhancement of CAR T-cell activation at the NP-containing IS.
Collapse
Affiliation(s)
- Han Zang
- Departments of Chemistry and The Photonics Center, Boston University, Boston, MA, 02215, United States
| | - Menna Siddiqui
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, MA, 02118, United States
| | - Wilson W. Wong
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Björn M. Reinhard
- Departments of Chemistry and The Photonics Center, Boston University, Boston, MA, 02215, United States
| |
Collapse
|
19
|
Fanelli M, Petrone V, Buonifacio M, Delibato E, Balestrieri E, Grelli S, Minutolo A, Matteucci C. Multidistrict Host-Pathogen Interaction during COVID-19 and the Development Post-Infection Chronic Inflammation. Pathogens 2022; 11:1198. [PMID: 36297256 PMCID: PMC9607297 DOI: 10.3390/pathogens11101198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 12/15/2022] Open
Abstract
Due to the presence of the ACE2 receptor in different tissues (nasopharynx, lung, nervous tissue, intestine, liver), the COVID-19 disease involves several organs in our bodies. SARS-CoV-2 is able to infect different cell types, spreading to different districts. In the host, an uncontrolled and altered immunological response is triggered, leading to cytokine storm, lymphopenia, and cellular exhaustion. Hence, respiratory distress syndrome (ARDS) and systemic multi-organ dysfunction syndrome (MODS) are established. This scenario is also reflected in the composition of the microbiota, the balance of which is regulated by the interaction with the immune system. A change in microbial diversity has been demonstrated in COVID-19 patients compared with healthy donors, with an increase in potentially pathogenic microbial genera. In addition to other symptoms, particularly neurological, the occurrence of dysbiosis persists after the SARS-CoV-2 infection, characterizing the post-acute COVID syndrome. This review will describe and contextualize the role of the immune system in unbalance and dysbiosis during SARS-CoV-2 infection, from the acute phase to the post-COVID-19 phase. Considering the tight relationship between the immune system and the gut-brain axis, the analysis of new, multidistrict parameters should be aimed at understanding and addressing chronic multisystem dysfunction related to COVID-19.
Collapse
Affiliation(s)
- Marialaura Fanelli
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Vita Petrone
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Margherita Buonifacio
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Elisabetta Delibato
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Emanuela Balestrieri
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Sandro Grelli
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Virology Unit, Tor Vergata University Hospital, 00133 Rome, Italy
| | - Antonella Minutolo
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
20
|
Jalloh S, Olejnik J, Berrigan J, Nisa A, Suder EL, Akiyama H, Lei M, Ramaswamy S, Tyagi S, Bushkin Y, Mühlberger E, Gummuluru S. CD169-mediated restrictive SARS-CoV-2 infection of macrophages induces pro-inflammatory responses. PLoS Pathog 2022; 18:e1010479. [PMID: 36279285 PMCID: PMC9632919 DOI: 10.1371/journal.ppat.1010479] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 11/03/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Exacerbated and persistent innate immune response marked by pro-inflammatory cytokine expression is thought to be a major driver of chronic COVID-19 pathology. Although macrophages are not the primary target cells of SARS-CoV-2 infection in humans, viral RNA and antigens in activated monocytes and macrophages have been detected in post-mortem samples, and dysfunctional monocytes and macrophages have been hypothesized to contribute to a protracted hyper-inflammatory state in COVID-19 patients. In this study, we demonstrate that CD169, a myeloid cell specific I-type lectin, facilitated ACE2-independent SARS-CoV-2 fusion and entry in macrophages. CD169-mediated SARS-CoV-2 entry in macrophages resulted in expression of viral genomic and subgenomic RNAs with minimal viral protein expression and no infectious viral particle release, suggesting a post-entry restriction of the SARS-CoV-2 replication cycle. Intriguingly this post-entry replication block was alleviated by exogenous ACE2 expression in macrophages. Restricted expression of viral genomic and subgenomic RNA in CD169+ macrophages elicited a pro-inflammatory cytokine expression (TNFα, IL-6 and IL-1β) in a RIG-I, MDA-5 and MAVS-dependent manner, which was suppressed by remdesivir treatment. These findings suggest that de novo expression of SARS-CoV-2 RNA in macrophages contributes to the pro-inflammatory cytokine signature and that blocking CD169-mediated ACE2 independent infection and subsequent activation of macrophages by viral RNA might alleviate COVID-19-associated hyperinflammatory response.
Collapse
Affiliation(s)
- Sallieu Jalloh
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Judith Olejnik
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| | - Jacob Berrigan
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Annuurun Nisa
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Ellen L. Suder
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| | - Hisashi Akiyama
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Maohua Lei
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Sita Ramaswamy
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Sanjay Tyagi
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Yuri Bushkin
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Elke Mühlberger
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
21
|
Chen X, Zheng Y, Liu S, Yu W, Liu Z. CD169 + subcapsular sinus macrophage-derived microvesicles are associated with light zone follicular dendritic cells. Eur J Immunol 2022; 52:1581-1594. [PMID: 35907260 PMCID: PMC9804338 DOI: 10.1002/eji.202249879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 01/05/2023]
Abstract
Follicular dendritic cells (FDCs) are a specialized type of stromal cells that exclusively reside in B-cell follicles. When inflammation occurs, the FDC network is reorganized to support germinal center (GC) polarization into the light zone (LZ) and dark zone (DZ). Despite the indispensable role of FDCs in supporting humoral responses, the FDC regulatory requirements remain incompletely defined. In this study, we unexpectedly observed an accumulation of CD169+ subcapsular sinus macrophage (SSM)-derived microvesicles (MVs) in the B-cell zone, which were tightly associated with the FDC network. Interestingly, a selective deposition of CD169+ MVs was detected in both GC LZ FDCs in secondary follicles and on predetermined LZ FDCs in primary follicles. The ablation of CD169+ MVs, resulting from SSM depletion, resulted in significantly decreased expression of LZ-related genes in FDCs. In addition, we found that CD169+ MVs could colocalize with fluorescently tagged antigen-containing immune complexes (ICs), supporting a possible role of CD169+ MVs in transporting antigens to the FDC network. Thus, our data reveal intimate crosstalk between FDCs and SSMs located outside B-cell follicles via SSM-released MVs, providing a novel perspective on the mechanisms underlying the regulation of FDC maturation and polarization.
Collapse
Affiliation(s)
- Xin Chen
- Shanghai Institute of ImmunologyDepartment of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuhan Zheng
- Shanghai Institute of ImmunologyDepartment of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Siming Liu
- Shanghai Institute of ImmunologyDepartment of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenjing Yu
- Shanghai Institute of ImmunologyDepartment of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhiduo Liu
- Shanghai Institute of ImmunologyDepartment of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
22
|
Feng F, Zhu Y, Ma Y, Wang Y, Yu Y, Sun X, Song Y, Shao Z, Huang X, Liao Y, Ma J, He Y, Wang M, Tang L, Huang Y, Zhao J, Ding Q, Xie Y, Cai Q, Xiao H, Li C, Yuan Z, Zhang R. A CRISPR activation screen identifies genes that enhance SARS-CoV-2 infection. Protein Cell 2022; 14:64-68. [PMID: 36726758 PMCID: PMC9871949 DOI: 10.1093/procel/pwac036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Affiliation(s)
| | | | | | | | - Yin Yu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Xinran Sun
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Shanghai Key Laboratory of Lung Inflammation and Injury, Fudan University, Shanghai 200032, China
| | - Zhugui Shao
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinxin Huang
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai 200032, China
| | - Ying Liao
- Shanghai Veterinary Research Institute, CAAS, Shanghai 200241, China
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuping He
- Shanghai International Travel Healthcare Center, Shanghai 200335, China
| | | | | | - Yaowei Huang
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Qiang Ding
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100086, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Qiliang Cai
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Hui Xiao
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | |
Collapse
|
23
|
Lende SSF, Pahus MH, Monrad I, Olesen R, Mahr AR, Vibholm LK, Østergaard L, Søgaard OS, Andersen AHF, Denton PW, Tolstrup M. CD169 (Siglec-1) as a Robust Human Cell Biomarker of Toll-Like Receptor 9 Agonist Immunotherapy. Front Cell Infect Microbiol 2022; 12:919097. [PMID: 35865810 PMCID: PMC9294151 DOI: 10.3389/fcimb.2022.919097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy is a promising therapeutic area in cancer and chronic viral infections. An important component of immunotherapy in these contexts is the activation of innate immunity. Here we investigate the potential for CD169 (Siglec 1) expression on monocytes to serve as a robust biomarker for activation of innate immunity and, particular, as a proxy for IFN-α production. Specifically, we investigated the effects of Toll-like receptor 9 agonism with MGN1703 (lefitolimod) across experimental conditions ex vivo, in humanized mice, and in clinical trial participants. Ex vivo we observed that the percentage of classical monocytes expressing CD169 increased dramatically from 10% pre-stimulation to 97% 24 hrs after MGN1703 stimulation (p<0.0001). In humanized NOG mice, we observed prominent upregulation of the proportions of monocytes expressing CD169 after two doses of MGN1703 where 73% of classical monocytes were CD169 positive in bone marrow following MGN1703 treatment vs 19% in vehicle treated mice (p=0.0159). Finally, in a clinical trial in HIV-infected individuals receiving immunotherapy treatment with MGN1703, we observed a uniform upregulation of CD169 on monocytes after dosing with 97% of classical monocytes positive for CD169 (p=0.002). Hence, in this comprehensive evaluation ex vivo, in an animal model, and in a clinical trial, we find increases in the percentage of CD169 positive monocytes to be a reliable and robust biomarker of immune activation following TLR9 agonist treatment.
Collapse
Affiliation(s)
| | - Marie Høst Pahus
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ida Monrad
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rikke Olesen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Anna R. Mahr
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, United States
| | - Line K. Vibholm
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Østergaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Ole Schmeltz Søgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | | | - Paul W. Denton
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, United States
| | - Martin Tolstrup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- *Correspondence: Martin Tolstrup,
| |
Collapse
|
24
|
Zang H, Fofana J, Xu F, Nodder SB, Gummuluru S, Reinhard BM. Characterizing Lipid-Coated Mesoporous Silica Nanoparticles as CD169-Binding Delivery System for Rilpivirine and Cabotegravir. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100157. [PMID: 36313942 PMCID: PMC9610980 DOI: 10.1002/anbr.202100157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Herein, lipid-coated mesoporous silica nanoparticles (LMSN) are investigated as biomimetic delivery vehicle for two antiretroviral compounds (ARVs), rilpivirine (RPV) and cabotegravir (CAB). Monosialodihexosylganglioside (GM3) is incorporated into the membrane to facilitate LMSN binding to CD169 (Siglec-1)-expressing myeloid cells, that are predominantly expressed in secondary lymphoid tissues in vivo. It is demonstrated that in addition to providing CD169-binding functionalities, the lipid membrane around the silica core provides stealth properties that dampen the inflammatory cytokine response to ARVs-loaded LMSN in human monocyte-derived macrophages. Quantification of RPV and CAB releases from nanoparticles, and assessment of antiviral potency to human immunodeficiency virus (HIV-1) infection in vitro reveals that RPV and CAB co-formulated into LMSN retain optimal antiviral potency for 90 days, even upon storage at room temperature, making LMSN an attractive nanoplatform, immune to cold chain requirements. These findings suggest that GM3-LMSN equip the mesoporous silica nanoparticle (MSN) core with lipid-derived properties for surface passivation and lipid-mediated binding that are of high interest for achieving an effective delivery of ARVs to tissue reservoirs of HIV-1 replication.
Collapse
Affiliation(s)
- Han Zang
- Department of Chemistry and The Photonics Center, Boston University, Boston MA 02215, United States
| | - Josiane Fofana
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, United States
| | - Fangda Xu
- Department of Chemistry and The Photonics Center, Boston University, Boston MA 02215, United States
| | - Sarah B. Nodder
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, United States
| | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, United States
| | - Björn M. Reinhard
- Department of Chemistry and The Photonics Center, Boston University, Boston MA 02215, United States
| |
Collapse
|
25
|
Jalloh S, Olejnik J, Berrigan J, Nisa A, Suder EL, Akiyama H, Lei M, Tyagi S, Bushkin Y, Mühlberger E, Gummuluru S. CD169-mediated restrictive SARS-CoV-2 infection of macrophages induces pro-inflammatory responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.03.29.486190. [PMID: 35378756 PMCID: PMC8978933 DOI: 10.1101/2022.03.29.486190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Exacerbated and persistent innate immune response marked by pro-inflammatory cytokine expression is thought to be a major driver of chronic COVID-19 pathology. Although macrophages are not the primary target cells of SARS-CoV-2 infection in humans, viral RNA and antigens in activated monocytes and macrophages have been detected in post-mortem samples, and dysfunctional monocytes and macrophages have been hypothesized to contribute to a protracted hyper-inflammatory state in COVID-19 patients. In this study, we demonstrate that CD169, a myeloid cell specific I-type lectin, facilitated ACE2-independent SARS-CoV-2 fusion and entry in macrophages. CD169- mediated SARS-CoV-2 entry in macrophages resulted in expression of viral genomic and sub-genomic (sg) RNAs with minimal viral protein expression and no infectious viral particle release, suggesting a post-entry restriction of the SARS-CoV-2 replication cycle. Intriguingly this post-entry replication block was alleviated by exogenous ACE2 expression in macrophages. Restricted expression of viral gRNA and sgRNA in CD169 + macrophages elicited a pro-inflammatory cytokine expression (TNFα, IL-6 and IL-1β) in a RIG-I, MDA-5 and MAVS-dependent manner, which was suppressed by remdesivir pre- treatment. These findings suggest that de novo expression of SARS-CoV-2 RNA in macrophages contributes to the pro-inflammatory cytokine signature and that blocking CD169-mediated ACE2 independent infection and subsequent activation of macrophages by viral RNA might alleviate COVID-19-associated hyperinflammatory response. Author Summary Over-exuberant production of pro-inflammatory cytokine expression by macrophages has been hypothesized to contribute to severity of COVID-19 disease. Molecular mechanisms that contribute to macrophage-intrinsic immune activation during SARS- CoV-2 infection are not fully understood. Here we show that CD169, a macrophage- specific sialic-acid binding lectin, facilitates abortive SARS-CoV-2 infection of macrophages that results in innate immune sensing of viral replication intermediates and production of proinflammatory responses. We identify an ACE2-independent, CD169- mediated endosomal viral entry mechanism that results in cytoplasmic delivery of viral capsids and initiation of virus replication, but absence of infectious viral production. Restricted viral replication in CD169 + macrophages and detection of viral genomic and sub-genomic RNAs by cytoplasmic RIG-I-like receptor family members, RIG-I and MDA5, and initiation of downstream signaling via the adaptor protein MAVS, was required for innate immune activation. These studies uncover mechanisms important for initiation of innate immune sensing of SARS-CoV-2 infection in macrophages, persistent activation of which might contribute to severe COVID-19 pathophysiology.
Collapse
Affiliation(s)
- Sallieu Jalloh
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Judith Olejnik
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Jacob Berrigan
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Annuurun Nisa
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Ellen L Suder
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Hisashi Akiyama
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Maohua Lei
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Sanjay Tyagi
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Yuri Bushkin
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Elke Mühlberger
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
26
|
He X, Guan F, Lei L. Structure and function of glycosphingolipids on small extracellular vesicles. Glycoconj J 2022; 39:197-205. [PMID: 35201531 PMCID: PMC8866925 DOI: 10.1007/s10719-022-10052-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 12/22/2022]
Abstract
Extracellular vesicles (EVs) are membrane-delineated particles secreted by most types of cells under both normal and pathophysiological conditions. EVs are believed to mediate intercellular communication by serving as carriers of different bioactive ingredients, including proteins, nucleic acids and lipids. Glycoconjugates are complex molecules consisting of covalently linked carbohydrate with proteins or lipids. These glycoconjugates play essential roles in the sorting of vesicular protein and the uptake of small extracellular vesicles (30–100 nm, sEVs) into recipient cells. Glycosphingolipids (GSLs), one subtype of glycolipids, which are ubiquitous membrane components in almost all living organisms, are also commonly distributed on sEVs. However, the study of functional roles of GSLs on sEVs are far behind than other functional cargos. The purpose of this review is to highlight the importance of GSLs on sEVs. Initially, we described classification and structure of GSLs. Then, we briefly introduced the essential functions of GSLs, which are able to interact with functional membrane proteins, such as growth factor receptors, integrins and tetraspanins, to modulate cell growth, adhesion and cell motility. In addition, we discussed analytical methods for studying GSLs on sEVs. Finally, we focused on the function of GSLs on sEVs, including regulating the aggregation of extracellular α-synuclein (α-syn) or extracellular amyloid-β (Aβ) and influencing tumor cell malignancy.
Collapse
Affiliation(s)
- Xin He
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China.
| | - Lei Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China.
| |
Collapse
|
27
|
Nijen Twilhaar MK, Czentner L, Bouma RG, Olesek K, Grabowska J, Wang AZ, Affandi AJ, Belt SC, Kalay H, van Nostrum CF, van Kooyk Y, Storm G, den Haan JMM. Incorporation of Toll-Like Receptor Ligands and Inflammasome Stimuli in GM3 Liposomes to Induce Dendritic Cell Maturation and T Cell Responses. Front Immunol 2022; 13:842241. [PMID: 35251040 PMCID: PMC8895246 DOI: 10.3389/fimmu.2022.842241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer vaccination aims to activate immunity towards cancer cells and can be achieved by delivery of cancer antigens together with immune stimulatory adjuvants to antigen presenting cells (APC). APC maturation and antigen processing is a subsequent prerequisite for T cell priming and anti-tumor immunity. In order to specifically target APC, nanoparticles, such as liposomes, can be used for the delivery of antigen and adjuvant. We have previously shown that liposomal inclusion of the ganglioside GM3, an endogenous ligand for CD169, led to robust uptake by CD169-expressing APC and resulted in strong immune responses when supplemented with a soluble adjuvant. To minimize the adverse effects related to a soluble adjuvant, immune stimulatory molecules can be incorporated in liposomes to achieve targeted delivery of both antigen and adjuvant. In this study, we incorporated TLR4 (MPLA) or TLR7/8 (3M-052) ligands in combination with inflammasome stimuli, 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine (PGPC) or muramyl dipeptide (MDP), into GM3 liposomes. Incorporation of TLR and inflammasome ligands did not interfere with the uptake of GM3 liposomes by CD169-expressing cells. GM3 liposomes containing a TLR ligand efficiently matured human and mouse dendritic cells in vitro and in vivo, while inclusion of PGPC or MDP had minor effects on maturation. Immunization with MPLA-containing GM3 liposomes containing an immunogenic synthetic long peptide stimulated CD4+ and CD8+ T cell responses, but additional incorporation of either PGPC or MDP did not translate into stronger immune responses. In conclusion, our study indicates that TLRL-containing GM3 liposomes are effective vectors to induce DC maturation and T cell priming and thus provide guidance for further selection of liposomal components to optimally stimulate anti-cancer immune responses.
Collapse
Affiliation(s)
- Maarten K. Nijen Twilhaar
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Lucas Czentner
- Department of Pharmaceutics, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Rianne G. Bouma
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Katarzyna Olesek
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Joanna Grabowska
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Aru Zeling Wang
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Alsya J. Affandi
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Saskia C. Belt
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Hakan Kalay
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Gert Storm
- Department of Pharmaceutics, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, Netherlands
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joke M. M. den Haan
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
28
|
Eshaghi B, Fofana J, Nodder SB, Gummuluru S, Reinhard BM. Virus-Mimicking Polymer Nanoparticles Targeting CD169 + Macrophages as Long-Acting Nanocarriers for Combination Antiretrovirals. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2488-2500. [PMID: 34995059 PMCID: PMC9126061 DOI: 10.1021/acsami.1c17415] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Monosialodihexosylganglioside (GM3)-presenting lipid-coated polymer nanoparticles (NPs) that recapitulate the sequestration of human immunodeficiency virus-1 (HIV-1) particles in CD169+ virus-containing compartments (VCCs) of macrophages were developed as carriers for delivery and sustained release of a combination of two antiretrovirals (ARVs), rilpivirine (RPV) and cabotegravir (CAB). RPV and CAB were co-loaded into GM3-presenting lipid-coated polylactic acid (PLA) and poly(lactic-co-glycolic acid) (PLGA) NPs without loss in potency of the drugs. GM3-presenting PLA NPs demonstrated the most favorable release properties and achieved inhibition of HIV-1 infection of primary human macrophages for up to 35 days. Intracellular localization of GM3-presenting PLA NPs in VCCs correlated with retention of intracellular ARV concentrations and sustained inhibition of HIV-1 infection. This work elucidates the design criteria of lipid-coated polymer NPs to utilize CD169+ macrophages as cellular drug depots for eradicating the viral reservoir sites or to achieve long-acting prophylaxis against HIV-1 infection.
Collapse
Affiliation(s)
- Behnaz Eshaghi
- Departments of Chemistry and The Photonics Center, Boston University, Boston, MA 02215, United States
| | - Josiane Fofana
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, United States
| | - Sarah B. Nodder
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, United States
| | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, United States
| | - Björn M. Reinhard
- Departments of Chemistry and The Photonics Center, Boston University, Boston, MA 02215, United States
| |
Collapse
|
29
|
HIV-1 and HTLV-1 Transmission Modes: Mechanisms and Importance for Virus Spread. Viruses 2022; 14:v14010152. [PMID: 35062355 PMCID: PMC8779814 DOI: 10.3390/v14010152] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
So far, only two retroviruses, human immunodeficiency virus (HIV) (type 1 and 2) and human T-cell lymphotropic virus type 1 (HTLV-1), have been recognized as pathogenic for humans. Both viruses mainly infect CD4+ T lymphocytes. HIV replication induces the apoptosis of CD4 lymphocytes, leading to the development of acquired immunodeficiency syndrome (AIDS). After a long clinical latency period, HTLV-1 can transform lymphocytes, with subsequent uncontrolled proliferation and the manifestation of a disease called adult T-cell leukemia (ATLL). Certain infected patients develop neurological autoimmune disorder called HTLV-1-associated myelopathy, also known as tropical spastic paraparesis (HAM/TSP). Both viruses are transmitted between individuals via blood transfusion, tissue/organ transplantation, breastfeeding, and sexual intercourse. Within the host, these viruses can spread utilizing either cell-free or cell-to-cell modes of transmission. In this review, we discuss the mechanisms and importance of each mode of transmission for the biology of HIV-1 and HTLV-1.
Collapse
|
30
|
HIV transmitting mononuclear phagocytes; integrating the old and new. Mucosal Immunol 2022; 15:542-550. [PMID: 35173293 PMCID: PMC9259493 DOI: 10.1038/s41385-022-00492-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023]
Abstract
In tissue, mononuclear phagocytes (MNP) are comprised of Langerhans cells, dendritic cells, macrophages and monocyte-derived cells. They are the first immune cells to encounter HIV during transmission and transmit the virus to CD4 T cells as a consequence of their antigen presenting cell function. To understand the role these cells play in transmission, their phenotypic and functional characterisation is important. With advancements in high parameter single cell technologies, new MNPs subsets are continuously being discovered and their definition and classification is in a state of flux. This has important implications for our knowledge of HIV transmission, which requires a deeper understanding to design effective vaccines and better blocking strategies. Here we review the historical research of the role MNPs play in HIV transmission up to the present day and revaluate these studies in the context of our most recent understandings of the MNP system.
Collapse
|
31
|
Perez-Zsolt D, Raïch-Regué D, Muñoz-Basagoiti J, Aguilar-Gurrieri C, Clotet B, Blanco J, Izquierdo-Useros N. HIV-1 trans-Infection Mediated by DCs: The Tip of the Iceberg of Cell-to-Cell Viral Transmission. Pathogens 2021; 11:39. [PMID: 35055987 PMCID: PMC8778849 DOI: 10.3390/pathogens11010039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
HIV-1 cell-to-cell transmission is key for an effective viral replication that evades immunity. This highly infectious mechanism is orchestrated by different cellular targets that utilize a wide variety of processes to efficiently transfer HIV-1 particles. Dendritic cells (DCs) are the most potent antigen presenting cells that initiate antiviral immune responses, but are also the cells with highest capacity to transfer HIV-1. This mechanism, known as trans-infection, relies on the capacity of DCs to capture HIV-1 particles via lectin receptors such as the sialic acid-binding I-type lectin Siglec-1/CD169. The discovery of the molecular interaction of Siglec-1 with sialylated lipids exposed on HIV-1 membranes has enlightened how this receptor can bind to several enveloped viruses. The outcome of these interactions can either mount effective immune responses, boost the productive infection of DCs and favour innate sensing, or fuel viral transmission via trans-infection. Here we review these scenarios focusing on HIV-1 and other enveloped viruses such as Ebola virus or SARS-CoV-2.
Collapse
Affiliation(s)
- Daniel Perez-Zsolt
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; (D.P.-Z.); (D.R.-R.); (J.M.-B.); (C.A.-G.); (B.C.); (J.B.)
| | - Dàlia Raïch-Regué
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; (D.P.-Z.); (D.R.-R.); (J.M.-B.); (C.A.-G.); (B.C.); (J.B.)
| | - Jordana Muñoz-Basagoiti
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; (D.P.-Z.); (D.R.-R.); (J.M.-B.); (C.A.-G.); (B.C.); (J.B.)
| | - Carmen Aguilar-Gurrieri
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; (D.P.-Z.); (D.R.-R.); (J.M.-B.); (C.A.-G.); (B.C.); (J.B.)
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; (D.P.-Z.); (D.R.-R.); (J.M.-B.); (C.A.-G.); (B.C.); (J.B.)
- Infectious Diseases and Immunity Department, Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; (D.P.-Z.); (D.R.-R.); (J.M.-B.); (C.A.-G.); (B.C.); (J.B.)
- Infectious Diseases and Immunity Department, Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916 Badalona, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; (D.P.-Z.); (D.R.-R.); (J.M.-B.); (C.A.-G.); (B.C.); (J.B.)
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916 Badalona, Spain
| |
Collapse
|
32
|
Avota E, Bodem J, Chithelen J, Mandasari P, Beyersdorf N, Schneider-Schaulies J. The Manifold Roles of Sphingolipids in Viral Infections. Front Physiol 2021; 12:715527. [PMID: 34658908 PMCID: PMC8511394 DOI: 10.3389/fphys.2021.715527] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Sphingolipids are essential components of eukaryotic cells. In this review, we want to exemplarily illustrate what is known about the interactions of sphingolipids with various viruses at different steps of their replication cycles. This includes structural interactions during entry at the plasma membrane or endosomal membranes, early interactions leading to sphingolipid-mediated signal transduction, interactions with internal membranes and lipids during replication, and interactions during virus assembly and budding. Targeted interventions in sphingolipid metabolism - as far as they can be tolerated by cells and organisms - may open novel possibilities to support antiviral therapies. Human immunodeficiency virus type 1 (HIV-1) infections have intensively been studied, but for other viral infections, such as influenza A virus (IAV), measles virus (MV), hepatitis C virus (HCV), dengue virus, Ebola virus, and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), investigations are still in their beginnings. As many inhibitors of sphingolipid metabolism are already in clinical use against other diseases, repurposing studies for applications in some viral infections appear to be a promising approach.
Collapse
Affiliation(s)
- Elita Avota
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Jochen Bodem
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Janice Chithelen
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Putri Mandasari
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
33
|
Murakami T, Ono A. Roles of Virion-Incorporated CD162 (PSGL-1), CD43, and CD44 in HIV-1 Infection of T Cells. Viruses 2021; 13:v13101935. [PMID: 34696365 PMCID: PMC8541244 DOI: 10.3390/v13101935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Nascent HIV-1 particles incorporate the viral envelope glycoprotein and multiple host transmembrane proteins during assembly at the plasma membrane. At least some of these host transmembrane proteins on the surface of virions are reported as pro-viral factors that enhance virus attachment to target cells or facilitate trans-infection of CD4+ T cells via interactions with non-T cells. In addition to the pro-viral factors, anti-viral transmembrane proteins are incorporated into progeny virions. These virion-incorporated transmembrane proteins inhibit HIV-1 entry at the point of attachment and fusion. In infected polarized CD4+ T cells, HIV-1 Gag localizes to a rear-end protrusion known as the uropod. Regardless of cell polarization, Gag colocalizes with and promotes the virion incorporation of a subset of uropod-directed host transmembrane proteins, including CD162, CD43, and CD44. Until recently, the functions of these virion-incorporated proteins had not been clear. Here, we review the recent findings about the roles played by virion-incorporated CD162, CD43, and CD44 in HIV-1 spread to CD4+ T cells.
Collapse
|
34
|
Schneider-Schaulies S, Schumacher F, Wigger D, Schöl M, Waghmare T, Schlegel J, Seibel J, Kleuser B. Sphingolipids: Effectors and Achilles Heals in Viral Infections? Cells 2021; 10:cells10092175. [PMID: 34571822 PMCID: PMC8466362 DOI: 10.3390/cells10092175] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/26/2022] Open
Abstract
As viruses are obligatory intracellular parasites, any step during their life cycle strictly depends on successful interaction with their particular host cells. In particular, their interaction with cellular membranes is of crucial importance for most steps in the viral replication cycle. Such interactions are initiated by uptake of viral particles and subsequent trafficking to intracellular compartments to access their replication compartments which provide a spatially confined environment concentrating viral and cellular components, and subsequently, employ cellular membranes for assembly and exit of viral progeny. The ability of viruses to actively modulate lipid composition such as sphingolipids (SLs) is essential for successful completion of the viral life cycle. In addition to their structural and biophysical properties of cellular membranes, some sphingolipid (SL) species are bioactive and as such, take part in cellular signaling processes involved in regulating viral replication. It is especially due to the progress made in tools to study accumulation and dynamics of SLs, which visualize their compartmentalization and identify interaction partners at a cellular level, as well as the availability of genetic knockout systems, that the role of particular SL species in the viral replication process can be analyzed and, most importantly, be explored as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Sibylle Schneider-Schaulies
- Institute for Virology and Immunobiology, University of Wuerzburg, 97078 Würzburg, Germany; (S.S.-S.); (M.S.); (T.W.)
| | - Fabian Schumacher
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany; (F.S.); (D.W.)
| | - Dominik Wigger
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany; (F.S.); (D.W.)
| | - Marie Schöl
- Institute for Virology and Immunobiology, University of Wuerzburg, 97078 Würzburg, Germany; (S.S.-S.); (M.S.); (T.W.)
| | - Trushnal Waghmare
- Institute for Virology and Immunobiology, University of Wuerzburg, 97078 Würzburg, Germany; (S.S.-S.); (M.S.); (T.W.)
| | - Jan Schlegel
- Department for Biotechnology and Biophysics, University of Wuerzburg, 97074 Würzburg, Germany;
| | - Jürgen Seibel
- Department for Organic Chemistry, University of Wuerzburg, 97074 Würzburg, Germany;
| | - Burkhard Kleuser
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany; (F.S.); (D.W.)
- Correspondence: ; Tel.: +49-30-8386-9823
| |
Collapse
|
35
|
Nijmeijer BM, Langedijk CJM, Geijtenbeek TBH. Mucosal Dendritic Cell Subsets Control HIV-1's Viral Fitness. Annu Rev Virol 2021; 7:385-402. [PMID: 32991263 DOI: 10.1146/annurev-virology-020520-025625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dendritic cell (DC) subsets are abundantly present in genital and intestinal mucosal tissue and are among the first innate immune cells that encounter human immunodeficiency virus type 1 (HIV-1) after sexual contact. Although DCs have specific characteristics that greatly enhance HIV-1 transmission, it is becoming evident that most DC subsets also have virus restriction mechanisms that exert selective pressure on the viruses during sexual transmission. In this review we discuss the current concepts of the immediate events following viral exposure at genital mucosal sites that lead to selection of specific HIV-1 variants called transmitted founder (TF) viruses. We highlight the importance of the TF HIV-1 phenotype and the role of different DC subsets in establishing infection. Understanding the biology of HIV-1 transmission will contribute to the design of novel treatment strategies preventing HIV-1 dissemination.
Collapse
Affiliation(s)
- Bernadien M Nijmeijer
- Department of Experimental Immunology, Amsterdam Institute of Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Catharina J M Langedijk
- Department of Experimental Immunology, Amsterdam Institute of Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Amsterdam Institute of Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| |
Collapse
|
36
|
Haugh KA, Ladinsky MS, Ullah I, Stone HM, Pi R, Gilardet A, Grunst MW, Kumar P, Bjorkman PJ, Mothes W, Uchil PD. In vivo imaging of retrovirus infection reveals a role for Siglec-1/CD169 in multiple routes of transmission. eLife 2021; 10:64179. [PMID: 34223819 PMCID: PMC8298093 DOI: 10.7554/elife.64179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Early events in retrovirus transmission are determined by interactions between incoming viruses and frontline cells near entry sites. Despite their importance for retroviral pathogenesis, very little is known about these events. We developed a bioluminescence imaging (BLI)-guided multiscale imaging approach to study these events in vivo. Engineered murine leukemia reporter viruses allowed us to monitor individual stages of retrovirus life cycle including virus particle flow, virus entry into cells, infection and spread for retroorbital, subcutaneous, and oral routes. BLI permitted temporal tracking of orally administered retroviruses along the gastrointestinal tract as they traversed the lumen through Peyer’s patches to reach the draining mesenteric sac. Importantly, capture and acquisition of lymph-, blood-, and milk-borne retroviruses spanning three routes was promoted by a common host factor, the I-type lectin CD169, expressed on sentinel macrophages. These results highlight how retroviruses co-opt the immune surveillance function of tissue-resident sentinel macrophages for establishing infection.
Collapse
Affiliation(s)
- Kelsey A Haugh
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| | - Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Irfan Ullah
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, United States
| | - Helen M Stone
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| | - Ruoxi Pi
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| | - Alexandre Gilardet
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| | - Michael W Grunst
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, United States
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| | - Pradeep D Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
37
|
Nijen Twilhaar MK, Czentner L, van Nostrum CF, Storm G, den Haan JMM. Mimicking Pathogens to Augment the Potency of Liposomal Cancer Vaccines. Pharmaceutics 2021; 13:954. [PMID: 34202919 PMCID: PMC8308965 DOI: 10.3390/pharmaceutics13070954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 01/02/2023] Open
Abstract
Liposomes have emerged as interesting vehicles in cancer vaccination strategies as their composition enables the inclusion of both hydrophilic and hydrophobic antigens and adjuvants. In addition, liposomes can be decorated with targeting moieties to further resemble pathogenic particles that allow for better engagement with the immune system. However, so far liposomal cancer vaccines have not yet reached their full potential in the clinic. In this review, we summarize recent preclinical studies on liposomal cancer vaccines. We describe the basic ingredients for liposomal cancer vaccines, tumor antigens, and adjuvants, and how their combined inclusion together with targeting moieties potentially derived from pathogens can enhance vaccine immunogenicity. We discuss newly identified antigen-presenting cells in humans and mice that pose as promising targets for cancer vaccines. The lessons learned from these preclinical studies can be applied to enhance the efficacy of liposomal cancer vaccination in the clinic.
Collapse
Affiliation(s)
- Maarten K. Nijen Twilhaar
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands;
| | - Lucas Czentner
- Department of Pharmaceutics, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (L.C.); (C.F.v.N.); (G.S.)
| | - Cornelus F. van Nostrum
- Department of Pharmaceutics, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (L.C.); (C.F.v.N.); (G.S.)
| | - Gert Storm
- Department of Pharmaceutics, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (L.C.); (C.F.v.N.); (G.S.)
- Department of Biomaterials, Science and Technology, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Joke M. M. den Haan
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands;
| |
Collapse
|
38
|
CyTOF Profiling of Zika and Dengue Virus-Infected Human Peripheral Blood Mononuclear Cells Identifies Phenotypic Signatures of Monotype Subsets and Upregulation of the Interferon-Inducible Protein CD169. mSphere 2021; 6:e0050521. [PMID: 34160241 PMCID: PMC8265667 DOI: 10.1128/msphere.00505-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zika and dengue virus (ZIKV and DENV) are two flaviviruses responsible for important vector-borne emerging infectious diseases. While there have been multiple DENV epidemics in the last decades, there have been fewer documented epidemics caused by ZIKV until recent years. Thus, our current knowledge about the biology of ZIKV, the disease, and the immune responses in humans is limited. Here, we used mass cytometry (CyTOF) to perform a detailed characterization of the innate immune responses elicited by ZIKV and DENV in human peripheral blood mononuclear cells (PBMCs) from healthy donors infected ex vivo. We found that ZIKV and DENV exposure of human PBMCs induces global phenotypic changes in myeloid cells, characterized mainly by upregulation of costimulatory molecules (CD86 and CD40), CD38, and the type I interferon-inducible protein CD169, a marker for phagocytic function and cross-priming potential in myeloid cells. We also found that ZIKV induces expansion of nonclassical monocytes in cell culture. The analysis of the phenotype of the three monocyte subtypes (classical, intermediate, and nonclassical) at the single-cell level identified differences in their expression of CD86, CD38, CXCL8, and CXCL10 during ZIKV and DENV infection. Overall, using CyTOF, we found that ex vivo infections of PBMCs with ZIKV and DENV reproduced many aspects of the profile found in blood from patients in previously described cohort studies, which highlights the suitability of this system for the study of the human host responses to these viruses. IMPORTANCE Zika and dengue viruses are emergent arboviruses of great public health impact. Both viruses are responsible for important diseases, yet there is currently no vaccine or specific treatment available. Immune cells play critical roles in the virus cycle as well as in the innate and adaptive immune response elicited in the host; therefore, it is critical to understand the changes induced by virus infection in peripheral blood mononuclear cells (PBMCs). In this study, we used a model of ex vivo infection of PBMCs and CyTOF technology to profile the early innate immune changes induced by Zika virus and dengue virus in blood.
Collapse
|
39
|
Papasavvas E, Azzoni L, Pagliuzza A, Abdel-Mohsen M, Ross BN, Fair M, Howell BJ, Hazuda DJ, Chomont N, Li Q, Mounzer K, Kostman JR, Tebas P, Montaner LJ. Safety, Immune, and Antiviral Effects of Pegylated Interferon Alpha 2b Administration in Antiretroviral Therapy-Suppressed Individuals: Results of Pilot Clinical Trial. AIDS Res Hum Retroviruses 2021; 37:433-443. [PMID: 33323024 DOI: 10.1089/aid.2020.0243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the pilot NCT01935089 trial, we tested whether pegylated interferon alpha2b (Peg-IFN-α2b) with antiretroviral therapy (ART) was safe and could impact HIV and immune measures in blood and in gut-associated lymphoid tissue (GALT). Twenty HIV-1+ ART-suppressed individuals received 1 μg/kg/week Peg-IFN-α2b with ART for 20 weeks, with intermediate 4-week analytical ART interruption (ATI). Safety, immune activation, HIV viral load and integrated HIV DNA in blood, and HIV RNA and DNA in gut biopsies were measured. A total of 7/20 participants experienced grade 3-4 adverse events, while 17/20 participants completed the study. Of the 17 participants who completed the study, 8 remained suppressed during ATI, while all 17 were suppressed at end of treatment (EoT). As expected, treatment increased activation of T and natural killer (NK) cells and IFN-stimulated molecule expression on monocytes in periphery. While circulating CD4+ T cells showed a trend for a decrease in integrated HIV DNA, GALT showed a significant decrease in HIV-1 RNA+ cells as measured by in situ hybridization along with a reduction in total HIV DNA and cell-associated RNA by EoT. The observed decrease in HIV-1 RNA+ cells in GALT was positively associated with the decrease in activated NK cells and macrophages. This study documents for the first time that 20 weeks of immunotherapy with Peg-IFN-α2b+ART (inclusive of a 4-week ATI) is safe and results in an increase in blood and GALT immune activation and in a significant decrease in HIV-1 RNA+ cells in GALT in association with changes in innate cell activation.
Collapse
Affiliation(s)
| | - Livio Azzoni
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Amélie Pagliuzza
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Canada
| | | | - Brian N. Ross
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Matthew Fair
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | | | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Canada
| | - Qingsheng Li
- School of Biological Sciences and Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, USA
| | - Karam Mounzer
- Jonathan Lax Immune Disorders Treatment Center, Philadelphia Field Initiating Group for HIV-1 Trials, Philadelphia, Pennsylvania, USA
| | - Jay R. Kostman
- John Bell Health Center, Philadelphia Field Initiating Group for HIV-1 Trials, Philadelphia, Pennsylvania, USA
| | - Pablo Tebas
- University of Pennsylvania, Department of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
40
|
Wu G, Murugesan G, Nagala M, McCraw A, Haslam SM, Dell A, Crocker PR. Activation of regulatory T cells triggers specific changes in glycosylation associated with Siglec-1-dependent inflammatory responses. Wellcome Open Res 2021; 6:134. [PMID: 35224210 PMCID: PMC8844539 DOI: 10.12688/wellcomeopenres.16834.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Siglec-1 is a macrophage lectin-like receptor that mediates sialic acid-dependent cellular interactions. Its upregulation on macrophages in autoimmune disease was shown previously to promote inflammation through suppressing the expansion of regulatory T cells (Tregs). Here we investigate the molecular basis for Siglec-1 binding to Tregs using in vitro-induced cells as a model system. Methods: Glycosylation changes that affect Siglec‑1 binding were studied by comparing activated and resting Tregs using RNA-Seq, glycomics, proteomics and binding of selected antibodies and lectins. A proximity labelling and proteomics strategy was used to identify Siglec-1 counter-receptors expressed on activated Tregs. Results: Siglec-1 binding was strongly upregulated on activated Tregs, but lost under resting conditions. Glycomics revealed changes in N-glycans and glycolipids following Treg activation and we observed changes in expression of multiple 'glycogenes' that could lead to the observed increase in Siglec-1 binding. Proximity labelling of intact, living cells identified 49 glycoproteins expressed by activated Tregs that may function as Siglec-1 counter-receptors. These represent ~5% of the total membrane protein pool and were mainly related to T cell activation and proliferation. We demonstrate that several of these counter-receptors were upregulated following activation of Tregs and provide initial evidence that their altered glycosylation may also be important for Siglec-1 binding. Conclusions: We provide the first comprehensive analysis of glycan changes that occur in activated Tregs, leading to recognition by the macrophage lectin, Siglec-1 and suppression of Treg expansion. We furthermore provide insights into glycoprotein counter-receptors for Siglec-1 expressed by activated Tregs that are likely to be important for suppressing Treg expansion.
Collapse
Affiliation(s)
- Gang Wu
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5EH, UK
| | - Gavuthami Murugesan
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5EH, UK
| | - Manjula Nagala
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5EH, UK
| | - Alex McCraw
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5EH, UK
| | - Stuart M. Haslam
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Paul R. Crocker
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5EH, UK
| |
Collapse
|
41
|
Song DH, Garcia G, Situ K, Chua BA, Hong MLO, Do EA, Ramirez CM, Harui A, Arumugaswami V, Morizono K. Development of a blocker of the universal phosphatidylserine- and phosphatidylethanolamine-dependent viral entry pathways. Virology 2021; 560:17-33. [PMID: 34020328 DOI: 10.1016/j.virol.2021.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/28/2022]
Abstract
Envelope phosphatidylserine (PtdSer) and phosphatidylethanolamine (PtdEtr) have been shown to mediate binding of enveloped viruses. However, commonly used PtdSer binding molecules such as Annexin V cannot block PtdSer-mediated viral infection. Lack of reagents that can conceal envelope PtdSer and PtdEtr and subsequently inhibit infection hinders elucidation of the roles of the envelope phospholipids in viral infection. Here, we developed sTIM1dMLDR801, a reagent capable of blocking PtdSer- and PtdEtr-dependent infection of enveloped viruses. Using sTIM1dMLDR801, we found that envelope PtdSer and/or PtdEtr can support ZIKV infection of not only human but also mosquito cells. In a mouse model for ZIKV infection, sTIM1dMLDR801 reduced ZIKV load in serum and the spleen, indicating envelope PtdSer and/or PtdEtr support in viral infection in vivo. sTIM1dMLDR801 will enable elucidation of the roles of envelope PtdSer and PtdEtr in infection of various virus species, thereby facilitating identification of their receptors and transmission mechanisms.
Collapse
Affiliation(s)
- Da-Hoon Song
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Gustavo Garcia
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Kathy Situ
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Bernadette A Chua
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Madeline Lauren O Hong
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Elyza A Do
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Christina M Ramirez
- Department of Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA
| | - Airi Harui
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, 90095, USA
| | - Kouki Morizono
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW In the gastro-intestinal tract, the complex network of multiple innate cell populations play critical roles not only as a first line of defense against invading pathogens and in driving adaptive immune responses but also in maintaining intestinal homeostasis. Here, we describe the roles of various innate immune cell populations in gut immunity and detail studies investigating the impact of acute and chronic HIV infection on these cell populations. RECENT FINDINGS Alterations in frequencies, phenotype and/or function of innate lymphoid cells, dendritic cells, macrophages, neutrophils, and innate-like T cells have been reported in people with HIV (PWH), with many of these features persisting despite anti-retroviral therapy and virological suppression. Dysregulated gut innate immunity in PWH is a feature of gut pathogenesis. A greater understanding of the mechanisms driving impairment in the multiple different gut innate immune cell populations and the downstream consequences of an altered innate immune response on host defense and gut homeostasis in PWH is needed to develop more effective HIV treatments and cure strategies.
Collapse
Affiliation(s)
- Stephanie M Dillon
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Mail Stop B168, Aurora, CO, 80045, USA.
| | - Cara C Wilson
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Mail Stop B168, Aurora, CO, 80045, USA
| |
Collapse
|
43
|
B Lymphocytes, but Not Dendritic Cells, Efficiently HIV-1 Trans Infect Naive CD4 + T Cells: Implications for the Viral Reservoir. mBio 2021; 12:mBio.02998-20. [PMID: 33688006 PMCID: PMC8092276 DOI: 10.1128/mbio.02998-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Insight into the establishment and maintenance of HIV-1 infection in resting CD4+ T cell subsets is critical for the development of therapeutics targeting the HIV-1 reservoir. Although the frequency of HIV-1 infection, as quantified by the frequency of HIV-1 DNA, is lower in CD4+ naive T cells (TN) than in the memory T cell subsets, recent studies have shown that TN harbor a large pool of replication-competent virus. Interestingly, however, TN are highly resistant to direct (cis) HIV-1 infection in vitro, in particular to R5-tropic HIV-1, as TN do not express CCR5. In this study, we investigated whether TN could be efficiently HIV-1 trans infected by professional antigen-presenting B lymphocytes and myeloid dendritic cells (DC) in the absence of global T cell activation. We found that B cells, but not DC, have a unique ability to efficiently trans infect TNin vitro In contrast, both B cells and DC mediated HIV-1 trans infection of memory and activated CD4+ T cells. Moreover, we found that TN isolated from HIV-1-infected nonprogressors (NP) harbor significantly disproportionately lower levels of HIV-1 DNA than TN isolated from progressors. This is consistent with our previous finding that antigen-presenting cells (APC) derived from NP do not efficiently trans infect CD4+ T cells due to alterations in APC cholesterol metabolism and cell membrane lipid raft organization. These findings support that B cell-mediated trans infection of TN with HIV-1 has a more profound role than previously considered in establishing the viral reservoir and control of HIV-1 disease progression.IMPORTANCE The latent human immunodeficiency virus type 1 (HIV-1) reservoir in persons on antiretroviral therapy (ART) represents a major barrier to a cure. Although most studies have focused on the HIV-1 reservoir in the memory T cell subset, replication-competent HIV-1 has been isolated from TN, and CCR5-tropic HIV-1 has been recovered from CCR5neg TN from ART-suppressed HIV-1-infected individuals. In this study, we showed that CCR5neg TN are efficiently trans infected with R5-tropic HIV-1 by B lymphocytes, but not by myeloid dendritic cells. Furthermore, we found that TN isolated from NP harbor no or significantly fewer copies of HIV-1 DNA than those from ART-suppressed progressors. These findings support that B cell-mediated trans infection of TN with HIV-1 has a more profound role than previously considered in establishing the viral reservoir and control of HIV-1 disease progression. Understanding the establishment and maintenance of the HIV-1 latent reservoir is fundamental for the design of effective treatments for viral eradication.
Collapse
|
44
|
Abstract
Chronic neuroinflammation is observed in HIV+ individuals on suppressive combination antiretroviral therapy (cART) and is thought to cause HIV-associated neurocognitive disorders. We have recently reported that expression of HIV intron-containing RNA (icRNA) in productively infected monocyte-derived macrophages induces pro-inflammatory responses. Microglia, yolk sac-derived brain-resident tissue macrophages, are the primary HIV-1 infected cell type in the central nervous system (CNS). In this study, we tested the hypothesis that persistent expression of HIV icRNA in primary human microglia induces innate immune activation. We established multiple orthogonal primary human microglia-like cell cultures including peripheral blood monocyte-derived microglia (MDMG) and induced pluripotent stem cell (iPSC)-derived microglia. Unlike MDMG, human iPSC-derived microglia (hiMG), which phenotypically mimic primary CNS microglia, were robustly infected with replication competent HIV-1, and establishment of productive HIV-1 infection and de novo viral gene expression led to pro-inflammatory cytokine production. Blocking of HIV-1 icRNA expression, but not multiply spliced viral RNA, either via infection with virus expressing a Rev-mutant deficient for HIV icRNA nuclear export or infection in the presence of small molecule inhibitor of CRM1-mediated viral icRNA nuclear export pathway, attenuated induction of innate immune responses. These studies suggest that Rev-CRM1-dependent nuclear export and cytosolic sensing of HIV-1 icRNA induces pro-inflammatory responses in productively infected microglia. Novel strategies targeting HIV icRNA expression specifically are needed to suppress HIV-induced neuroinflammation.
Collapse
|
45
|
Grabowska J, Affandi AJ, van Dinther D, Nijen Twilhaar MK, Olesek K, Hoogterp L, Ambrosini M, Heijnen DAM, Klaase L, Hidalgo A, Asano K, Crocker PR, Storm G, van Kooyk Y, den Haan JMM. Liposome induction of CD8 + T cell responses depends on CD169 + macrophages and Batf3-dependent dendritic cells and is enhanced by GM3 inclusion. J Control Release 2021; 331:309-320. [PMID: 33493613 DOI: 10.1016/j.jconrel.2021.01.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
Cancer vaccines aim to efficiently prime cytotoxic CD8+ T cell responses which can be achieved by vaccine targeting to dendritic cells. CD169+ macrophages have been shown to transfer antigen to dendritic cells and could act as an alternative target for cancer vaccines. Here, we evaluated liposomes containing the CD169/Siglec-1 binding ligand, ganglioside GM3, and the non-binding ligand, ganglioside GM1, for their capacity to target antigens to CD169+ macrophages and to induce immune responses. CD169+ macrophages demonstrated specific uptake of GM3 liposomes in vitro and in vivo that was dependent on a functional CD169 receptor. Robust antigen-specific CD8+ and CD4+ T and B cell responses were observed upon intravenous administration of GM3 liposomes containing the model antigen ovalbumin in the presence of adjuvant. Immunization of B16-OVA tumor bearing mice with all liposomes resulted in delayed tumor growth and improved survival. The absence of CD169+ macrophages, functional CD169 molecules, and cross-presenting Batf3-dependent dendritic cells (cDC1s) significantly impaired CD8+ T cell responses, while B cell responses were less affected. In conclusion, we demonstrate that inclusion of GM3 in liposomes enhance immune responses and that splenic CD169+ macrophages and cDC1s are required for induction of CD8+ T cell immunity after liposomal vaccination.
Collapse
Affiliation(s)
- J Grabowska
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - A J Affandi
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - D van Dinther
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - M K Nijen Twilhaar
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - K Olesek
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - L Hoogterp
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - M Ambrosini
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - D A M Heijnen
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - L Klaase
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - A Hidalgo
- Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - K Asano
- Laboratory of Immune Regulation, School of Life Science, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - P R Crocker
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - G Storm
- Department of Pharmaceutics, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, the Netherlands; Department of Biomaterials, Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Y van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - J M M den Haan
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
46
|
Grabowska J, Stolk DA, Nijen Twilhaar MK, Ambrosini M, Storm G, van der Vliet HJ, de Gruijl TD, van Kooyk Y, den Haan JM. Liposomal Nanovaccine Containing α-Galactosylceramide and Ganglioside GM3 Stimulates Robust CD8 + T Cell Responses via CD169 + Macrophages and cDC1. Vaccines (Basel) 2021; 9:vaccines9010056. [PMID: 33467048 PMCID: PMC7830461 DOI: 10.3390/vaccines9010056] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/05/2021] [Accepted: 01/10/2021] [Indexed: 02/06/2023] Open
Abstract
Successful anti-cancer vaccines aim to prime and reinvigorate cytotoxic T cells and should therefore comprise a potent antigen and adjuvant. Antigen targeting to splenic CD169+ macrophages was shown to induce robust CD8+ T cell responses via antigen transfer to cDC1. Interestingly, CD169+ macrophages can also activate type I natural killer T-cells (NKT). NKT activation via ligands such as α-galactosylceramide (αGC) serve as natural adjuvants through dendritic cell activation. Here, we incorporated ganglioside GM3 and αGC in ovalbumin (OVA) protein-containing liposomes to achieve both CD169+ targeting and superior DC activation. The systemic delivery of GM3-αGC-OVA liposomes resulted in specific uptake by splenic CD169+ macrophages, stimulated strong IFNγ production by NKT and NK cells and coincided with the maturation of cDC1 and significant IL-12 production. Strikingly, superior induction of OVA-specific CD8+ T cells was detected after immunization with GM3-αGC-OVA liposomes. CD8+ T cell activation, but not B cell activation, was dependent on CD169+ macrophages and cDC1, while activation of NKT and NK cells were partially mediated by cDC1. In summary, GM3-αGC antigen-containing liposomes are a potent vaccination platform that promotes the interaction between different immune cell populations, resulting in strong adaptive immunity and therefore emerge as a promising anti-cancer vaccination strategy.
Collapse
Affiliation(s)
- Joanna Grabowska
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (J.G.); (D.A.S.); (M.K.N.T.); (M.A.); (Y.v.K.)
| | - Dorian A. Stolk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (J.G.); (D.A.S.); (M.K.N.T.); (M.A.); (Y.v.K.)
| | - Maarten K. Nijen Twilhaar
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (J.G.); (D.A.S.); (M.K.N.T.); (M.A.); (Y.v.K.)
| | - Martino Ambrosini
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (J.G.); (D.A.S.); (M.K.N.T.); (M.A.); (Y.v.K.)
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands;
- Department of Biomaterials Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Hans J. van der Vliet
- Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (H.J.v.d.V.); (T.D.d.G.)
- Lava Therapeutics, 3584 CM Utrecht, The Netherlands
| | - Tanja D. de Gruijl
- Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (H.J.v.d.V.); (T.D.d.G.)
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (J.G.); (D.A.S.); (M.K.N.T.); (M.A.); (Y.v.K.)
| | - Joke M.M. den Haan
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (J.G.); (D.A.S.); (M.K.N.T.); (M.A.); (Y.v.K.)
- Correspondence: ; Tel.: +31-20-4448080
| |
Collapse
|
47
|
Benet S, Gálvez C, Drobniewski F, Kontsevaya I, Arias L, Monguió-Tortajada M, Erkizia I, Urrea V, Ong RY, Luquin M, Dupont M, Chojnacki J, Dalmau J, Cardona P, Neyrolles O, Lugo-Villarino G, Vérollet C, Julián E, Furrer H, Günthard HF, Crocker PR, Tapia G, Borràs FE, Fellay J, McLaren PJ, Telenti A, Cardona PJ, Clotet B, Vilaplana C, Martinez-Picado J, Izquierdo-Useros N. Dissemination of Mycobacterium tuberculosis is associated to a SIGLEC1 null variant that limits antigen exchange via trafficking extracellular vesicles. J Extracell Vesicles 2021; 10:e12046. [PMID: 33489013 PMCID: PMC7807485 DOI: 10.1002/jev2.12046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/28/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
The identification of individuals with null alleles enables studying how the loss of gene function affects infection. We previously described a non-functional variant in SIGLEC1, which encodes the myeloid-cell receptor Siglec-1/CD169 implicated in HIV-1 cell-to-cell transmission. Here we report a significant association between the SIGLEC1 null variant and extrapulmonary dissemination of Mycobacterium tuberculosis (Mtb) in two clinical cohorts comprising 6,256 individuals. Local spread of bacteria within the lung is apparent in Mtb-infected Siglec-1 knockout mice which, despite having similar bacterial load, developed more extensive lesions compared to wild type mice. We find that Siglec-1 is necessary to induce antigen presentation through extracellular vesicle uptake. We postulate that lack of Siglec-1 delays the onset of protective immunity against Mtb by limiting antigen exchange via extracellular vesicles, allowing for an early local spread of mycobacteria that increases the risk for extrapulmonary dissemination.
Collapse
Affiliation(s)
- Susana Benet
- Department of Retrovirology IrsiCaixa AIDS Research Institute Badalona Spain.,Department of Retrovirology Universitat Autònoma de Barcelona Cerdanyola del Vallès Spain
| | - Cristina Gálvez
- Department of Retrovirology IrsiCaixa AIDS Research Institute Badalona Spain.,Department of Retrovirology Universitat Autònoma de Barcelona Cerdanyola del Vallès Spain
| | | | - Irina Kontsevaya
- Department of Retrovirology Imperial College London UK.,Department of Retrovirology Research Center Borstel, Borstel Germany.,Department of Retrovirology N.V. Postnikov Samara Region Clinical Tuberculosis Dispensary Samara Russia
| | - Lilibeth Arias
- Experimental Tuberculosis Unit (UTE) Germans Trias i Pujol Health Science Research Institute Can Ruti Campus Badalona Spain.,Departament de Genètica i de Microbiologia Facultat de Biociències Universitat Autònoma de Barcelona Cerdanyola del Vallès Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES) Madrid Spain
| | - Marta Monguió-Tortajada
- REMAR-IVECAT Group Germans Trias i Pujol Health Science Research Institute Can Ruti Campus Badalona Spain.,ICREC Research Program Germans Trias i Pujol Health Science Research Institute Can Ruti Campus Badalona Spain.,Department of Cell Biology Physiology and Immunology Universitat Autònoma de Barcelona Cerdanyola del Vallès Spain
| | - Itziar Erkizia
- Department of Retrovirology IrsiCaixa AIDS Research Institute Badalona Spain
| | - Victor Urrea
- Department of Retrovirology IrsiCaixa AIDS Research Institute Badalona Spain
| | - Ruo-Yan Ong
- Division of Cell Signalling and Immunology University of Dundee Dundee UK
| | - Marina Luquin
- Departament de Genètica i de Microbiologia Facultat de Biociències Universitat Autònoma de Barcelona Cerdanyola del Vallès Spain
| | - Maeva Dupont
- Institut de Pharmacologie et Biologie Structurale IPBS CNRS UPS Université de Toulouse Toulouse France.,International associated laboratory (LIA) CNRS "IM-TB/HIV" (1167) France and Buenos Aires Toulouse Argentina
| | - Jakub Chojnacki
- Department of Retrovirology IrsiCaixa AIDS Research Institute Badalona Spain
| | - Judith Dalmau
- Department of Retrovirology IrsiCaixa AIDS Research Institute Badalona Spain
| | - Paula Cardona
- Experimental Tuberculosis Unit (UTE) Germans Trias i Pujol Health Science Research Institute Can Ruti Campus Badalona Spain.,Departament de Genètica i de Microbiologia Facultat de Biociències Universitat Autònoma de Barcelona Cerdanyola del Vallès Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES) Madrid Spain
| | - Olivier Neyrolles
- Institut de Pharmacologie et Biologie Structurale IPBS CNRS UPS Université de Toulouse Toulouse France.,International associated laboratory (LIA) CNRS "IM-TB/HIV" (1167) France and Buenos Aires Toulouse Argentina
| | - Geanncarlo Lugo-Villarino
- Institut de Pharmacologie et Biologie Structurale IPBS CNRS UPS Université de Toulouse Toulouse France.,International associated laboratory (LIA) CNRS "IM-TB/HIV" (1167) France and Buenos Aires Toulouse Argentina
| | - Christel Vérollet
- Institut de Pharmacologie et Biologie Structurale IPBS CNRS UPS Université de Toulouse Toulouse France.,International associated laboratory (LIA) CNRS "IM-TB/HIV" (1167) France and Buenos Aires Toulouse Argentina
| | - Esther Julián
- Departament de Genètica i de Microbiologia Facultat de Biociències Universitat Autònoma de Barcelona Cerdanyola del Vallès Spain
| | - Hansjakob Furrer
- Department of Infectious Diseases Bern University Hospital University of Bern Bern Switzerland
| | - Huldrych F Günthard
- Division of Infectious Diseases and Hospital Epidemiology University Hospital Zurich Zurich Switzerland.,Institute of Medical Virology University of Zurich Zurich Switzerland
| | - Paul R Crocker
- Division of Cell Signalling and Immunology University of Dundee Dundee UK
| | - Gustavo Tapia
- Department of Retrovirology Universitat Autònoma de Barcelona Cerdanyola del Vallès Spain.,Pathology Department Hospital Universitario Germans Trias i Pujol Badalona Spain.,Germans Trias i Pujol Research Institute (IGTP) Can Ruti Campus Badalona Spain
| | - Francesc E Borràs
- REMAR-IVECAT Group Germans Trias i Pujol Health Science Research Institute Can Ruti Campus Badalona Spain.,Nephrology Department Germans Trias i Pujol University Hospital Badalona Spain
| | - Jacques Fellay
- School of Life Sciences École Polytechnique Fédérale de Lausanne Lausanne Switzerland.,Swiss Institute of Bioinformatics Lausanne Switzerland.,Precision Medicine Unit Lausanne University Hospital and University of Lausanne Lausanne Switzerland
| | - Paul J McLaren
- JC Wilt Infectious Diseases Research Centre Public Health Agency of Canada Winnipeg Manitoba Canada.,Department of Medical Microbiology and Infectious Diseases University of Manitoba Winnipeg Manitoba Canada
| | | | - Pere-Joan Cardona
- Experimental Tuberculosis Unit (UTE) Germans Trias i Pujol Health Science Research Institute Can Ruti Campus Badalona Spain.,Departament de Genètica i de Microbiologia Facultat de Biociències Universitat Autònoma de Barcelona Cerdanyola del Vallès Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES) Madrid Spain
| | - Bonaventura Clotet
- Department of Retrovirology IrsiCaixa AIDS Research Institute Badalona Spain.,Germans Trias i Pujol Research Institute (IGTP) Can Ruti Campus Badalona Spain.,AIDS and Related Illnesses Centre for Health and Social Care Research (CESS) Faculty of Medicine University of Vic - Central University of Catalonia (UVic - UCC) Vic Spain
| | - Cristina Vilaplana
- Experimental Tuberculosis Unit (UTE) Germans Trias i Pujol Health Science Research Institute Can Ruti Campus Badalona Spain.,Departament de Genètica i de Microbiologia Facultat de Biociències Universitat Autònoma de Barcelona Cerdanyola del Vallès Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES) Madrid Spain
| | - Javier Martinez-Picado
- Department of Retrovirology IrsiCaixa AIDS Research Institute Badalona Spain.,Germans Trias i Pujol Research Institute (IGTP) Can Ruti Campus Badalona Spain.,AIDS and Related Illnesses Centre for Health and Social Care Research (CESS) Faculty of Medicine University of Vic - Central University of Catalonia (UVic - UCC) Vic Spain.,Catalan Institution for Research and Advanced Studies (ICREA) Barcelona Spain
| | - Nuria Izquierdo-Useros
- Department of Retrovirology IrsiCaixa AIDS Research Institute Badalona Spain.,Germans Trias i Pujol Research Institute (IGTP) Can Ruti Campus Badalona Spain
| |
Collapse
|
48
|
Avota E, Bodem J, Chithelen J, Mandasari P, Beyersdorf N, Schneider-Schaulies J. The Manifold Roles of Sphingolipids in Viral Infections. Front Physiol 2021. [PMID: 34658908 DOI: 10.3389/fphys.2021.71552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Sphingolipids are essential components of eukaryotic cells. In this review, we want to exemplarily illustrate what is known about the interactions of sphingolipids with various viruses at different steps of their replication cycles. This includes structural interactions during entry at the plasma membrane or endosomal membranes, early interactions leading to sphingolipid-mediated signal transduction, interactions with internal membranes and lipids during replication, and interactions during virus assembly and budding. Targeted interventions in sphingolipid metabolism - as far as they can be tolerated by cells and organisms - may open novel possibilities to support antiviral therapies. Human immunodeficiency virus type 1 (HIV-1) infections have intensively been studied, but for other viral infections, such as influenza A virus (IAV), measles virus (MV), hepatitis C virus (HCV), dengue virus, Ebola virus, and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), investigations are still in their beginnings. As many inhibitors of sphingolipid metabolism are already in clinical use against other diseases, repurposing studies for applications in some viral infections appear to be a promising approach.
Collapse
Affiliation(s)
- Elita Avota
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Jochen Bodem
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Janice Chithelen
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Putri Mandasari
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
49
|
Affandi AJ, Grabowska J, Olesek K, Lopez Venegas M, Barbaria A, Rodríguez E, Mulder PPG, Pijffers HJ, Ambrosini M, Kalay H, O'Toole T, Zwart ES, Kazemier G, Nazmi K, Bikker FJ, Stöckl J, van den Eertwegh AJM, de Gruijl TD, Storm G, van Kooyk Y, den Haan JMM. Selective tumor antigen vaccine delivery to human CD169 + antigen-presenting cells using ganglioside-liposomes. Proc Natl Acad Sci U S A 2020; 117:27528-27539. [PMID: 33067394 PMCID: PMC7959579 DOI: 10.1073/pnas.2006186117] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Priming of CD8+ T cells by dendritic cells (DCs) is crucial for the generation of effective antitumor immune responses. Here, we describe a liposomal vaccine carrier that delivers tumor antigens to human CD169/Siglec-1+ antigen-presenting cells using gangliosides as targeting ligands. Ganglioside-liposomes specifically bound to CD169 and were internalized by in vitro-generated monocyte-derived DCs (moDCs) and macrophages and by ex vivo-isolated splenic macrophages in a CD169-dependent manner. In blood, high-dimensional reduction analysis revealed that ganglioside-liposomes specifically targeted CD14+ CD169+ monocytes and Axl+ CD169+ DCs. Liposomal codelivery of tumor antigen and Toll-like receptor ligand to CD169+ moDCs and Axl+ CD169+ DCs led to cytokine production and robust cross-presentation and activation of tumor antigen-specific CD8+ T cells. Finally, Axl+ CD169+ DCs were present in cancer patients and efficiently captured ganglioside-liposomes. Our findings demonstrate a nanovaccine platform targeting CD169+ DCs to drive antitumor T cell responses.
Collapse
Affiliation(s)
- Alsya J Affandi
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Joanna Grabowska
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Katarzyna Olesek
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Miguel Lopez Venegas
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- DC4U, 3621 ZA Breukelen, The Netherlands
| | - Arnaud Barbaria
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Ernesto Rodríguez
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Patrick P G Mulder
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Helen J Pijffers
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Martino Ambrosini
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Hakan Kalay
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Tom O'Toole
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Eline S Zwart
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Geert Kazemier
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Johannes Stöckl
- Institute of Immunology, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Alfons J M van den Eertwegh
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3508 TB Utrecht, The Netherlands
- Department of Biomaterials, Science and Technology, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- DC4U, 3621 ZA Breukelen, The Netherlands
| | - Joke M M den Haan
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands;
| |
Collapse
|
50
|
Eshaghi B, Alsharif N, An X, Akiyama H, Brown KA, Gummuluru S, Reinhard BM. Stiffness of HIV-1 Mimicking Polymer Nanoparticles Modulates Ganglioside-Mediated Cellular Uptake and Trafficking. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000649. [PMID: 32999830 PMCID: PMC7509657 DOI: 10.1002/advs.202000649] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/19/2020] [Indexed: 05/12/2023]
Abstract
The monosialodihexosylganglioside, GM3, and its binding to CD169 (Siglec-1) have been indicated as key factors in the glycoprotein-independent sequestration of the human immunodeficiency virus-1 (HIV-1) in virus-containing compartments (VCCs) in myeloid cells. Here, lipid-wrapped polymer nanoparticles (NPs) are applied as a virus-mimicking model to characterize the effect of core stiffness on NP uptake and intracellular fate triggered by GM3-CD169 binding in macrophages. GM3-functionalized lipid-wrapped NPs are assembled with poly(lactic-co-glycolic) acid (PLGA) as well as with low and high molecular weight polylactic acid (PLAlMW and PLAhMW) cores. The NPs have an average diameter of 146 ± 17 nm and comparable surface properties defined by the self-assembled lipid layer. Due to differences in the glass transition temperature, the Young's modulus (E) differs substantially under physiological conditions between PLGA (E PLGA = 60 ± 32 MPa), PLAlMW (E PLA lMW = 86 ± 25 MPa), and PLAhMW (E PLA hMW = 1.41 ± 0.67 GPa) NPs. Only the stiff GM3-presenting PLAhMW NPs but not the softer PLGA or PLAlMW NPs avoid a lysosomal pathway and localize in tetraspanin (CD9)-positive compartments that resemble VCCs. These observations suggest that GM3-CD169-induced sequestration of NPs in nonlysosomal compartments is not entirely determined by ligand-receptor interactions but also depends on core stiffness.
Collapse
Affiliation(s)
- Behnaz Eshaghi
- Department of Chemistry and The Photonics CenterBoston UniversityBostonMA02215USA
| | - Nourin Alsharif
- Department of Mechanical Engineering and The Photonics CenterBoston UniversityBostonMA02215USA
| | - Xingda An
- Department of Chemistry and The Photonics CenterBoston UniversityBostonMA02215USA
| | - Hisashi Akiyama
- Department of MicrobiologyBoston University School of MedicineBostonMA02118USA
| | - Keith A. Brown
- Department of Mechanical Engineering and The Photonics CenterBoston UniversityBostonMA02215USA
| | - Suryaram Gummuluru
- Department of MicrobiologyBoston University School of MedicineBostonMA02118USA
| | - Björn M. Reinhard
- Department of Chemistry and The Photonics CenterBoston UniversityBostonMA02215USA
| |
Collapse
|