1
|
Vanhoffelen E, Vermoesen L, Michiels L, Lagrou K, Reséndiz-Sharpe A, Vande Velde G. Sensitive bioluminescence imaging of cryptococcosis in Galleria mellonella improves antifungal screening under in vivo conditions. Virulence 2024; 15:2327883. [PMID: 38465639 PMCID: PMC10939141 DOI: 10.1080/21505594.2024.2327883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/28/2024] [Indexed: 03/12/2024] Open
Abstract
Cryptococcus neoformans is an environmental yeast that primarily affects immunocompromised individuals, causing respiratory infections and life-threatening meningoencephalitis. Treatment is complicated by limited antifungal options, with concerns such as adverse effects, dose-limiting toxicity, blood-brain barrier permeability, and resistance development, emphasizing the critical need to optimize and expand current treatment options against invasive cryptococcosis. Galleria mellonella larvae have been introduced as an ethical intermediate for in vivo testing, bridging the gap between in vitro antifungal screening and mouse studies. However, current infection readouts in G. mellonella are indirect, insensitive, or invasive, which hampers the full potential of the model. To address the absence of a reliable non-invasive method for tracking infection, we longitudinally quantified the cryptococcal burden in G. mellonella using bioluminescence imaging (BLI). After infection with firefly luciferase-expressing C. neoformans, the resulting bioluminescence signal was quantitatively validated using colony-forming unit analysis. Longitudinal comparison of BLI to health and survival analysis revealed increased sensitivity of BLI in discriminating cryptococcal burden during early infection. Furthermore, BLI improved the detection of treatment efficacy using first-line antifungals, thereby benchmarking this model for antifungal testing. In conclusion, we introduced BLI as a real-time, quantitative readout of cryptococcal burden in G. mellonella over time, enabling more sensitive and reliable antifungal screening.
Collapse
Affiliation(s)
- Eliane Vanhoffelen
- Department of Imaging and Pathology, Biomedical MRI unit/MoSAIC, KULeuven, Leuven, Belgium
| | - Lori Vermoesen
- Department of Imaging and Pathology, Biomedical MRI unit/MoSAIC, KULeuven, Leuven, Belgium
| | - Lauren Michiels
- Department of Imaging and Pathology, Biomedical MRI unit/MoSAIC, KULeuven, Leuven, Belgium
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, KULeuven, Leuven, Belgium
- Department of Laboratory Medicine, National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | | | - Greetje Vande Velde
- Department of Imaging and Pathology, Biomedical MRI unit/MoSAIC, KULeuven, Leuven, Belgium
| |
Collapse
|
2
|
Kakoschke TK, Kleinemeier C, Knösel T, Kakoschke SC, Ebel F. The Novel Monoclonal IgG 1-Antibody AB90-E8 as a Diagnostic Tool to Rapidly Distinguish Aspergillus fumigatus from Other Human Pathogenic Aspergillus Species. J Fungi (Basel) 2023; 9:622. [PMID: 37367559 DOI: 10.3390/jof9060622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
In most cases, invasive aspergillosis (IA) is caused by A. fumigatus, though infections with other Aspergillus spp. with lower susceptibilities to amphotericin B (AmB) gain ground. A. terreus, for instance, is the second leading cause of IA in humans and of serious concern because of its high propensity to disseminate and its in vitro and in vivo resistance to AmB. An early differentiation between A. fumigatus and non-A. fumigatus infections could swiftly recognize a potentially ineffective treatment with AmB and lead to the lifesaving change to a more appropriate drug regime in high-risk patients. In this study, we present the characteristics of the monoclonal IgG1-antibody AB90-E8 that specifically recognizes a surface antigen of A. fumigatus and the closely related, but not human pathogenic A. fischeri. We show immunostainings on fresh frozen sections as well as on incipient mycelium picked from agar plates with tweezers or by using the expeditious tape mount technique. All three methods have a time advantage over the common procedures currently used in the routine diagnosis of IA and outline the potential of AB90-E8 as a rapid diagnostic tool.
Collapse
Affiliation(s)
- Tamara Katharina Kakoschke
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, Ludwig-Maximilians-University Munich, Lindwurmstrasse 2a, 80337 Munich, Germany
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University Munich, 85764 Oberschleissheim, Germany
| | - Christoph Kleinemeier
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University Munich, 85764 Oberschleissheim, Germany
| | - Thomas Knösel
- Institute of Pathology, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Sara Carina Kakoschke
- Department of General, Visceral and Transplant Surgery, University Hospital, Ludwig-Maximilians-University Munich, Marchioninistrasse 15, 81337 Munich, Germany
| | - Frank Ebel
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University Munich, 85764 Oberschleissheim, Germany
| |
Collapse
|
3
|
Resendiz-Sharpe A, Vanhoffelen E, Velde GV. Bioluminescence Imaging, a Powerful Tool to Assess Fungal Burden in Live Mouse Models of Infection. Methods Mol Biol 2023; 2667:197-210. [PMID: 37145286 DOI: 10.1007/978-1-0716-3199-7_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Aspergillus fumigatus and Cryptococcus neoformans species infections are two of the most common life-threatening fungal infections in the immunocompromised population. Acute invasive pulmonary aspergillosis (IPA) and meningeal cryptococcosis are the most severe forms affecting patients with elevated associated mortality rates despite current treatments. As many unanswered questions remain concerning these fungal infections, additional research is greatly needed not only in clinical scenarios but also under controlled preclinical experimental settings to increase our understanding concerning their virulence, host-pathogen interactions, infection development, and treatments. Preclinical animal models are powerful tools to gain more insight into some of these needs. However, assessment of disease severity and fungal burden in mouse models of infection are often limited to less sensitive, single-time, invasive, and variability-prone techniques such as colony-forming unit counting. These issues can be overcome by in vivo bioluminescence imaging (BLI). BLI is a noninvasive tool that provides longitudinal dynamic visual and quantitative information on the fungal burden from the onset of infection and potential dissemination to different organs throughout the development of disease in individual animals. Hereby, we describe an entire experimental pipeline from mouse infection to BLI acquisition and quantification, readily available to researchers to provide a noninvasive, longitudinal readout of fungal burden and dissemination throughout the course of infection development, which can be applied for preclinical studies into pathophysiology and treatment of IPA and cryptococcosis in vivo.
Collapse
Affiliation(s)
| | - Eliane Vanhoffelen
- KU Leuven, Department of Imaging and Pathology, Biomedical MRI / MoSAIC, Leuven, Belgium
| | - Greetje Vande Velde
- KU Leuven, Department of Imaging and Pathology, Biomedical MRI / MoSAIC, Leuven, Belgium.
| |
Collapse
|
4
|
Resendiz-Sharpe A, da Silva RP, Geib E, Vanderbeke L, Seldeslachts L, Hupko C, Brock M, Lagrou K, Vande Velde G. Longitudinal multimodal imaging-compatible mouse model of triazole-sensitive and -resistant invasive pulmonary aspergillosis. Dis Model Mech 2022; 15:274857. [PMID: 35352801 PMCID: PMC8990085 DOI: 10.1242/dmm.049165] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 01/09/2022] [Indexed: 12/18/2022] Open
Abstract
Invasive pulmonary aspergillosis (IPA) caused by the mold Aspergillus fumigatus is one of the most important life-threatening infections in immunocompromised patients. The alarming increase of isolates resistant to the first-line recommended antifungal therapy urges more insights into triazole-resistant A. fumigatus infections. In this study, we systematically optimized a longitudinal multimodal imaging-compatible neutropenic mouse model of IPA. Reproducible rates of pulmonary infection were achieved through immunosuppression (sustained neutropenia) with 150 mg/kg cyclophosphamide at day −4, −1 and 2, and an orotracheal inoculation route in both sexes. Furthermore, increased sensitivity of in vivo bioluminescence imaging for fungal burden detection, as early as the day after infection, was achieved by optimizing luciferin dosing and through engineering isogenic red-shifted bioluminescent A. fumigatus strains, one wild type and two triazole-resistant mutants. We successfully tested appropriate and inappropriate antifungal treatment scenarios in vivo with our optimized multimodal imaging strategy, according to the in vitro susceptibility of our luminescent fungal strains. Therefore, we provide novel essential mouse models with sensitive imaging tools for investigating IPA development and therapy in triazole-susceptible and triazole-resistant scenarios. Summary: A novel reproducible longitudinal multimodal imaging-compatible neutropenic mouse model of invasive pulmonary aspergillosis provides increased early fungal detection through novel red-shifted luciferase-expressing triazole-susceptible and -resistant Aspergillus fumigatus strains, and boosted bioluminescence.
Collapse
Affiliation(s)
- Agustin Resendiz-Sharpe
- Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Roberta Peres da Silva
- Fungal Biology Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Elena Geib
- Fungal Biology Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Lore Vanderbeke
- Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Laura Seldeslachts
- Department of Imaging and Pathology, Biomedical MRI unit/MoSAIC, KU Leuven, 3000 Leuven, Belgium
| | - Charlien Hupko
- Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Matthias Brock
- Fungal Biology Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Katrien Lagrou
- Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium.,Department of Laboratory Medicine and National Reference Centre for Mycosis, Excellence Centre for Medical Mycology (ECMM), University Hospitals Leuven, 3000 Leuven, Belgium
| | - Greetje Vande Velde
- Department of Imaging and Pathology, Biomedical MRI unit/MoSAIC, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
5
|
Abstract
Infections due to Aspergillus species are an acute threat to human health; members of the Aspergillus section Fumigati are the most frequently occurring agents, but depending on the local epidemiology, representatives of section Terrei or section Flavi are the second or third most important. Aspergillus terreus species complex is of great interest, as it is usually amphotericin B resistant and displays notable differences in immune interactions in comparison to Aspergillus fumigatus. The latest epidemiological surveys show an increased incidence of A. terreus as well as an expanding clinical spectrum (chronic infections) and new groups of at-risk patients being affected. Hallmarks of these non-Aspergillus fumigatus invasive mold infections are high potential for tissue invasion, dissemination, and possible morbidity due to mycotoxin production. We seek to review the microbiology, epidemiology, and pathogenesis of A. terreus species complex, address clinical characteristics, and highlight the underlying mechanisms of amphotericin B resistance. Selected topics will contrast key elements of A. terreus with A. fumigatus. We provide a comprehensive resource for clinicians dealing with fungal infections and researchers working on A. terreus pathogenesis, aiming to bridge the emerging translational knowledge and future therapeutic challenges on this opportunistic pathogen.
Collapse
|
6
|
Bioluminescence Imaging to Study Mature Biofilm Formation by Candida spp. and Antifungal Activity In Vitro and In Vivo. Methods Mol Biol 2020; 2081:127-143. [PMID: 31721122 DOI: 10.1007/978-1-4939-9940-8_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The widespread use of indwelling medical devices has increased the number of device-related infections in hospitalized patients. These infections are often associated with the formation of biofilms on the medical implants that are difficult to treat because of their resistance to the classical antifungal drugs. The most common fungi isolated from catheters and other medical devices are Candida species. The Candida genus contains multiple species of which C. albicans and C. glabrata are the two most common pathogenic yeasts in humans. A limited number of animal models is available for investigating host-pathogen interactions and testing novel antifungal drugs in vivo against these species. Fungal load in biofilms in these models is traditionally analyzed postmortem, requiring host sacrifice and enumeration of microorganisms from individual biofilms in order to evaluate the amount of colony forming units and the efficacy of antifungal treatment. Bioluminescence imaging (BLI) made compatible with small animal models for in vivo biofilm formation is a valuable tool to follow biofilm development and its treatment longitudinally. Due to the noninvasive nature of BLI, the imaging procedure can be repeated in the same animal, allowing for follow-up of the biofilm growth in vivo without removing the implanted device or detaching the biofilm from its substrate. Although detecting a quantifiable in vivo BLI signal from biofilms formed on the inside of implanted catheters is challenging, BLI proved to be a practical tool in the study of fungal biofilms. This method describes the use of BLI for in vitro and in vivo follow-up of device-related fungal biofilm formation in mice and rats and antifungal activity testing against both C. albicans and C. glabrata device-associated biofilms. It can further be applied for efficient in vivo screening for interesting genes of the pathogen and the host involved in biofilm formation.
Collapse
|
7
|
Patricio P, Paiva JA, Borrego LM. Immune Response in Bacterial and Candida Sepsis. Eur J Microbiol Immunol (Bp) 2019; 9:105-113. [PMID: 31934361 PMCID: PMC6945997 DOI: 10.1556/1886.2019.00011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022] Open
Abstract
Sepsis leads to a systemic immune response, and despite the progress of modern medicine, it is still responsible for a high mortality rate. The immune response to sepsis is dependent on the innate and adaptive immune systems. The first line is the innate system, which requires complex and multiple pathways in order to eliminate the invading threats. The adaptive responses start after the innate response. The cell-mediated arm of CD4+ and CD8+ T and B cells is the main responsible for this response. A coordinated cytokine response is essential for the host immune response. A dysregulated response can lead to a hyperinflammatory condition (cytokine storm). This hyperinflammation leads to neutrophils activation and may also lead to organ dysfunction. An imbalance of this response can increase the anti-inflammatory response, leading to compensatory anti-inflammatory response syndrome (CARS), persistent inflammation-immunsupression, catabolism syndrome (PICS), and, above all, an immune paralysis stat. This immune paralysis leads to opportunistic infections, Candida species being one of the emerging microorganisms involved. The host immune response is different for bacterial or Candida sepsis. Immune responses for bacterial and Candida sepsis are described in this paper.
Collapse
Affiliation(s)
- Patricia Patricio
- Department of Intensive Care Medicine – Hospital Beatriz Ângelo, CEDOC, Nova Medical School, Portugal
| | - José Artur Paiva
- Department of Emergency and Intensive Care Medicine - Centro Hospitalar Universitário São João, Faculdade de Medicina da Universidade do Porto, Grupo de Infeção e Sépsis, Portugal
| | - Luís Miguel Borrego
- Immunology Department, Nova Medical School and Immunoallergy Center, CUF Descobertas Hospital, Portugal
| |
Collapse
|
8
|
Schwarz C, Vandeputte P, Rougeron A, Giraud S, Dugé de Bernonville T, Duvaux L, Gastebois A, Alastruey-Izquierdo A, Martín-Gomez MT, Mazuelos EM, Sole A, Cano J, Pemán J, Quindos G, Botterel F, Bougnoux ME, Chen S, Delhaès L, Favennec L, Ranque S, Sedlacek L, Steinmann J, Vazquez J, Williams C, Meyer W, Le Gal S, Nevez G, Fleury M, Papon N, Symoens F, Bouchara JP. Developing collaborative works for faster progress on fungal respiratory infections in cystic fibrosis. Med Mycol 2018. [PMID: 29538733 DOI: 10.1093/mmy/myx106] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis (CF) is the major genetic inherited disease in Caucasian populations. The respiratory tract of CF patients displays a sticky viscous mucus, which allows for the entrapment of airborne bacteria and fungal spores and provides a suitable environment for growth of microorganisms, including numerous yeast and filamentous fungal species. As a consequence, respiratory infections are the major cause of morbidity and mortality in this clinical context. Although bacteria remain the most common agents of these infections, fungal respiratory infections have emerged as an important cause of disease. Therefore, the International Society for Human and Animal Mycology (ISHAM) has launched a working group on Fungal respiratory infections in Cystic Fibrosis (Fri-CF) in October 2006, which was subsequently approved by the European Confederation of Medical Mycology (ECMM). Meetings of this working group, comprising both clinicians and mycologists involved in the follow-up of CF patients, as well as basic scientists interested in the fungal species involved, provided the opportunity to initiate collaborative works aimed to improve our knowledge on these infections to assist clinicians in patient management. The current review highlights the outcomes of some of these collaborative works in clinical surveillance, pathogenesis and treatment, giving special emphasis to standardization of culture procedures, improvement of species identification methods including the development of nonculture-based diagnostic methods, microbiome studies and identification of new biological markers, and the description of genotyping studies aiming to differentiate transient carriage and chronic colonization of the airways. The review also reports on the breakthrough in sequencing the genomes of the main Scedosporium species as basis for a better understanding of the pathogenic mechanisms of these fungi, and discusses treatment options of infections caused by multidrug resistant microorganisms, such as Scedosporium and Lomentospora species and members of the Rasamsonia argillacea species complex.
Collapse
Affiliation(s)
- Carsten Schwarz
- Department of Pediatric Pneumology and Immunology, Cystic Fibrosis Center Berlin/Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - Patrick Vandeputte
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France.,Laboratoire de Parasitologie-Mycologie, CHU, Angers, France
| | - Amandine Rougeron
- Université de Bordeaux, Microbiologie Fondamentale et Pathogénicité UMR 5234, Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France; Laboratoire de Parasitologie-Mycologie, CHU, Bordeaux, France
| | - Sandrine Giraud
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France
| | - Thomas Dugé de Bernonville
- Biomolécules et Biotechnologies Végétales (EA 2106), Département de Biologie et Physiologie Végétales, UFR Sciences et Techniques, Université François Rabelais, Tours
| | - Ludovic Duvaux
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France.,Institut de Recherche en Horticulture et Semences (IRHS), UMR INRA 1345, Beaucouzé, France
| | - Amandine Gastebois
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Maria Teresa Martín-Gomez
- Respiratory Bacteriology Unit & Clinical Mycology Unit, Department of Microbiology, Vall D'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Amparo Sole
- Unidad de Trasplante Pulmonar y Fibrosis Quística, Hospital Universitari la Fe, Valencia, Spain
| | - Josep Cano
- Mycology Unit, Medical School/Oenology School, Universitat Rovira i Virgili, Reus, Spain
| | - Javier Pemán
- Unidad de Micología, Servicio de Microbiología, Universitari la Fe, Valencia, Spain
| | - Guillermo Quindos
- Laboratorio de Micología Médica, Departamento de Inmunología, Microbiología y Parasitología, Facultad de Medicina y Enfermería, Universidad del País Vasco, Bilbao, Spain
| | - Françoise Botterel
- Laboratoire de Parasitologie-Mycologie, CHU Henri Mondor, Créteil, France
| | | | - Sharon Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR - Pathology West, Westmead Hospital, Westmead, New South Wales, Australia
| | - Laurence Delhaès
- Center for Cardiothoracic Research of Bordeaux, Inserm U1045, Bordeaux, France
| | - Loïc Favennec
- Laboratoire de Parasitologie-Mycologie, EA 3800, CHU Charles Nicolle and Université de Rouen, Rouen, France
| | - Stéphane Ranque
- Laboratoire de Parasitologie-Mycologie, AP-HM Timone, Marseille, France
| | - Ludwig Sedlacek
- Institute of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
| | - Joerg Steinmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jose Vazquez
- Division of Infectious Diseases, Department of Medicine, Georgia Regents University, Augusta, GA, USA
| | - Craig Williams
- University of the West of Scotland, Institute of Healthcare Associated Infection, University Hospital Crosshouse, Kilmarnock, United Kingdom
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead Hospital, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Solène Le Gal
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Brest, France.,Laboratoire de Parasitologie-Mycologie, CHU, Brest, France
| | - Gilles Nevez
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Brest, France.,Laboratoire de Parasitologie-Mycologie, CHU, Brest, France
| | - Maxime Fleury
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France
| | - Nicolas Papon
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France
| | - Françoise Symoens
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France
| | - Jean-Philippe Bouchara
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France.,Laboratoire de Parasitologie-Mycologie, CHU, Angers, France
| | | |
Collapse
|
9
|
Vanherp L, Poelmans J, Hillen A, Govaerts K, Belderbos S, Buelens T, Lagrou K, Himmelreich U, Vande Velde G. Bronchoscopic fibered confocal fluorescence microscopy for longitudinal in vivo assessment of pulmonary fungal infections in free-breathing mice. Sci Rep 2018; 8:3009. [PMID: 29445211 PMCID: PMC5813038 DOI: 10.1038/s41598-018-20545-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 01/21/2018] [Indexed: 11/12/2022] Open
Abstract
Respiratory diseases, such as pulmonary infections, are an important cause of morbidity and mortality worldwide. Preclinical studies often require invasive techniques to evaluate the extent of infection. Fibered confocal fluorescence microscopy (FCFM) is an emerging optical imaging technique that allows for real-time detection of fluorescently labeled cells within live animals, thereby bridging the gap between in vivo whole-body imaging methods and traditional histological examinations. Previously, the use of FCFM in preclinical lung research was limited to endpoint observations due to the invasive procedures required to access lungs. Here, we introduce a bronchoscopic FCFM approach that enabled in vivo visualization and morphological characterisation of fungal cells within lungs of mice suffering from pulmonary Aspergillus or Cryptococcus infections. The minimally invasive character of this approach allowed longitudinal monitoring of infection in free-breathing animals, thereby providing both visual and quantitative information on infection progression. Both the sensitivity and specificity of this technique were high during advanced stages of infection, allowing clear distinction between infected and non-infected animals. In conclusion, our study demonstrates the potential of this novel bronchoscopic FCFM approach to study pulmonary diseases, which can lead to novel insights in disease pathogenesis by allowing longitudinal in vivo microscopic examinations of the lungs.
Collapse
Affiliation(s)
- Liesbeth Vanherp
- Biomedical MRI unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, Herestraat 49 O & N1 box 505, 3000, Leuven, Belgium
| | - Jennifer Poelmans
- Biomedical MRI unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, Herestraat 49 O & N1 box 505, 3000, Leuven, Belgium
| | - Amy Hillen
- Biomedical MRI unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, Herestraat 49 O & N1 box 505, 3000, Leuven, Belgium
| | - Kristof Govaerts
- Biomedical MRI unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, Herestraat 49 O & N1 box 505, 3000, Leuven, Belgium
| | - Sarah Belderbos
- Biomedical MRI unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, Herestraat 49 O & N1 box 505, 3000, Leuven, Belgium
| | - Tinne Buelens
- Biomedical MRI unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, Herestraat 49 O & N1 box 505, 3000, Leuven, Belgium
| | - Katrien Lagrou
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology and Immunology, KU Leuven, Herestraat 49 box 6711, 3000, Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, Herestraat 49 O & N1 box 505, 3000, Leuven, Belgium
| | - Greetje Vande Velde
- Biomedical MRI unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, Herestraat 49 O & N1 box 505, 3000, Leuven, Belgium.
| |
Collapse
|
10
|
Kaskova ZM, Tsarkova AS, Yampolsky IV. 1001 lights: luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine. Chem Soc Rev 2018; 45:6048-6077. [PMID: 27711774 DOI: 10.1039/c6cs00296j] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bioluminescence (BL) is a spectacular phenomenon involving light emission by live organisms. It is caused by the oxidation of a small organic molecule, luciferin, with molecular oxygen, which is catalysed by the enzyme luciferase. In nature, there are approximately 30 different BL systems, of which only 9 have been studied to various degrees in terms of their reaction mechanisms. A vast range of in vitro and in vivo analytical techniques have been developed based on BL, including tests for different analytes, immunoassays, gene expression assays, drug screening, bioimaging of live organisms, cancer studies, the investigation of infectious diseases and environmental monitoring. This review aims to cover the major existing applications for bioluminescence in the context of the diversity of luciferases and their substrates, luciferins. Particularly, the properties and applications of d-luciferin, coelenterazine, bacterial, Cypridina and dinoflagellate luciferins and their analogues along with their corresponding luciferases are described. Finally, four other rarely studied bioluminescent systems (those of limpet Latia, earthworms Diplocardia and Fridericia and higher fungi), which are promising for future use, are also discussed.
Collapse
Affiliation(s)
- Zinaida M Kaskova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia. and Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| | - Aleksandra S Tsarkova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia. and Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| | - Ilia V Yampolsky
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia. and Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| |
Collapse
|
11
|
Avci P, Karimi M, Sadasivam M, Antunes-Melo WC, Carrasco E, Hamblin MR. In-vivo monitoring of infectious diseases in living animals using bioluminescence imaging. Virulence 2017; 9:28-63. [PMID: 28960132 PMCID: PMC6067836 DOI: 10.1080/21505594.2017.1371897] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Traditional methods of localizing and quantifying the presence of pathogenic microorganisms in living experimental animal models of infections have mostly relied on sacrificing the animals, dissociating the tissue and counting the number of colony forming units. However, the discovery of several varieties of the light producing enzyme, luciferase, and the genetic engineering of bacteria, fungi, parasites and mice to make them emit light, either after administration of the luciferase substrate, or in the case of the bacterial lux operon without any exogenous substrate, has provided a new alternative. Dedicated bioluminescence imaging (BLI) cameras can record the light emitted from living animals in real time allowing non-invasive, longitudinal monitoring of the anatomical location and growth of infectious microorganisms as measured by strength of the BLI signal. BLI technology has been used to follow bacterial infections in traumatic skin wounds and burns, osteomyelitis, infections in intestines, Mycobacterial infections, otitis media, lung infections, biofilm and endodontic infections and meningitis. Fungi that have been engineered to be bioluminescent have been used to study infections caused by yeasts (Candida) and by filamentous fungi. Parasitic infections caused by malaria, Leishmania, trypanosomes and toxoplasma have all been monitored by BLI. Viruses such as vaccinia, herpes simplex, hepatitis B and C and influenza, have been studied using BLI. This rapidly growing technology is expected to continue to provide much useful information, while drastically reducing the numbers of animals needed in experimental studies.
Collapse
Affiliation(s)
- Pinar Avci
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,b Department of Dermatology , Harvard Medical School , Boston , MA , USA
| | - Mahdi Karimi
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,c Department of Medical Nanotechnology , School of Advanced Technologies in Medicine, Iran University of Medical Sciences , Tehran , Iran.,d Cellular and Molecular Research Center, Iran University of Medical Sciences , Tehran , Iran
| | - Magesh Sadasivam
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,e Amity Institute of Nanotechnology, Amity University Uttar Pradesh , Noida , India
| | - Wanessa C Antunes-Melo
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,f University of Sao Paulo , Sao Carlos-SP , Brazil
| | - Elisa Carrasco
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,g Department of Biosciences , Durham University , Durham , United Kingdom
| | - Michael R Hamblin
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,b Department of Dermatology , Harvard Medical School , Boston , MA , USA.,h Harvard-MIT Division of Health Sciences and Technology , Cambridge , MA , USA
| |
Collapse
|
12
|
Dorsaz S, Coste AT, Sanglard D. Red-Shifted Firefly Luciferase Optimized for Candida albicans In vivo Bioluminescence Imaging. Front Microbiol 2017; 8:1478. [PMID: 28824601 PMCID: PMC5541039 DOI: 10.3389/fmicb.2017.01478] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 07/21/2017] [Indexed: 12/13/2022] Open
Abstract
Candida albicans is a major fungal pathogen causing life-threatening diseases in immuno-compromised patients. The efficacy of current drugs to combat C. albicans infections is limited, as these infections have a 40–60% mortality rate. There is a real need for novel therapeutic approaches, but such advances require a detailed knowledge of C. albicans and its in vivo pathogenesis. Additionally, any novel antifungal drugs against C. albicans infections will need to be tested for their in vivo efficacy over time. Fungal pathogenesis and drug-mediated resolution studies can both be evaluated using non-invasive in vivo imaging technologies. In the work presented here, we used a codon-optimized firefly luciferase reporter system for detecting C. albicans in mice. We adapted the firefly luciferase in order to improve its maximum emission intensity in the red light range (600–700 nm) as well as to improve its thermostability in mice. All non-invasive in vivo imaging of experimental animals was performed with a multimodal imaging system able to detect luminescent reporters and capture both reflectance and X-ray images. The modified firefly luciferase expressed in C. albicans (Mut2) was found to significantly increase the sensitivity of bioluminescence imaging (BLI) in systemic infections as compared to unmodified luciferase (Mut0). The same modified bioluminescence reporter system was used in an oropharyngeal candidiasis model. In both animal models, fungal loads could be correlated to the intensity of emitted light. Antifungal treatment efficacies were also evaluated on the basis of BLI signal intensity. In conclusion, BLI with a red-shifted firefly luciferase was found to be a powerful tool for testing the fate of C. albicans in various mice infection models.
Collapse
Affiliation(s)
- Stephane Dorsaz
- Institute of Microbiology, University of LausanneLausanne, Switzerland
| | - Alix T Coste
- Institute of Microbiology, University of LausanneLausanne, Switzerland
| | | |
Collapse
|
13
|
Tsarkova AS, Kaskova ZM, Yampolsky IV. A Tale Of Two Luciferins: Fungal and Earthworm New Bioluminescent Systems. Acc Chem Res 2016; 49:2372-2380. [PMID: 27696815 DOI: 10.1021/acs.accounts.6b00322] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bioluminescence, the ability of a living organism to produce light through a chemical reaction, is one of Nature's most amazing phenomena widely spread among marine and terrestrial species. There are various different mechanisms underlying the emission of "cold light", but all involve a small molecule, luciferin, that provides energy for light-generation upon oxidation, and a protein, luciferase, that catalyzes the reaction. Different species often use different proteins and substrates in the process, which suggests that the ability to produce light evolved independently several times throughout evolution. Currently, it is estimated that there are more than 30 different mechanisms of bioluminescence. Even though the chemical foundation underlying the bioluminescence phenomenon is by now generally understood, only a handful of luciferins have been isolated and characterized. Today, the known bioluminescence reactions are used as indispensable analytical tools in various fields of science and technology. A pressing need for new bioluminescent analytical techniques with a wider range of practical applications stimulates the search and chemical studies of new bioluminescent systems. In the past few years two such systems were unraveled: those of the earthworms Fridericia heliota and the higher fungi. The luciferins of these two systems do not share structural similarity with the previously known ones. This Account will survey structure elucidation of the novel luciferins and identification of their mechanisms of action. Fridericia luciferin is a key component of a novel ATP-dependent bioluminescence system. Structural studies were performed on 0.005 mg of natural substance and revealed its unusual extensively modified peptidic nature. Elucidation of Fridericia oxyluciferin revealed that oxidative decarboxylation of a lysine fragment of luciferin supplies energy for light generation, while a fluorescent CompX moiety remains intact and serves as a light emitter. Along with luciferin, a number of its natural analogs were found in the extracts of worm biomass. They occurred to be highly unusual modified peptides comprising a set of amino acids, including threonine, aminobutyric acid, homoarginine, unsymmetrical N,N-dimethylarginine and extensively modified tyrosine. These natural compounds represent a unique peptide chemistry found in terrestrial animals and raise novel questions concerning their biosynthetic origin. Also in this Account we discuss identification of the luciferin of higher fungi 3-hydroxyhispidin which is biosynthesized by oxidation of the precursor hispidin, a known fungal and plant secondary metabolite. Furthermore, it was shown that 3-hydroxyhispidin leads to bioluminescence in extracts from four diverse genera of luminous fungi, thus suggesting a common biochemical mechanism for fungal bioluminescence.
Collapse
Affiliation(s)
- Aleksandra S. Tsarkova
- Institute
of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya
16/10, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| | - Zinaida M. Kaskova
- Institute
of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya
16/10, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| | - Ilia V. Yampolsky
- Institute
of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya
16/10, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| |
Collapse
|
14
|
Krappmann S. Lightning up the worm: How to probe fungal virulence in an alternative mini-host by bioluminescence. Virulence 2015; 6:727-9. [PMID: 26537579 PMCID: PMC4826133 DOI: 10.1080/21505594.2015.1103428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Sven Krappmann
- a Mikrobiologisches Institut - Klinische Mikrobiologie; Immunologie und Hygiene; Universitätsklinikum Erlangen; Friedrich-Alexander-Universität Erlangen-Nürnberg ; Erlangen , Germany.,b Medical Immunology Campus Erlangen; Friedrich-Alexander University Erlangen-Nürnberg ; Erlangen , Germany
| |
Collapse
|
15
|
Cairns TC, Studholme DJ, Talbot NJ, Haynes K. New and Improved Techniques for the Study of Pathogenic Fungi. Trends Microbiol 2015; 24:35-50. [PMID: 26549580 DOI: 10.1016/j.tim.2015.09.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 02/05/2023]
Abstract
Fungal pathogens pose serious threats to human, plant, and ecosystem health. Improved diagnostics and antifungal strategies are therefore urgently required. Here, we review recent developments in online bioinformatic tools and associated interactive data archives, which enable sophisticated comparative genomics and functional analysis of fungal pathogens in silico. Additionally, we highlight cutting-edge experimental techniques, including conditional expression systems, recyclable markers, RNA interference, genome editing, compound screens, infection models, and robotic automation, which are promising to revolutionize the study of both human and plant pathogenic fungi. These novel techniques will allow vital knowledge gaps to be addressed with regard to the evolution of virulence, host-pathogen interactions and antifungal drug therapies in both the clinic and agriculture. This, in turn, will enable delivery of improved diagnosis and durable disease-control strategies.
Collapse
Affiliation(s)
- Timothy C Cairns
- Institut für Biotechnologie, Technische Universität Berlin, Gustav-Meyer Allee 22, Berlin, Germany.
| | | | | | - Ken Haynes
- Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
16
|
Affiliation(s)
- Matthias Brock
- Fungal Genetics and Biology Group, School of Life Sciences; University of Nottingham; Nottingham United Kingdom
| |
Collapse
|
17
|
Duggan S, Leonhardt I, Hünniger K, Kurzai O. Host response to Candida albicans bloodstream infection and sepsis. Virulence 2015; 6:316-26. [PMID: 25785541 PMCID: PMC4601378 DOI: 10.4161/21505594.2014.988096] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Candida albicans is a major cause of bloodstream infection which may present as sepsis and septic shock - major causes of morbidity and mortality world-wide. After invasion of the pathogen, innate mechanisms govern the early response. Here, we outline the models used to study these mechanisms and summarize our current understanding of innate immune responses during Candida bloodstream infection. This includes protective immunity as well as harmful responses resulting in Candida induced sepsis. Neutrophilic granulocytes are considered principal effector cells conferring protection and recognize C. albicans mainly via complement receptor 3. They possess a range of effector mechanisms, contributing to elimination of the pathogen. Neutrophil activation is closely linked to complement and modulated by activated mononuclear cells. A thorough understanding of these mechanisms will help in creating an individualized approach to patients suffering from systemic candidiasis and aid in optimizing clinical management.
Collapse
Affiliation(s)
- Seána Duggan
- a Septomics Research Center ; Friedrich-Schiller-University and Leibniz-Institute for Natural Product Research and Infection Biology-Hans-Knoell-Institute ; Jena , Germany
| | | | | | | |
Collapse
|
18
|
Novel insights into host-fungal pathogen interactions derived from live-cell imaging. Semin Immunopathol 2014; 37:131-9. [PMID: 25398200 PMCID: PMC4326660 DOI: 10.1007/s00281-014-0463-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/04/2014] [Indexed: 12/20/2022]
Abstract
The theoretical physicist and Nobel laureate Richard Feynman outlined in his 1959 lecture, “There’s plenty of room at the bottom”, the enormous possibility of producing and visualising things at smaller scales. The advent of advanced scanning and transmission electron microscopy and high-resolution microscopy has begun to open the door to visualise host-pathogen interactions at smaller scales, and spinning disc confocal and two-photon microscopy has improved our ability to study these events in real time in three dimensions. The aim of this review is to illustrate some of the advances in understanding host-fungal interactions that have been made in recent years in particular those relating to the interactions of live fungal pathogens with phagocytes. Dynamic imaging of host-pathogen interactions has recently revealed novel detail and unsuspected mechanistic insights, facilitating the dissection of the phagocytic process into its component parts. Here, we will highlight advances in our knowledge of host-fungal pathogen interactions, including the specific effects of fungal cell viability, cell wall composition and morphogenesis on the phagocytic process and try to define the relative contributions of neutrophils and macrophages to the clearance of fungal pathogens in vitro and the infected host.
Collapse
|