1
|
Fletcher J, O’Connor-Moneley J, Frawley D, Flanagan PR, Alaalm L, Menendez-Manjon P, Estevez SV, Hendricks S, Woodruff AL, Buscaino A, Anderson MZ, Sullivan DJ, Moran GP. Deletion of the Candida albicans TLO gene family using CRISPR-Cas9 mutagenesis allows characterisation of functional differences in α-, β- and γ- TLO gene function. PLoS Genet 2023; 19:e1011082. [PMID: 38048294 PMCID: PMC10721199 DOI: 10.1371/journal.pgen.1011082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/14/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023] Open
Abstract
The Candida albicans genome contains between ten and fifteen distinct TLO genes that all encode a Med2 subunit of Mediator. In order to investigate the biological role of Med2/Tlo in C. albicans we deleted all fourteen TLO genes using CRISPR-Cas9 mutagenesis. ChIP-seq analysis showed that RNAP II localized to 55% fewer genes in the tloΔ mutant strain compared to the parent, while RNA-seq analysis showed that the tloΔ mutant exhibited differential expression of genes required for carbohydrate metabolism, stress responses, white-opaque switching and filamentous growth. Consequently, the tloΔ mutant grows poorly in glucose- and galactose-containing media, is unable to grow as true hyphae, is more sensitive to oxidative stress and is less virulent in the wax worm infection model. Reintegration of genes representative of the α-, β- and γ-TLO clades resulted in the complementation of the mutant phenotypes, but to different degrees. TLOα1 could restore phenotypes and gene expression patterns similar to wild-type and was the strongest activator of glycolytic and Tye7-regulated gene expression. In contrast, the two γ-TLO genes examined (i.e., TLOγ5 and TLOγ11) had a far lower impact on complementing phenotypic and transcriptomic changes. Uniquely, expression of TLOβ2 in the tloΔ mutant stimulated filamentous growth in YEPD medium and this phenotype was enhanced when Tloβ2 expression was increased to levels far in excess of Med3. In contrast, expression of reintegrated TLO genes in a tloΔ/med3Δ double mutant background failed to restore any of the phenotypes tested, suggesting that complementation of these Tlo-regulated processes requires a functional Mediator tail module. Together, these data confirm the importance of Med2/Tlo in a wide range of C. albicans cellular activities and demonstrate functional diversity within the gene family which may contribute to the success of this yeast as a coloniser and pathogen of humans.
Collapse
Affiliation(s)
- Jessica Fletcher
- Division of Oral Biosciences, Dublin Dental University Hospital, & University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - James O’Connor-Moneley
- Division of Oral Biosciences, Dublin Dental University Hospital, & University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Dean Frawley
- Division of Oral Biosciences, Dublin Dental University Hospital, & University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Peter R. Flanagan
- Division of Oral Biosciences, Dublin Dental University Hospital, & University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Leenah Alaalm
- Division of Oral Biosciences, Dublin Dental University Hospital, & University of Dublin, Trinity College Dublin, Dublin, Ireland
| | | | | | - Shane Hendricks
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Andrew L. Woodruff
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Alessia Buscaino
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Matthew Z. Anderson
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Derek J. Sullivan
- Division of Oral Biosciences, Dublin Dental University Hospital, & University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Gary P. Moran
- Division of Oral Biosciences, Dublin Dental University Hospital, & University of Dublin, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
O'Connor-Moneley J, Alaalm L, Moran GP, Sullivan DJ. The role of the Mediator complex in fungal pathogenesis and response to antifungal agents. Essays Biochem 2023; 67:843-851. [PMID: 37013399 PMCID: PMC10500203 DOI: 10.1042/ebc20220238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023]
Abstract
Mediator is a complex of polypeptides that plays a central role in the recruitment of RNA polymerase II to promoters and subsequent transcriptional activation in eukaryotic organisms. Studies have now shown that Mediator has a role in regulating expression of genes implicated in virulence and antifungal drug resistance in pathogenic fungi. The roles of specific Mediator subunits have been investigated in several species of pathogenic fungi, particularly in the most pathogenic yeast Candida albicans. Uniquely, pathogenic yeast also present several interesting examples of divergence in Mediator structure and function, most notably in C. glabrata, which possesses two orthologues of Med15, and in C. albicans, which has a massively expanded family of Med2 orthologues known as the TLO gene family. This review highlights specific examples of recent progress in characterizing the role of Mediator in pathogenic fungi.
Collapse
Affiliation(s)
- James O'Connor-Moneley
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Leenah Alaalm
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Gary P Moran
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Derek J Sullivan
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Mediator Subunit Med15 Regulates Cell Morphology and Mating in Candida lusitaniae. J Fungi (Basel) 2023; 9:jof9030333. [PMID: 36983501 PMCID: PMC10053558 DOI: 10.3390/jof9030333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Candida lusitaniae is an emerging opportunistic pathogenic yeast capable of shifting from yeast to pseudohyphae form, and it is one of the few Candida species with the ability to reproduce sexually. In this study, we showed that a dpp3Δ mutant, inactivated for a putative pyrophosphatase, is impaired in cell separation, pseudohyphal growth and mating. The defective phenotypes were not restored after the reconstruction of a wild-type DPP3 locus, reinforcing the hypothesis of the presence of an additional mutation that we suspected in our previous study. Genetic crosses and genome sequencing identified an additional mutation in MED15, encoding a subunit of the mediator complex that functions as a general transcriptional co-activator in Eukaryotes. We confirmed that inactivation of MED15 was responsible for the defective phenotypes by rescuing the dpp3Δ mutant with a wild-type copy of MED15 and constructing a med15Δ knockout mutant that mimics the phenotypes of dpp3Δ in vitro. Proteomic analyses revealed the biological processes under the control of Med15 and involved in hyphal growth, cell separation and mating. This is the first description of the functions of MED15 in the regulation of hyphal growth, cell separation and mating, and the pathways involved in C. lusitaniae.
Collapse
|
4
|
Senanayake IC, Pem D, Rathnayaka AR, Wijesinghe SN, Tibpromma S, Wanasinghe DN, Phookamsak R, Kularathnage ND, Gomdola D, Harishchandra D, Dissanayake LS, Xiang MM, Ekanayaka AH, McKenzie EHC, Hyde KD, Zhang HX, Xie N. Predicting global numbers of teleomorphic ascomycetes. FUNGAL DIVERS 2022. [DOI: 10.1007/s13225-022-00498-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractSexual reproduction is the basic way to form high genetic diversity and it is beneficial in evolution and speciation of fungi. The global diversity of teleomorphic species in Ascomycota has not been estimated. This paper estimates the species number for sexual ascomycetes based on five different estimation approaches, viz. by numbers of described fungi, by fungus:substrate ratio, by ecological distribution, by meta-DNA barcoding or culture-independent studies and by previous estimates of species in Ascomycota. The assumptions were made with the currently most accepted, “2.2–3.8 million” species estimate and results of previous studies concluding that 90% of the described ascomycetes reproduce sexually. The Catalogue of Life, Species Fungorum and published research were used for data procurement. The average value of teleomorphic species in Ascomycota from all methods is 1.86 million, ranging from 1.37 to 2.56 million. However, only around 83,000 teleomorphic species have been described in Ascomycota and deposited in data repositories. The ratio between described teleomorphic ascomycetes to predicted teleomorphic ascomycetes is 1:22. Therefore, where are the undiscovered teleomorphic ascomycetes? The undescribed species are no doubt to be found in biodiversity hot spots, poorly-studied areas and species complexes. Other poorly studied niches include extremophiles, lichenicolous fungi, human pathogens, marine fungi, and fungicolous fungi. Undescribed species are present in unexamined collections in specimen repositories or incompletely described earlier species. Nomenclatural issues, such as the use of separate names for teleomorph and anamorphs, synonyms, conspecific names, illegitimate and invalid names also affect the number of described species. Interspecies introgression results in new species, while species numbers are reduced by extinctions.
Collapse
|
5
|
Mundodi V, Choudhary S, Smith AD, Kadosh D. Global translational landscape of the Candida albicans morphological transition. G3-GENES GENOMES GENETICS 2021; 11:6046988. [PMID: 33585865 PMCID: PMC7849906 DOI: 10.1093/g3journal/jkaa043] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022]
Abstract
Candida albicans, a major human fungal pathogen associated with high mortality and/or morbidity rates in a wide variety of immunocompromised individuals, undergoes a reversible morphological transition from yeast to filamentous cells that is required for virulence. While previous studies have identified and characterized global transcriptional mechanisms important for driving this transition, as well as other virulence properties, in C. albicans and other pathogens, considerably little is known about the role of genome-wide translational mechanisms. Using ribosome profiling, we report the first global translational profile associated with C. albicans morphogenesis. Strikingly, many genes involved in pathogenesis, filamentation, and the response to stress show reduced translational efficiency (TE). Several of these genes are known to be strongly induced at the transcriptional level, suggesting that a translational fine-tuning mechanism is in place. We also identify potential upstream open reading frames (uORFs), associated with genes involved in pathogenesis, and novel ORFs, several of which show altered TE during filamentation. Using a novel bioinformatics method for global analysis of ribosome pausing that will be applicable to a wide variety of genetic systems, we demonstrate an enrichment of ribosome pausing sites in C. albicans genes associated with protein synthesis and cell wall functions. Altogether, our results suggest that the C. albicans morphological transition, and most likely additional virulence processes in fungal pathogens, is associated with widespread global alterations in TE that do not simply reflect changes in transcript levels. These alterations affect the expression of many genes associated with processes essential for virulence and pathogenesis.
Collapse
Affiliation(s)
- Vasanthakrishna Mundodi
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Saket Choudhary
- Department of Computational Biology and Bioinformatics, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew D Smith
- Department of Computational Biology and Bioinformatics, University of Southern California, Los Angeles, CA 90089, USA
| | - David Kadosh
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
6
|
Dunn MJ, Anderson MZ. To Repeat or Not to Repeat: Repetitive Sequences Regulate Genome Stability in Candida albicans. Genes (Basel) 2019; 10:genes10110866. [PMID: 31671659 PMCID: PMC6896093 DOI: 10.3390/genes10110866] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022] Open
Abstract
Genome instability often leads to cell death but can also give rise to innovative genotypic and phenotypic variation through mutation and structural rearrangements. Repetitive sequences and chromatin architecture in particular are critical modulators of recombination and mutability. In Candida albicans, four major classes of repeats exist in the genome: telomeres, subtelomeres, the major repeat sequence (MRS), and the ribosomal DNA (rDNA) locus. Characterization of these loci has revealed how their structure contributes to recombination and either promotes or restricts sequence evolution. The mechanisms of recombination that give rise to genome instability are known for some of these regions, whereas others are generally unexplored. More recent work has revealed additional repetitive elements, including expanded gene families and centromeric repeats that facilitate recombination and genetic innovation. Together, the repeats facilitate C. albicans evolution through construction of novel genotypes that underlie C. albicans adaptive potential and promote persistence across its human host.
Collapse
Affiliation(s)
- Matthew J. Dunn
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| | - Matthew Z. Anderson
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +614-247-0058
| |
Collapse
|
7
|
Regulatory mechanisms controlling morphology and pathogenesis in Candida albicans. Curr Opin Microbiol 2019; 52:27-34. [PMID: 31129557 DOI: 10.1016/j.mib.2019.04.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/08/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022]
Abstract
Candida albicans, a major human fungal pathogen, can cause a wide variety of both mucosal and systemic infections, particularly in immunocompromised individuals. Multiple lines of evidence suggest a strong association between virulence and the ability of C. albicans to undergo a reversible morphological transition from yeast to filamentous cells in response to host environmental cues. Most previous studies on mechanisms important for controlling the C. albicans morphological transition have focused on signaling pathways and sequence-specific transcription factors. However, in recent years a variety of novel mechanisms have been reported, including those involving global transcriptional regulation and translational control. A large-scale functional genomics screen has also revealed new roles in filamentation for certain key biosynthesis pathways. This review article will highlight several of these exciting recent discoveries and discuss how they are relevant to the development of novel antifungal strategies. Ultimately, components of mechanisms that control C. albicans morphogenesis and pathogenicity could potentially serve as viable antifungal targets.
Collapse
|
8
|
Role of Mediator in virulence and antifungal drug resistance in pathogenic fungi. Curr Genet 2019; 65:621-630. [DOI: 10.1007/s00294-019-00932-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 10/27/2022]
|
9
|
Candida-Epithelial Interactions. J Fungi (Basel) 2018; 4:jof4010022. [PMID: 29419738 PMCID: PMC5872325 DOI: 10.3390/jof4010022] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/04/2018] [Accepted: 02/06/2018] [Indexed: 01/03/2023] Open
Abstract
A plethora of intricate and dynamic molecular interactions occur between microbes and the epithelial cells that form the mucosal surfaces of the human body. Fungi, particularly species of Candida, are commensal members of our microbiota, continuously interacting with epithelial cells. Transient and localised perturbations to the mucosal environment can facilitate the overgrowth of fungi, causing infection. This minireview will examine the direct and indirect mechanisms by which Candida species and epithelial cells interact with each other, and explore the factors involved in the central processes of adhesion, invasion, and destruction of host mucosal surfaces.
Collapse
|
10
|
Liu Z, Moran GP, Sullivan DJ, MacCallum DM, Myers LC. Amplification of TLO Mediator Subunit Genes Facilitate Filamentous Growth in Candida Spp. PLoS Genet 2016; 12:e1006373. [PMID: 27741243 PMCID: PMC5065183 DOI: 10.1371/journal.pgen.1006373] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/19/2016] [Indexed: 01/06/2023] Open
Abstract
Filamentous growth is a hallmark of C. albicans pathogenicity compared to less-virulent ascomycetes. A multitude of transcription factors regulate filamentous growth in response to specific environmental cues. Our work, however, suggests the evolutionary history of C. albicans that resulted in its filamentous growth plasticity may be tied to a change in the general transcription machinery rather than transcription factors and their specific targets. A key genomic difference between C. albicans and its less-virulent relatives, including its closest relative C. dubliniensis, is the unique expansion of the TLO (TeLOmere-associated) gene family in C. albicans. Individual Tlo proteins are fungal-specific subunits of Mediator, a large multi-subunit eukaryotic transcriptional co-activator complex. This amplification results in a large pool of ‘free,’ non-Mediator associated, Tlo protein present in C. albicans, but not in C. dubliniensis or other ascomycetes with attenuated virulence. We show that engineering a large ‘free’ pool of the C. dubliniensis Tlo2 (CdTlo2) protein in C. dubliniensis, through overexpression, results in a number of filamentation phenotypes typically associated only with C. albicans. The amplitude of these phenotypes is proportional to the amount of overexpressed CdTlo2 protein. Overexpression of other C. dubliniensis and C. albicans Tlo proteins do result in these phenotypes. Tlo proteins and their orthologs contain a Mediator interaction domain, and a potent transcriptional activation domain. Nuclear localization of the CdTlo2 activation domain, facilitated naturally by the Tlo Mediator binding domain or artificially through an appended nuclear localization signal, is sufficient for the CdTlo2 overexpression phenotypes. A C. albicans med3 null mutant causes multiple defects including the inability to localize Tlo proteins to the nucleus and reduced virulence in a murine systemic infection model. Our data supports a model in which the activation domain of ‘free’ Tlo protein competes with DNA bound transcription factors for targets that regulate key aspects of C. albicans cell physiology. The ascomycete fungus Candida albicans is a leading cause of hospital-acquired bloodstream infections in the United States. Due to limited anti-fungal drug options, there is an approximately 40% mortality rate and over 10,000 deaths per year associated with systemic C. albicans infections. It is unknown why C. albicans is the primary cause of systemic Candidiasis, versus related ascomycetes such as Candida dubliniensis. The genomes of C. albicans and C. dubliniensis are remarkably similar, yet C. dubliniensis has reduced virulence and exhibits less phenotypic plasticity. A striking genomic difference between the fungi is the amplification of the TLO (TeLOmere-associated) genes in C. albicans, which encode a fungal-specific subunit of the Mediator co-activator complex. Amplification results in a large pool of ‘free’ (non-Mediator associated) Tlo protein in C. albicans that is absent in C. dubliniensis. Engineering a large ‘free’ pool of Tlo protein in C. dubliniensis, through overexpression, results in phenotypes common in C. albicans, yet typically absent in C. dubliniensis. Tlo proteins contain a potent transcriptional activation domain. Nuclear localization of the Tlo activation domain is necessary and sufficient for the TLO overexpression phenotypes. This study provides a mechanistic explanation for how TLO amplification in C. albicans may enhance its virulence.
Collapse
Affiliation(s)
- Zhongle Liu
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Gary P. Moran
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Dublin, Ireland
| | - Derek J. Sullivan
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Dublin, Ireland
| | - Donna M. MacCallum
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Lawrence C. Myers
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Department of Medical Education, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
11
|
Metabolic regulation in model ascomycetes--adjusting similar genomes to different lifestyles. Trends Genet 2015; 31:445-53. [PMID: 26051071 DOI: 10.1016/j.tig.2015.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 11/24/2022]
Abstract
The related yeasts Saccharomyces cerevisiae and Candida albicans have similar genomes but very different lifestyles. These fungi have modified transcriptional and post-translational regulatory processes to adapt their similar genomes to the distinct biological requirements of the two yeasts. We review recent findings comparing the differences between these species, highlighting how they have achieved specialized metabolic capacities tailored to their lifestyles despite sharing similar genomes. Studying this transcriptional and post-transcriptional rewiring may improve our ability to interpret phenotype from genotype.
Collapse
|