1
|
Fuertes-Rabanal M, Rebaque D, Largo-Gosens A, Encina A, Mélida H. Cell walls, a comparative view of the composition of cell surfaces of plants, algae and microorganisms. JOURNAL OF EXPERIMENTAL BOTANY 2024:erae512. [PMID: 39705009 DOI: 10.1093/jxb/erae512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Indexed: 12/21/2024]
Abstract
While evolutionary studies indicate that the most ancient groups of organisms on Earth likely descended from a common wall-less ancestor, contemporary organisms lacking a carbohydrate-rich cell surface are exceedingly rare. By developing a cell wall to cover the plasma membrane, cells were able to withstand higher osmotic pressures, colonise new habitats and develop complex multicellular structures. This way, the cells of plants, algae and microorganisms are covered by a cell wall, which can generally be defined as a highly complex structure whose main framework is usually composed of carbohydrates. Rather than static structures, they are highly dynamic and serve a multitude of functions that modulate vital cellular processes, such as growth and interactions with neighbouring cells or the surrounding environment. Thus, despite its vital importance for many groups of life, it is striking that there are few comprehensive documents comparing the cell wall composition of these groups. Thus, the aim of this review was to compare the cell walls of plants with those of algae and microorganisms, paying particular attention to their polysaccharide components. It should be highlighted that, despite the important differences in composition, we have also found numerous common aspects and functionalities.
Collapse
Affiliation(s)
- María Fuertes-Rabanal
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Diego Rebaque
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
- Universidad Politécnica de Madrid, Madrid, Spain
| | - Asier Largo-Gosens
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Antonio Encina
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Hugo Mélida
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| |
Collapse
|
2
|
Boulogne I, Mirande‐Ney C, Bernard S, Bardor M, Mollet J, Lerouge P, Driouich A. Glycomolecules: from "sweet immunity" to "sweet biostimulation"? PHYSIOLOGIA PLANTARUM 2024; 176:e14640. [PMID: 39618250 PMCID: PMC11609761 DOI: 10.1111/ppl.14640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/06/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Climate changes and environmental contaminants are daunting challenges that require an urgent change from current agricultural practices to sustainable agriculture. Biostimulants are natural solutions that adhere to the principles of organic farming and are believed to have low impacts on the environment and human health. Further, they may contribute to reducing the use of chemical inputs while maintaining productivity in adverse environments. Biostimulants are generally defined as formulated substances and microorganisms showing benefits for plant growth, yield, rhizosphere function, nutrient-use efficiency, quality of harvested products, or abiotic stress tolerance. These biosolutions are categorized in different subclasses. Several of them are enriched in glycomolecules and their oligomers. However, very few studies have considered them as active molecules in biostimulation and as a subclass on their own. Herein, we describe the structure and the functions of complex polysaccharides, glycoproteins, and glycolipids in relation to plant defense or biostimulation. We also discuss the parallels between sugar-enhanced plant defense and biostimulation with glycomolecules and introduce the concept of sweet biostimulation or glycostimulation.
Collapse
Affiliation(s)
- I. Boulogne
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
- ECOTERCA ‐ ÉCOlogie TERrestre CAribéenneUniversité des Antilles, Faculté des Sciences Exactes et NaturellesPointe‐à‐Pitre CedexFrance
| | - C. Mirande‐Ney
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
| | - S. Bernard
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
| | - M. Bardor
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
| | - J.‐C. Mollet
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
| | - P. Lerouge
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
| | - A. Driouich
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
| |
Collapse
|
3
|
Liu S, Xiao M, Fang A, Tian B, Yu Y, Bi C, Ma D, Yang Y. LysM Proteins TaCEBiP and TaLYK5 are Involved in Immune Responses Mediated by Chitin Coreceptor TaCERK1 in Wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13535-13545. [PMID: 37665660 DOI: 10.1021/acs.jafc.3c02686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Plant lysin motif (LysM) ectodomain receptors interact with pathogen-associated molecular patterns (PAMPs) and have critical functions in plant-microbe interactions. In this study, 65 LysM family genes were identified using the recent version of the reference sequence of bread wheat (Triticum aestivum), in which 23, 16, 20, and 6 members belonged to LysM-containing receptor-like kinases (LYKs), LysM-containing receptor-like proteins (LYPs), extracellular LysM proteins (LysMes), and intracellular nonsecretory LysM proteins (LysMns), respectively. The study found that TaCEBiP, TaLYK5, and TaCERK1 were highly responsive to PAMP elicitors and phytopathogens, with TaCEBiP and TaLYK5 binding directly to chitin. TaCERK1 acted as a coreceptor with TaCEBiP and TaLYK5 at the plasma membrane. Overexpression of TaCEBiP, TaLYK5, and TaCERK1 in Nicotiana benthamiana leaves exhibited enhanced resistance to Sclerotinia sclerotiorum. Subsequently, knocking down TaCEBiP, TaLYK5, and TaCERK1 genes with barley stripe mosaic virus-VIGS compromised the wheat defense response to an avirulent strain of Puccinia striiformis. The study concluded that wheat has two synergistic chitin perception systems for detecting pathogen elicitors, with the activated CERK1 intracellular kinase domain leading to signaling transduction. This research provides valuable insights into the functional roles and regulatory mechanisms of wheat LysM members under biotic stress.
Collapse
Affiliation(s)
- Saifei Liu
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Muye Xiao
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Anfei Fang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Binnian Tian
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yang Yu
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Chaowei Bi
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Dongfang Ma
- Hubei Collaborative Innovation Center for Grain Industry/College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Yuheng Yang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| |
Collapse
|
4
|
Shikov AE, Merkushova AV, Savina IA, Nizhnikov AA, Antonets KS. The man, the plant, and the insect: shooting host specificity determinants in Serratia marcescens pangenome. Front Microbiol 2023; 14:1211999. [PMID: 38029097 PMCID: PMC10656689 DOI: 10.3389/fmicb.2023.1211999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/21/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Serratia marcescens is most commonly known as an opportunistic pathogen causing nosocomial infections. It, however, was shown to infect a wide range of hosts apart from vertebrates such as insects or plants as well, being either pathogenic or growth-promoting for the latter. Despite being extensively studied in terms of virulence mechanisms during human infections, there has been little evidence of which factors determine S. marcescens host specificity. On that account, we analyzed S. marcescens pangenome to reveal possible specificity factors. Methods We selected 73 high-quality genome assemblies of complete level and reconstructed the respective pangenome and reference phylogeny based on core genes alignment. To find an optimal pipeline, we tested current pangenomic tools and obtained several phylogenetic inferences. The pangenome was rich in its accessory component and was considered open according to the Heaps' law. We then applied the pangenome-wide associating method (pan-GWAS) and predicted positively associated gene clusters attributed to three host groups, namely, humans, insects, and plants. Results According to the results, significant factors relating to human infections included transcriptional regulators, lipoproteins, ABC transporters, and membrane proteins. Host preference toward insects, in its turn, was associated with diverse enzymes, such as hydrolases, isochorismatase, and N-acetyltransferase with the latter possibly exerting a neurotoxic effect. Finally, plant infection may be conducted through type VI secretion systems and modulation of plant cell wall synthesis. Interestingly, factors associated with plants also included putative growth-promoting proteins like enzymes performing xenobiotic degradation and releasing ammonium irons. We also identified overrepresented functional annotations within the sets of specificity factors and found that their functional characteristics fell into separate clusters, thus, implying that host adaptation is represented by diverse functional pathways. Finally, we found that mobile genetic elements bore specificity determinants. In particular, prophages were mainly associated with factors related to humans, while genetic islands-with insects and plants, respectively. Discussion In summary, functional enrichments coupled with pangenomic inferences allowed us to hypothesize that the respective host preference is carried out through distinct molecular mechanisms of virulence. To the best of our knowledge, the presented research is the first to identify specific genomic features of S. marcescens assemblies isolated from different hosts at the pangenomic level.
Collapse
Affiliation(s)
- Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Anastasiya V. Merkushova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
| | - Iuliia A. Savina
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
5
|
Wang D, Dong W, Murray J, Wang E. Innovation and appropriation in mycorrhizal and rhizobial Symbioses. THE PLANT CELL 2022; 34:1573-1599. [PMID: 35157080 PMCID: PMC9048890 DOI: 10.1093/plcell/koac039] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/21/2022] [Indexed: 05/20/2023]
Abstract
Most land plants benefit from endosymbiotic interactions with mycorrhizal fungi, including legumes and some nonlegumes that also interact with endosymbiotic nitrogen (N)-fixing bacteria to form nodules. In addition to these helpful interactions, plants are continuously exposed to would-be pathogenic microbes: discriminating between friends and foes is a major determinant of plant survival. Recent breakthroughs have revealed how some key signals from pathogens and symbionts are distinguished. Once this checkpoint has been passed and a compatible symbiont is recognized, the plant coordinates the sequential development of two types of specialized structures in the host. The first serves to mediate infection, and the second, which appears later, serves as sophisticated intracellular nutrient exchange interfaces. The overlap in both the signaling pathways and downstream infection components of these symbioses reflects their evolutionary relatedness and the common requirements of these two interactions. However, the different outputs of the symbioses, phosphate uptake versus N fixation, require fundamentally different components and physical environments and necessitated the recruitment of different master regulators, NODULE INCEPTION-LIKE PROTEINS, and PHOSPHATE STARVATION RESPONSES, for nodulation and mycorrhization, respectively.
Collapse
Affiliation(s)
- Dapeng Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wentao Dong
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | | | - Ertao Wang
- Authors for correspondence: (E.W) and (J.M.)
| |
Collapse
|
6
|
Gupta R, Min CW, Son S, Lee GH, Jang JW, Kwon SW, Park SR, Kim ST. Comparative proteome profiling of susceptible and resistant rice cultivars identified an arginase involved in rice defense against Xanthomonas oryzae pv. oryzae. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 171:105-114. [PMID: 34979446 DOI: 10.1016/j.plaphy.2021.12.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo), the causative agent of bacterial blight, is one of the major threats to rice productivity. Yet, the molecular mechanism of rice-Xoo interaction is elusive. Here, we report comparative proteome profiles of Xoo susceptible (Dongjin) and resistant (Hwayeong) cultivars of rice in response to two-time points (3 and 6 days) of Xoo infection. Low-abundance proteins were enriched using a protamine sulfate (PS) precipitation method and isolated proteins were quantified by a label-free quantitative analysis, leading to the identification of 3846 proteins. Of these, 1128 proteins were significantly changed between mock and Xoo infected plants of Dongjin and Hwayeong cultivars. Based on the abundance pattern and functions of the identified proteins, a total of 23 candidate proteins were shortlisted that potentially participate in plant defense against Xoo in the resistant cultivar. Of these candidate proteins, a mitochondrial arginase-1 showed Hwayeong specific abundance and was significantly accumulated following Xoo inoculation. Overexpression of arginase 1 (OsArg 1) in susceptible rice cultivar (Dongjin) resulted in enhanced tolerance against Xoo as compared to the wild-type. In addition, expression analysis of defense-related genes encoding PR1, glucanase I, and chitinase II by qRT-PCR showed their enhanced expression in the overexpression lines as compared to wild-type. Taken together, our results uncover the proteome changes in the rice cultivars and highlight the functions of OsARG1 in plant defense against Xoo.
Collapse
Affiliation(s)
- Ravi Gupta
- College of General Education, Kookmin University, Seoul, 02707, South Korea
| | - Cheol Woo Min
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, South Korea
| | - Seungmin Son
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Gi Hyun Lee
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, South Korea
| | - Jeong Woo Jang
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, South Korea
| | - Soon Wook Kwon
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, South Korea
| | - Sang Ryeol Park
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea.
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, South Korea.
| |
Collapse
|
7
|
Sun L, Rogiers G, Courtin P, Chapot-Chartier MP, Bierne H, Michiels CW. AsnB Mediates Amidation of Meso-Diaminopimelic Acid Residues in the Peptidoglycan of Listeria monocytogenes and Affects Bacterial Surface Properties and Host Cell Invasion. Front Microbiol 2021; 12:760253. [PMID: 34721369 PMCID: PMC8554201 DOI: 10.3389/fmicb.2021.760253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/24/2021] [Indexed: 11/30/2022] Open
Abstract
A mutant of Listeria monocytogenes ScottA with a transposon in the 5' untranslated region of the asnB gene was identified to be hypersensitive to the antimicrobial t-cinnamaldehyde. Here, we report the functional characterization of AsnB in peptidoglycan (PG) modification and intracellular infection. While AsnB of Listeria is annotated as a glutamine-dependent asparagine synthase, sequence alignment showed that this protein is closely related to a subset of homologs that catalyze the amidation of meso-diaminopimelic acid (mDAP) residues in the peptidoglycan of other bacterial species. Structural analysis of peptidoglycan from an asnB mutant, compared to that of isogenic wild-type (WT) and complemented mutant strains, confirmed that AsnB mediates mDAP amidation in L. monocytogenes. Deficiency in mDAP amidation caused several peptidoglycan- and cell surface-related phenotypes in the asnB mutant, including formation of shorter but thicker cells, susceptibility to lysozyme, loss of flagellation and motility, and a strong reduction in biofilm formation. In addition, the mutant showed reduced invasion of human epithelial JEG-3 and Caco-2 cells. Analysis by immunofluorescence microscopy revealed that asnB inactivation abrogated the proper display at the listerial surface of the invasion protein InlA, which normally gets cross-linked to mDAP via its LPXTG motif. Together, this work shows that AsnB of L. monocytogenes, like several of its homologs in related Gram-positive bacteria, mediates the amidation of mDAP residues in the peptidoglycan and, in this way, affects several cell wall and cell surface-related properties. It also for the first time implicates the amidation of peptidoglycan mDAP residues in cell wall anchoring of InlA and in bacterial virulence.
Collapse
Affiliation(s)
- Lei Sun
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M2S) and Leuven Food Science and Nutrition Research Center (LFoRCe), KU Leuven, Leuven, Belgium
| | - Gil Rogiers
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M2S) and Leuven Food Science and Nutrition Research Center (LFoRCe), KU Leuven, Leuven, Belgium
| | - Pascal Courtin
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Hélène Bierne
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Chris W Michiels
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M2S) and Leuven Food Science and Nutrition Research Center (LFoRCe), KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Rousseau A, Armand S, Cottaz S, Fort S. Size-Controlled Synthesis of β(1→4)-GlcNAc Oligosaccharides Using an Endo-Glycosynthase. Chemistry 2021; 27:17637-17646. [PMID: 34633724 DOI: 10.1002/chem.202103212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Indexed: 11/11/2022]
Abstract
Chitin and peptidoglycan fragments are well recognized as pathogen associated molecular patterns (PAMPs). Long-chain oligosaccharides of β(1→4)-linked N-acetyl-D-glucosamine (GlcNAc) units indeed activate plants and mammals innate immune system. However, the mechanisms underlying PAMPs perception by lysine motif (LysM) domain receptors remain largely unknown because of insufficient availability of high-affinity molecular probes. Here, we report a two-enzyme cascade to synthesize long-chain β(1→4)-linked GlcNAc oligomers. Expression of the D52S mutant of hen egg-white lysozyme (HEWL) in Pichia pastoris at 52 mg L-1 provided a new glycosynthase catalyzing efficient polymerization of α-chitintriosyl fluoride. Selective N-deacetylation at the non-reducing unit of the glycosyl fluoride donor by Sinorhizobium meliloti NodB chitin-N-deacetylase abolished its ability to be polymerized by the glycosynthase but not to be transferred onto an acceptor. Using NodB and D52S HEWL in a one-pot cascade reaction allowed the synthesis on a milligram scale of chitin hexa-, hepta- and octasaccharides with yields up to 65 % and a perfect control over their size.
Collapse
Affiliation(s)
| | - Sylvie Armand
- CERMAV, Univ. Grenoble Alpes, CNRS, 38000, Grenoble, France
| | - Sylvain Cottaz
- CERMAV, Univ. Grenoble Alpes, CNRS, 38000, Grenoble, France
| | - Sébastien Fort
- CERMAV, Univ. Grenoble Alpes, CNRS, 38000, Grenoble, France
| |
Collapse
|
9
|
Portieles R, Xu H, Yue Q, Zhao L, Zhang D, Du L, Gao X, Gao J, Portal Gonzalez N, Santos Bermudez R, Borrás-Hidalgo O. Heat-killed endophytic bacterium induces robust plant defense responses against important pathogens. Sci Rep 2021; 11:12182. [PMID: 34108579 PMCID: PMC8190079 DOI: 10.1038/s41598-021-91837-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/02/2021] [Indexed: 02/05/2023] Open
Abstract
Stress caused by pathogens strongly damages plants. Developing products to control plant disease is an important challenge in sustainable agriculture. In this study, a heat-killed endophytic bacterium (HKEB), Bacillus aryabhattai, is used to induce plant defense against fungal and bacterial pathogens, and the main defense pathways used by the HKEB to activate plant defense are revealed. The HKEB induced high protection against different pathogens through the salicylic and jasmonic acid pathways. We report the presence of gentisic acid in the HKEB for the first time. These results show that HKEBs may be a useful tool for the management of plant diseases.
Collapse
Affiliation(s)
- Roxana Portieles
- Joint R&D Center of Biotechnology, RETDA, Yota Bio-Engineering Co., Ltd., 99 Shenzhen Road, Rizhao, 276826, Shandong, People's Republic of China
| | - Hongli Xu
- Joint R&D Center of Biotechnology, RETDA, Yota Bio-Engineering Co., Ltd., 99 Shenzhen Road, Rizhao, 276826, Shandong, People's Republic of China
| | - Qiulin Yue
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab of Microbial Engineering, Qilu University of Technology (Shandong Academic of Science), Jinan, People's Republic of China
| | - Lin Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab of Microbial Engineering, Qilu University of Technology (Shandong Academic of Science), Jinan, People's Republic of China
| | - Dening Zhang
- Joint R&D Center of Biotechnology, RETDA, Yota Bio-Engineering Co., Ltd., 99 Shenzhen Road, Rizhao, 276826, Shandong, People's Republic of China
| | - Lihua Du
- Joint R&D Center of Biotechnology, RETDA, Yota Bio-Engineering Co., Ltd., 99 Shenzhen Road, Rizhao, 276826, Shandong, People's Republic of China
| | - Xiangyou Gao
- Joint R&D Center of Biotechnology, RETDA, Yota Bio-Engineering Co., Ltd., 99 Shenzhen Road, Rizhao, 276826, Shandong, People's Republic of China
| | - Jingyao Gao
- Joint R&D Center of Biotechnology, RETDA, Yota Bio-Engineering Co., Ltd., 99 Shenzhen Road, Rizhao, 276826, Shandong, People's Republic of China
| | - Nayanci Portal Gonzalez
- School of Biological Science and Technology, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan, 250022, Shandong, People's Republic of China
| | - Ramon Santos Bermudez
- School of Biological Science and Technology, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan, 250022, Shandong, People's Republic of China.
| | - Orlando Borrás-Hidalgo
- Joint R&D Center of Biotechnology, RETDA, Yota Bio-Engineering Co., Ltd., 99 Shenzhen Road, Rizhao, 276826, Shandong, People's Republic of China.
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab of Microbial Engineering, Qilu University of Technology (Shandong Academic of Science), Jinan, People's Republic of China.
| |
Collapse
|
10
|
Gilmore MC, Ritzl-Rinkenberger B, Cava F. An updated toolkit for exploring bacterial cell wall structure and dynamics. Fac Rev 2021; 10:14. [PMID: 33659932 PMCID: PMC7894271 DOI: 10.12703/r/10-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The bacterial cell wall is made primarily from peptidoglycan, a complex biomolecule which forms a bag-like exoskeleton that envelops the cell. As it is unique to bacteria and typically essential for their growth and survival, it represents one of the most successful targets for antibiotics. Although peptidoglycan has been studied intensively for over 50 years, the past decade has seen major steps in our understanding of this molecule because of the advent of new analytical and imaging methods. Here, we outline the most recent developments in tools that have helped to elucidate peptidoglycan structure and dynamics.
Collapse
Affiliation(s)
- Michael C Gilmore
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Barbara Ritzl-Rinkenberger
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
11
|
Oligosaccharides: Defense Inducers, Their Recognition in Plants, Commercial Uses and Perspectives. Molecules 2020; 25:molecules25245972. [PMID: 33339414 PMCID: PMC7766089 DOI: 10.3390/molecules25245972] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 01/18/2023] Open
Abstract
Plants have innate immune systems or defense mechanisms that respond to the attack of pathogenic microorganisms. Unlike mammals, they lack mobile defense cells, so defense processes depend on autonomous cellular events with a broad repertoire of recognition to detect pathogens, which compensates for the lack of an adaptive immune system. These defense mechanisms remain inactive or latent until they are activated after exposure or contact with inducing agents, or after the application of the inductor; they remain inactive only until they are affected by a pathogen or challenged by an elicitor from the same. Resistance induction represents a focus of interest, as it promotes the activation of plant defense mechanisms, reducing the use of chemical synthesis pesticides, an alternative that has even led to the generation of new commercial products with high efficiency, stability and lower environmental impact, which increase productivity by reducing not only losses but also increasing plant growth. Considering the above, the objective of this review is to address the issue of resistance induction with a focus on the potential of the use of oligosaccharides in agriculture, how they are recognized by plants, how they can be used for commercial products and perspectives.
Collapse
|
12
|
Jaber R, Planchon A, Mathieu-Rivet E, Kiefer-Meyer MC, Zahid A, Plasson C, Pamlard O, Beaupierre S, Trouvé JP, Guillou C, Driouich A, Follet-Gueye ML, Mollet JC. Identification of two compounds able to improve flax resistance towards Fusarium oxysporum infection. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110690. [PMID: 33218648 DOI: 10.1016/j.plantsci.2020.110690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Plants are surrounded by a diverse range of microorganisms that causes serious crop losses and requires the use of pesticides. Flax is a major crop in Normandy used for its fibres and is regularly challenged by the pathogenic fungus Fusarium oxysporum (Fo) f. sp. lini. To protect themselves, plants use "innate immunity" as a first line of defense level against pathogens. Activation of plant defense with elicitors could be an alternative for crop plant protection. A previous work was conducted by screening a chemical library and led to the identification of compounds able to activate defense responses in Arabidopsis thaliana. Four compounds were tested for their abilities to improve resistance of two flax varieties against Fo. Two of them, one natural (holaphyllamine or HPA) and one synthetic (M4), neither affected flax nor Fo growth. HPA and M4 induced oxidative burst and callose deposition. Furthermore, HPA and M4 caused changes in the expression patterns of defense-related genes coding a glucanase and a chitinase-like. Finally, plants pre-treated with HPA or M4 exhibited a significant decrease in the disease symptoms. Together, these findings demonstrate that HPA and M4 are able to activate defense responses in flax and improve its resistance against Fo infection.
Collapse
Affiliation(s)
- Rim Jaber
- Normandie Univ, UNIROUEN, Glyco-MEV, EA4358, SFR NORVEGE FED 4277, I2C Carnot, IRIB, 76000, Rouen, France.
| | - Aline Planchon
- Normandie Univ, UNIROUEN, Glyco-MEV, EA4358, SFR NORVEGE FED 4277, I2C Carnot, IRIB, 76000, Rouen, France.
| | - Elodie Mathieu-Rivet
- Normandie Univ, UNIROUEN, Glyco-MEV, EA4358, SFR NORVEGE FED 4277, I2C Carnot, IRIB, 76000, Rouen, France.
| | | | - Abderrakib Zahid
- Normandie Univ, UNIROUEN, Glyco-MEV, EA4358, SFR NORVEGE FED 4277, I2C Carnot, IRIB, 76000, Rouen, France.
| | - Carole Plasson
- Normandie Univ, UNIROUEN, Glyco-MEV, EA4358, SFR NORVEGE FED 4277, I2C Carnot, IRIB, 76000, Rouen, France.
| | - Olivier Pamlard
- Unité de catalyse et chimie du solide, UMR CNRS 8181, Université de Lille, 59655 Villeneuve d'Ascq Cedex, France.
| | - Sandra Beaupierre
- Institut de Chimie des Substances Naturelles, UPR CNRS 2301, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France.
| | | | - Catherine Guillou
- Institut de Chimie des Substances Naturelles, UPR CNRS 2301, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France.
| | - Azeddine Driouich
- Normandie Univ, UNIROUEN, Glyco-MEV, EA4358, SFR NORVEGE FED 4277, I2C Carnot, IRIB, 76000, Rouen, France.
| | - Marie-Laure Follet-Gueye
- Normandie Univ, UNIROUEN, Glyco-MEV, EA4358, SFR NORVEGE FED 4277, I2C Carnot, IRIB, 76000, Rouen, France; Normandie Univ, UNIROUEN, PRIMACEN, IRIB, 76000, Rouen, France.
| | - Jean-Claude Mollet
- Normandie Univ, UNIROUEN, Glyco-MEV, EA4358, SFR NORVEGE FED 4277, I2C Carnot, IRIB, 76000, Rouen, France.
| |
Collapse
|
13
|
Bentham AR, De la Concepcion JC, Mukhi N, Zdrzałek R, Draeger M, Gorenkin D, Hughes RK, Banfield MJ. A molecular roadmap to the plant immune system. J Biol Chem 2020; 295:14916-14935. [PMID: 32816993 PMCID: PMC7606695 DOI: 10.1074/jbc.rev120.010852] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
Plant diseases caused by pathogens and pests are a constant threat to global food security. Direct crop losses and the measures used to control disease (e.g. application of pesticides) have significant agricultural, economic, and societal impacts. Therefore, it is essential that we understand the molecular mechanisms of the plant immune system, a system that allows plants to resist attack from a wide variety of organisms ranging from viruses to insects. Here, we provide a roadmap to plant immunity, with a focus on cell-surface and intracellular immune receptors. We describe how these receptors perceive signatures of pathogens and pests and initiate immune pathways. We merge existing concepts with new insights gained from recent breakthroughs on the structure and function of plant immune receptors, which have generated a shift in our understanding of cell-surface and intracellular immunity and the interplay between the two. Finally, we use our current understanding of plant immunity as context to discuss the potential of engineering the plant immune system with the aim of bolstering plant defenses against disease.
Collapse
Affiliation(s)
- Adam R Bentham
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | | | - Nitika Mukhi
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Rafał Zdrzałek
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Markus Draeger
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Danylo Gorenkin
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Richard K Hughes
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Mark J Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom.
| |
Collapse
|
14
|
Tsers I, Gorshkov V, Gogoleva N, Parfirova O, Petrova O, Gogolev Y. Plant Soft Rot Development and Regulation from the Viewpoint of Transcriptomic Profiling. PLANTS 2020; 9:plants9091176. [PMID: 32927917 PMCID: PMC7570247 DOI: 10.3390/plants9091176] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
Soft rot caused by Pectobacterium species is a devastating plant disease poorly characterized in terms of host plant responses. In this study, changes in the transcriptome of tobacco plants after infection with Pectobacterium atrosepticum (Pba) were analyzed using RNA-Seq. To draw a comprehensive and nontrivially itemized picture of physiological events in Pba-infected plants and to reveal novel potential molecular "players" in plant-Pba interactions, an original functional gene classification was performed. The classifications present in various databases were merged, enriched by "missed" genes, and divided into subcategories. Particular changes in plant cell wall-related processes, perturbations in hormonal and other regulatory systems, and alterations in primary, secondary, and redox metabolism were elucidated in terms of gene expression. Special attention was paid to the prediction of transcription factors (TFs) involved in the disease's development. Herewith, gene expression was analyzed within the predicted TF regulons assembled at the whole-genome level based on the presence of particular cis-regulatory elements (CREs) in gene promoters. Several TFs, whose regulons were enriched by differentially expressed genes, were considered to be potential master regulators of Pba-induced plant responses. Differential regulation of genes belonging to a particular multigene family and encoding cognate proteins was explained by the presence/absence of the particular CRE in gene promoters.
Collapse
Affiliation(s)
- Ivan Tsers
- Laboratory of plant infectious diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia;
| | - Vladimir Gorshkov
- Laboratory of plant infectious diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia;
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia; (N.G.); (O.P.); (O.P.); (Y.G.)
- Correspondence:
| | - Natalia Gogoleva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia; (N.G.); (O.P.); (O.P.); (Y.G.)
| | - Olga Parfirova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia; (N.G.); (O.P.); (O.P.); (Y.G.)
| | - Olga Petrova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia; (N.G.); (O.P.); (O.P.); (Y.G.)
| | - Yuri Gogolev
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia; (N.G.); (O.P.); (O.P.); (Y.G.)
| |
Collapse
|
15
|
Gut bacteria-derived peptidoglycan induces a metabolic syndrome-like phenotype via NF-κB-dependent insulin/PI3K signaling reduction in Drosophila renal system. Sci Rep 2020; 10:14097. [PMID: 32839462 PMCID: PMC7445169 DOI: 10.1038/s41598-020-70455-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
Although microbiome-host interactions are usual at steady state, gut microbiota dysbiosis can unbalance the physiological and behavioral parameters of the host, mostly via yet not understood mechanisms. Using the Drosophila model, we investigated the consequences of a gut chronic dysbiosis on the host physiology. Our results show that adult flies chronically infected with the non-pathogenic Erwinia carotorova caotovora bacteria displayed organ degeneration resembling wasting-like phenotypes reminiscent of Metabolic Syndrome associated pathologies. Genetic manipulations demonstrate that a local reduction of insulin signaling consecutive to a peptidoglycan-dependent NF-κB activation in the excretory system of the flies is responsible for several of the observed phenotypes. This work establishes a functional crosstalk between bacteria-derived peptidoglycan and the immune NF-κB cascade that contributes to the onset of metabolic disorders by reducing insulin signal transduction. Giving the high degree of evolutionary conservation of the mechanisms and pathways involved, this study is likely to provide a helpful model to elucidate the contribution of altered intestinal microbiota in triggering human chronic kidney diseases.
Collapse
|
16
|
Moskaleva NE, Markin PA, Kuznetsov RM, Andronova TM, Appolonova SA. Determination of the immunostimulatory drug-glucosoaminyl-muramyl-dipeptide-in human plasma using HPLC-MS/MS and its application to a pharmacokinetic study. Biomed Chromatogr 2020; 34:e4948. [PMID: 32652605 DOI: 10.1002/bmc.4948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/03/2020] [Accepted: 07/09/2020] [Indexed: 11/12/2022]
Abstract
GMDP (glucosoaminyl-muramyl-dipeptide), a synthetic analog of the peptidoglycan fragment of the bacterial cell wall, is an active component of the immunomodulatory drug Licopid. But the pharmacokinetic parameters of GMDP in humans after oral administration have not been investigated yet. The present study aimed at developing and validating a sensitive LC-MS/MS method for the analysis of GMDP in human plasma. The sample was prepared by solid-phase extraction using Strata-X 33 μm polymeric reversed-phase 60 mg/3 mL cartridges Phenomenex (Torrance, CA, USA). The analytes were separated using an Acquity UPLC BEN C18 column, 1.7 μm 2.1 × 50 mm Waters (Milford, USA). GMDP and internal standard growth hormone releasing peptide-2 (pralmorelin) were ionized in positive electrospray ionization mode and detected in multiple reaction monitoring mode. The developed method was validated within a linear range of 50-3000 pg/mL for GMDP. Accuracy for all analytes, given as the deviation between the nominal and measured concentration and assay variability , ranged from 1.61 to 3.02% and from 0.89 to 1.79%, respectively, for both within- and between-run variabilities. The developed and validated HPLC-MS/MS method was successfully used to obtain the plasma pharmacokinetic profiles of GMDP distribution in human plasma.
Collapse
Affiliation(s)
- Natalia E Moskaleva
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Pavel A Markin
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,PhD Program in Nanosciences and Advanced Technologies, University of Verona, Verona, Italy
| | - Roman M Kuznetsov
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Svetlana A Appolonova
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
17
|
Wanke A, Rovenich H, Schwanke F, Velte S, Becker S, Hehemann JH, Wawra S, Zuccaro A. Plant species-specific recognition of long and short β-1,3-linked glucans is mediated by different receptor systems. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:1142-1156. [PMID: 31925978 DOI: 10.1111/tpj.14688] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 12/26/2019] [Accepted: 01/06/2020] [Indexed: 05/21/2023]
Abstract
Plants survey their environment for the presence of potentially harmful or beneficial microbes. During colonization, cell surface receptors perceive microbe-derived or modified-self ligands and initiate appropriate responses. The recognition of fungal chitin oligomers and the subsequent activation of plant immunity are well described. In contrast, the mechanisms underlying β-glucan recognition and signaling activation remain largely unexplored. Here, we systematically tested immune responses towards different β-glucan structures and show that responses vary between plant species. While leaves of the monocots Hordeum vulgare and Brachypodium distachyon can recognize longer (laminarin) and shorter (laminarihexaose) β-1,3-glucans with responses of varying intensity, duration and timing, leaves of the dicot Nicotiana benthamiana activate immunity in response to long β-1,3-glucans, whereas Arabidopsis thaliana and Capsella rubella perceive short β-1,3-glucans. Hydrolysis of the β-1,6 side-branches of laminarin demonstrated that not the glycosidic decoration but rather the degree of polymerization plays a pivotal role in the recognition of long-chain β-glucans. Moreover, in contrast to the recognition of short β-1,3-glucans in A. thaliana, perception of long β-1,3-glucans in N. benthamiana and rice is independent of CERK1, indicating that β-glucan recognition may be mediated by multiple β-glucan receptor systems.
Collapse
Affiliation(s)
- Alan Wanke
- University of Cologne, Institute for Plant Sciences, 50679, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Hanna Rovenich
- University of Cologne, Institute for Plant Sciences, 50679, Cologne, Germany
- University of Cologne, Cluster of Excellence on Plant Sciences (CEPLAS), 50679, Cologne, Germany
| | - Florian Schwanke
- University of Cologne, Institute for Plant Sciences, 50679, Cologne, Germany
| | - Stefanie Velte
- University of Cologne, Institute for Plant Sciences, 50679, Cologne, Germany
| | - Stefan Becker
- Center for Marine Environmental Sciences, University of Bremen, MARUM, 28359, Bremen, Germany
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Jan-Hendrik Hehemann
- Center for Marine Environmental Sciences, University of Bremen, MARUM, 28359, Bremen, Germany
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Stephan Wawra
- University of Cologne, Institute for Plant Sciences, 50679, Cologne, Germany
- University of Cologne, Cluster of Excellence on Plant Sciences (CEPLAS), 50679, Cologne, Germany
| | - Alga Zuccaro
- University of Cologne, Institute for Plant Sciences, 50679, Cologne, Germany
- University of Cologne, Cluster of Excellence on Plant Sciences (CEPLAS), 50679, Cologne, Germany
| |
Collapse
|
18
|
Elicitor and Receptor Molecules: Orchestrators of Plant Defense and Immunity. Int J Mol Sci 2020; 21:ijms21030963. [PMID: 32024003 PMCID: PMC7037962 DOI: 10.3390/ijms21030963] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
Pathogen-associated molecular patterns (PAMPs), microbe-associated molecular patterns (MAMPs), herbivore-associated molecular patterns (HAMPs), and damage-associated molecular patterns (DAMPs) are molecules produced by microorganisms and insects in the event of infection, microbial priming, and insect predation. These molecules are then recognized by receptor molecules on or within the plant, which activates the defense signaling pathways, resulting in plant’s ability to overcome pathogenic invasion, induce systemic resistance, and protect against insect predation and damage. These small molecular motifs are conserved in all organisms. Fungi, bacteria, and insects have their own specific molecular patterns that induce defenses in plants. Most of the molecular patterns are either present as part of the pathogen’s structure or exudates (in bacteria and fungi), or insect saliva and honeydew. Since biotic stresses such as pathogens and insects can impair crop yield and production, understanding the interaction between these organisms and the host via the elicitor–receptor interaction is essential to equip us with the knowledge necessary to design durable resistance in plants. In addition, it is also important to look into the role played by beneficial microbes and synthetic elicitors in activating plants’ defense and protection against disease and predation. This review addresses receptors, elicitors, and the receptor–elicitor interactions where these components in fungi, bacteria, and insects will be elaborated, giving special emphasis to the molecules, responses, and mechanisms at play, variations between organisms where applicable, and applications and prospects.
Collapse
|
19
|
Feng F, Sun J, Radhakrishnan GV, Lee T, Bozsóki Z, Fort S, Gavrin A, Gysel K, Thygesen MB, Andersen KR, Radutoiu S, Stougaard J, Oldroyd GED. A combination of chitooligosaccharide and lipochitooligosaccharide recognition promotes arbuscular mycorrhizal associations in Medicago truncatula. Nat Commun 2019; 10:5047. [PMID: 31695035 PMCID: PMC6834629 DOI: 10.1038/s41467-019-12999-5] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/03/2019] [Indexed: 12/02/2022] Open
Abstract
Plants associate with beneficial arbuscular mycorrhizal fungi facilitating nutrient acquisition. Arbuscular mycorrhizal fungi produce chitooligosaccharides (COs) and lipo-chitooligosaccharides (LCOs), that promote symbiosis signalling with resultant oscillations in nuclear-associated calcium. The activation of symbiosis signalling must be balanced with activation of immunity signalling, which in fungal interactions is promoted by COs resulting from the chitinaceous fungal cell wall. Here we demonstrate that COs ranging from CO4-CO8 can induce symbiosis signalling in Medicago truncatula. CO perception is a function of the receptor-like kinases MtCERK1 and LYR4, that activate both immunity and symbiosis signalling. A combination of LCOs and COs act synergistically to enhance symbiosis signalling and suppress immunity signalling and receptors involved in both CO and LCO perception are necessary for mycorrhizal establishment. We conclude that LCOs, when present in a mix with COs, drive a symbiotic outcome and this mix of signals is essential for arbuscular mycorrhizal establishment.
Collapse
Affiliation(s)
- Feng Feng
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, CB2 1LR, UK
| | - Jongho Sun
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, CB2 1LR, UK
| | - Guru V Radhakrishnan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Tak Lee
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, CB2 1LR, UK
| | - Zoltán Bozsóki
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, 8000 C, Denmark
| | - Sébastien Fort
- Université de Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Aleksander Gavrin
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, CB2 1LR, UK
| | - Kira Gysel
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, 8000 C, Denmark
| | - Mikkel B Thygesen
- Department of Chemistry, University of Copenhagen, Frederiksberg, 1871 C, Denmark
| | | | - Simona Radutoiu
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, 8000 C, Denmark
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, 8000 C, Denmark
| | - Giles E D Oldroyd
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, CB2 1LR, UK.
| |
Collapse
|
20
|
Xue DX, Li CL, Xie ZP, Staehelin C. LYK4 is a component of a tripartite chitin receptor complex in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5507-5516. [PMID: 31270545 DOI: 10.1093/jxb/erz313] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/26/2019] [Indexed: 05/23/2023]
Abstract
LysM receptor-like kinases (LYKs) of Arabidopsis thaliana (namely LYK1, LYK4 and LYK5) play a major role in chitin perception and immunity against pathogenic fungi. Chitin-induced heterodimerization of LYK1 and LYK5 has been previously reported, but protein interaction partners of LYK4 have not yet been identified. In this study, by analysing mutants we confirmed a role of LYK4 in chitin perception, and found that the ectodomain of LYK4 homodimerizes and also interacts with the ectodomain of LYK5 in vitro. Pull-down experiments with proteins expressed in protoplasts indicated LYK4-LYK4 and LY4-LYK5 interactions in planta. When protoplasts were treated with chitoheptaose or chitin, a protein complex was immunoprecipitated that appeared to be composed of LYK1, LYK4, and LYK5. Similar experiments with proteins expressed in lyk mutant plants suggested that elicitor treatment induced a physical interaction between LYK1 and LYK5 but not between LYK1 and LYK4. Bimolecular fluorescence complementation experiments substantiated these findings. Overall, our data suggest that LYK4 functions as a LYK5-associated co-receptor or scaffold protein that enhances chitin-induced signaling in Arabidopsis.
Collapse
Affiliation(s)
- De-Xing Xue
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chun-Lian Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Ping Xie
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Christian Staehelin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Schlöffel MA, Käsbauer C, Gust AA. Interplay of plant glycan hydrolases and LysM proteins in plant-Bacteria interactions. Int J Med Microbiol 2019; 309:252-257. [PMID: 31079999 DOI: 10.1016/j.ijmm.2019.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/10/2019] [Accepted: 04/25/2019] [Indexed: 12/18/2022] Open
Abstract
Plants are always found together with bacteria and other microbes. Although plants can be attacked by phytopathogenic bacteria, they are more often engaged in neutral or mutualistic bacterial interactions. In the soil, plants associate with rhizobia or other plant growth promoting rhizosphere bacteria; above ground, bacteria colonise plants as epi- and endophytes. For mounting appropriate responses, such as permitting colonisation by beneficial symbionts while at the same time fending off pathogenic invaders, plants need to distinguish between the "good" and the "bad". Plants make use of proteins containing the lysin motif (LysM) for perception of N-acetylglucosamine containing carbohydrate structures, such as chitooligosaccharides functioning as symbiotic nodulation factors or bacterial peptidoglycan. Moreover, plant hydrolytic enzymes of the chitinase family, which are able to cleave bacterial peptidoglycan or chitooligosaccharides, are essential for cellular signalling induced by rhizobial nodulation factors during symbiosis as well as bacterial peptidoglycan during pathogenesis. Hence, LysM receptors seem to work in concert with hydrolytic enzymes that fine-tune ligand availability to either allow symbiotic interactions or trigger plant immunity.
Collapse
Affiliation(s)
- Maria A Schlöffel
- Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Christoph Käsbauer
- Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Andrea A Gust
- Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
22
|
Irazoki O, Hernandez SB, Cava F. Peptidoglycan Muropeptides: Release, Perception, and Functions as Signaling Molecules. Front Microbiol 2019; 10:500. [PMID: 30984120 PMCID: PMC6448482 DOI: 10.3389/fmicb.2019.00500] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/27/2019] [Indexed: 12/12/2022] Open
Abstract
Peptidoglycan (PG) is an essential molecule for the survival of bacteria, and thus, its biosynthesis and remodeling have always been in the spotlight when it comes to the development of antibiotics. The peptidoglycan polymer provides a protective function in bacteria, but at the same time is continuously subjected to editing activities that in some cases lead to the release of peptidoglycan fragments (i.e., muropeptides) to the environment. Several soluble muropeptides have been reported to work as signaling molecules. In this review, we summarize the mechanisms involved in muropeptide release (PG breakdown and PG recycling) and describe the known PG-receptor proteins responsible for PG sensing. Furthermore, we overview the role of muropeptides as signaling molecules, focusing on the microbial responses and their functions in the host beyond their immunostimulatory activity.
Collapse
Affiliation(s)
| | | | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
23
|
Dworkin J. Detection of fungal and bacterial carbohydrates: Do the similar structures of chitin and peptidoglycan play a role in immune dysfunction? PLoS Pathog 2018; 14:e1007271. [PMID: 30308080 PMCID: PMC6181413 DOI: 10.1371/journal.ppat.1007271] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Jonathan Dworkin
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
24
|
Jamieson PA, Shan L, He P. Plant cell surface molecular cypher: Receptor-like proteins and their roles in immunity and development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:242-251. [PMID: 30080610 PMCID: PMC6297115 DOI: 10.1016/j.plantsci.2018.05.030] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/03/2018] [Accepted: 05/26/2018] [Indexed: 05/21/2023]
Abstract
Plant receptor-like proteins (RLPs) are a family of transmembrane receptors which are distinguished from receptor-like kinases (RLKs) by their lack of a cytoplasmic kinase domain. RLPs continue to be implicated in a broad range of plant immunological and developmental processes as critical sensors or participants in receptor complexes on the plasma membrane. RLPs often associate with RLKs to activate or attenuate signal perception and relay. Some RLPs also physically cluster with RLKs and bear similar expression patterns. Here, we discuss the characteristics, function, and expression of characterized RLPs in the context of their associated RLKs in plant immunity and development.
Collapse
Affiliation(s)
- Pierce A Jamieson
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Libo Shan
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Ping He
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
25
|
Mang H, Feng B, Hu Z, Boisson-Dernier A, Franck CM, Meng X, Huang Y, Zhou J, Xu G, Wang T, Shan L, He P. Differential Regulation of Two-Tiered Plant Immunity and Sexual Reproduction by ANXUR Receptor-Like Kinases. THE PLANT CELL 2017; 29:3140-3156. [PMID: 29150546 PMCID: PMC5757273 DOI: 10.1105/tpc.17.00464] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/06/2017] [Accepted: 11/16/2017] [Indexed: 05/18/2023]
Abstract
Plants have evolved two tiers of immune receptors to detect infections: cell surface-resident pattern recognition receptors (PRRs) that sense microbial signatures and intracellular nucleotide binding domain leucine-rich repeat (NLR) proteins that recognize pathogen effectors. How PRRs and NLRs interconnect and activate the specific and overlapping plant immune responses remains elusive. A genetic screen for components controlling plant immunity identified ANXUR1 (ANX1), a malectin-like domain-containing receptor-like kinase, together with its homolog ANX2, as important negative regulators of both PRR- and NLR-mediated immunity in Arabidopsis thaliana ANX1 constitutively associates with the bacterial flagellin receptor FLAGELLIN-SENSING2 (FLS2) and its coreceptor BRI1-ASSOCIATED RECEPTOR KINASE1 (BAK1). Perception of flagellin by FLS2 promotes ANX1 association with BAK1, thereby interfering with FLS2-BAK1 complex formation to attenuate PRR signaling. In addition, ANX1 complexes with the NLR proteins RESISTANT TO PSEUDOMONAS SYRINGAE2 (RPS2) and RESISTANCE TO P. SYRINGAE PV MACULICOLA1. ANX1 promotes RPS2 degradation and attenuates RPS2-mediated cell death. Surprisingly, a mutation that affects ANX1 function in plant immunity does not disrupt its function in controlling pollen tube growth during fertilization. Our study thus reveals a molecular link between PRR and NLR protein complexes that both associate with cell surface-resident ANX1 and uncovers uncoupled functions of ANX1 and ANX2 during plant immunity and sexual reproduction.
Collapse
Affiliation(s)
- Hyunggon Mang
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
| | - Baomin Feng
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| | - Zhangjian Hu
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| | | | - Christina M Franck
- Biocenter, Botanical Institute, University of Cologne, 50674 Cologne, Germany
| | - Xiangzong Meng
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| | - Yanyan Huang
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| | - Jinggeng Zhou
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| | - Guangyuan Xu
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| | - Taotao Wang
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Libo Shan
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| | - Ping He
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
26
|
Walker L, Boddington C, Jenkins D, Wang Y, Grønlund JT, Hulsmans J, Kumar S, Patel D, Moore JD, Carter A, Samavedam S, Bonomo G, Hersh DS, Coruzzi GM, Burroughs NJ, Gifford ML. Changes in Gene Expression in Space and Time Orchestrate Environmentally Mediated Shaping of Root Architecture. THE PLANT CELL 2017; 29:2393-2412. [PMID: 28893852 PMCID: PMC5774560 DOI: 10.1105/tpc.16.00961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 08/16/2017] [Accepted: 09/07/2017] [Indexed: 05/02/2023]
Abstract
Shaping of root architecture is a quintessential developmental response that involves the concerted action of many different cell types, is highly dynamic, and underpins root plasticity. To determine to what extent the environmental regulation of lateral root development is a product of cell-type preferential activities, we tracked transcriptomic responses to two different treatments that both change root development in Arabidopsis thaliana at an unprecedented level of temporal detail. We found that individual transcripts are expressed with a very high degree of temporal and spatial specificity, yet biological processes are commonly regulated, in a mechanism we term response nonredundancy. Using causative gene network inference to compare the genes regulated in different cell types and during responses to nitrogen and a biotic interaction, we found that common transcriptional modules often regulate the same gene families but control different individual members of these families, specific to response and cell type. This reinforces that the activity of a gene cannot be defined simply as molecular function; rather, it is a consequence of spatial location, expression timing, and environmental responsiveness.
Collapse
Affiliation(s)
- Liam Walker
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Clare Boddington
- Warwick Systems Biology Centre, University of Warwick, Senate House, Coventry CV4 7AL, United Kingdom
| | - Dafyd Jenkins
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
- Warwick Systems Biology Centre, University of Warwick, Senate House, Coventry CV4 7AL, United Kingdom
| | - Ying Wang
- Warwick Systems Biology Centre, University of Warwick, Senate House, Coventry CV4 7AL, United Kingdom
| | - Jesper T Grønlund
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jo Hulsmans
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
- Warwick Systems Biology Centre, University of Warwick, Senate House, Coventry CV4 7AL, United Kingdom
| | - Sanjeev Kumar
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Dhaval Patel
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jonathan D Moore
- Warwick Systems Biology Centre, University of Warwick, Senate House, Coventry CV4 7AL, United Kingdom
| | - Anthony Carter
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
- Warwick Systems Biology Centre, University of Warwick, Senate House, Coventry CV4 7AL, United Kingdom
| | - Siva Samavedam
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Giovanni Bonomo
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003
| | - David S Hersh
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003
| | - Gloria M Coruzzi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003
| | - Nigel J Burroughs
- Warwick Systems Biology Centre, University of Warwick, Senate House, Coventry CV4 7AL, United Kingdom
- Warwick Mathematics Institute, University of Warwick, Zeeman Building, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Miriam L Gifford
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
27
|
Peyraud R, Dubiella U, Barbacci A, Genin S, Raffaele S, Roby D. Advances on plant-pathogen interactions from molecular toward systems biology perspectives. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:720-737. [PMID: 27870294 PMCID: PMC5516170 DOI: 10.1111/tpj.13429] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 05/21/2023]
Abstract
In the past 2 decades, progress in molecular analyses of the plant immune system has revealed key elements of a complex response network. Current paradigms depict the interaction of pathogen-secreted molecules with host target molecules leading to the activation of multiple plant response pathways. Further research will be required to fully understand how these responses are integrated in space and time, and exploit this knowledge in agriculture. In this review, we highlight systems biology as a promising approach to reveal properties of molecular plant-pathogen interactions and predict the outcome of such interactions. We first illustrate a few key concepts in plant immunity with a network and systems biology perspective. Next, we present some basic principles of systems biology and show how they allow integrating multiomics data and predict cell phenotypes. We identify challenges for systems biology of plant-pathogen interactions, including the reconstruction of multiscale mechanistic models and the connection of host and pathogen models. Finally, we outline studies on resistance durability through the robustness of immune system networks, the identification of trade-offs between immunity and growth and in silico plant-pathogen co-evolution as exciting perspectives in the field. We conclude that the development of sophisticated models of plant diseases incorporating plant, pathogen and climate properties represent a major challenge for agriculture in the future.
Collapse
Affiliation(s)
- Rémi Peyraud
- LIPMUniversité de ToulouseINRACNRSCastanet‐TolosanFrance
| | | | | | - Stéphane Genin
- LIPMUniversité de ToulouseINRACNRSCastanet‐TolosanFrance
| | | | - Dominique Roby
- LIPMUniversité de ToulouseINRACNRSCastanet‐TolosanFrance
| |
Collapse
|
28
|
Li L, Yu Y, Zhou Z, Zhou JM. Plant pattern-recognition receptors controlling innate immunity. SCIENCE CHINA-LIFE SCIENCES 2016; 59:878-88. [DOI: 10.1007/s11427-016-0115-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/02/2016] [Indexed: 11/24/2022]
|