1
|
Wang C, Cong W, Yang L, Hou Y. Novel point mutations M402V, M541I in the HAMP domain and L915M in the HATPase_c domain of FgOs1 confer differential resistance to fludioxonil in Fusarium graminearum. Int J Biol Macromol 2025; 306:141143. [PMID: 39986532 DOI: 10.1016/j.ijbiomac.2025.141143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/24/2025]
Abstract
Fusarium head blight (FHB), caused by Fusarium graminearum, severely affects wheat yield and quality. Fludioxonil, a phenylpyrrole fungicide, is commonly used in the control of FHB. In this study, strains with histidine kinase amino acid substitutions (M402V, M541I, L915M), conferring resistance to fludioxonil, were identified in Hangzhou, Zhejiang Province, China. Through site-directed mutagenesis and structural analysis, we found that point mutations in the HAMP domain (M402V, M541I) cause ultra-high resistance (EC50 > 100 μg/mL, RF > 4000), while the L915M mutation in the HATPase_c domain results in high-resistance (100 μg/mL > EC50 > 50 μg/mL, 4000 > RF > 2000). Additionally, molecular docking analysis revealed that mutations in FgOs1 (M402V, M541I, L915M) decrease binding affinity with fludioxonil, potentially altering its effectiveness. These mutations not only affect asexual and sexual reproduction but also impair pathogenicity and DON toxin production. Resistant mutants also accumulate less glycerol under osmotic or fludioxonil stress, compared to sensitive strains. No cross-resistance to fungicides with different modes of action, including phenamacril, pyraclostrobin, pydiflumetofen, carbendazim, and tebuconazole, was observed. In summary, FgOs1 mutations (M402V, M541I, L915M) modulate resistance to fludioxonil and influence asexual reproduction, sexual reproduction, virulence, and DON toxin production.
Collapse
Affiliation(s)
- Chenguang Wang
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiwei Cong
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lin Yang
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yiping Hou
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Yaakoub H, Courdavault V, Papon N. The high-osmolarity glycerol (HOG) pathway in Candida auris. mBio 2025; 16:e0353824. [PMID: 39878510 PMCID: PMC11898604 DOI: 10.1128/mbio.03538-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
The emerging fungal pathogen Candida auris is known for its strong skin tropism and resilience against antifungal and disinfection treatment, posing a significant challenge for healthcare units. Although efforts to identify the effectors of its unique pathogenic behavior have been insightful, the role of the high-osmolarity glycerol (HOG) pathway in this context remains unexplored. The study by Shivarathri and co-workers (R. Shivarathri, M. Chauhan, A. Datta, D. Das et al., mBio 15:e02748-24, 2024, https://doi.org/10.1128/mbio.02748-24) sought to address this gap. This report indeed advances our understanding of the critical role of the HOG pathway in C. auris pathogenicity by emphasizing its involvement in skin colonization, biofilm formation, and evasion of phagocyte attack.
Collapse
Affiliation(s)
- Hajar Yaakoub
- University of Angers, Brest University, IRF, SFR ICAT, Angers, France
- Nantes-Université, INRAE, UMR 1280, PhAN, Nantes, France
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France
| | - Nicolas Papon
- University of Angers, Brest University, IRF, SFR ICAT, Angers, France
| |
Collapse
|
3
|
Kundu D, Martoliya Y, Sharma A, Partap Sasan S, Wasi M, Prasad R, Mondal AK. Overexpression of CBK1 or deletion of SSD1 confers fludioxonil resistance in yeast by suppressing Hog1 activation. Gene 2025; 933:148905. [PMID: 39218413 DOI: 10.1016/j.gene.2024.148905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/11/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Group III hybrid histidine kinases (HHK3) are known molecular targets of the widely used fungicidal agent fludioxonil which indirectly converts these kinases to a phosphatase form that causes constitutive activation of Hog1 MAPK. To better understand the fungicidal effect of fludioxonil we have screened S. cerevisiae haploid deletion collection for fludioxonil resistant mutant and identified Ssd1 as a critical factor for this. Deletion of SSD1 not only promoted resistance to fludioxonil but also abrogated Hog1 activation and other cellular damages caused by fludioxonil. Our results showed that fludioxonil perturbed the localization of Cbk1 kinase, an essential protein in yeast, at the bud neck triggering the accumulation of Ssd1 in P-bodies. As a result, localized synthesis of Ssd1 bound mRNA encoding cell wall proteins at the polarized growth site was impaired which created a sustained cell wall stress causing constitutive activation of Hog1. Our data, for the first time, clearly indicated the role of Cbk1 upstream of Hog1 and provided a novel paradigm in the mechanism of action of fludioxonil.
Collapse
Affiliation(s)
- Debasree Kundu
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India; School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Yogita Martoliya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anupam Sharma
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Soorya Partap Sasan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mohd Wasi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajendra Prasad
- Amity Institute of Integrative Sciences and Health, Amity University Gurgaon 122413, India
| | - Alok K Mondal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
4
|
Zorina AA, Los DA, Klychnikov OI. Serine-Threonine Protein Kinases of Cyanobacteria. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S287-S311. [PMID: 40164163 DOI: 10.1134/s0006297924604507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 04/02/2025]
Abstract
Protein phosphorylation is a pivotal mechanism for signal transduction, regulation of biochemical processes essential for reproduction, growth, and adaptation of organisms to changing conditions. Bacteria, which emerged more than 3.5 billion years ago, faced the need to adapt to a variety of ecological niches from the very beginning of their existence. It is not surprising that they developed a wide range of different types of kinases and target amino acid residues for phosphorylation. To date, many examples of phosphorylation of serine, threonine, tyrosine, histidine, arginine, lysine, aspartate, and cysteine have been discovered. Bacterial histidine kinases as part of two-component systems have been studied in most detail. More recently eukaryotic type serine-threonine and tyrosine kinases based on the conserved catalytic domain have been described in the genomes of many bacteria. The term "eukaryotic" is misleading, since evolutionary origin of these enzymes goes back to the last common universal ancestor - LUCA. Bioinformatics, molecular genetics, omics, and biochemical strategies combined provide new tools for researchers to establish relationship between the kinase abundance/activity and proteome changes, including studying of the kinase signaling network (kinome) within the cell. This manuscript presents several approaches to investigation of the serine-threonine protein kinases of cyanobacteria, as well as their combination, which allow to suggest new hypotheses and strategies for researchers.
Collapse
Affiliation(s)
- Anna A Zorina
- Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia.
| | - Dmitry A Los
- Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| | - Oleg I Klychnikov
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
5
|
Mina S, Hérivaux A, Yaakoub H, Courdavault V, Wéry M, Papon N. Structure and distribution of sensor histidine kinases in the fungal kingdom. Curr Genet 2024; 70:17. [PMID: 39276214 DOI: 10.1007/s00294-024-01301-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/02/2024] [Accepted: 08/17/2024] [Indexed: 09/16/2024]
Abstract
Two-component systems (TCSs) are diverse cell signaling pathways that play a significant role in coping with a wide range of environmental cues in both prokaryotic and eukaryotic organisms. These transduction circuitries are primarily governed by histidine kinases (HKs), which act as sensing proteins of a broad variety of stressors. To date, nineteen HK groups have been previously described in the fungal kingdom. However, the structure and distribution of these prominent sensing proteins were hitherto investigated in a limited number of fungal species. In this study, we took advantage of recent genomic resources in fungi to refine the fungal HK classification by deciphering the structural diversity and phylogenetic distribution of HKs across a large number of fungal clades. To this end, we browsed the genome of 91 species representative of different fungal clades, which yielded 726 predicted HK sequences. A domain organization analysis, coupled with a robust phylogenomic approach, led to an improved categorization of fungal HKs. While most of the compiled sequences were categorized into previously described fungal HK groups, some new groups were also defined. Overall, this study provides an improved overview of the structure, distribution, and evolution of HKs in the fungal kingdom.
Collapse
Affiliation(s)
- Sara Mina
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon.
| | - Anaïs Hérivaux
- Univ Angers, Univ Brest, IRF, SFR ICAT, Angers, F-49000, France
| | - Hajar Yaakoub
- Univ Angers, Univ Brest, IRF, SFR ICAT, Angers, F-49000, France
- Nantes-Université, INRAE, UMR 1280, PhAN, Nantes, 44000, France
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France
| | - Méline Wéry
- Univ Angers, SFR ICAT, Angers, F-49000, France
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, Angers, F-49000, France.
| |
Collapse
|
6
|
Lu T, Wang XM, Chen PX, Xi J, Yang HB, Zheng WF, Zhao YX. Adaptative responses of Neurospora crassa by histidine kinases upon the attack of the arthropod Sinella curviseta. Curr Genet 2024; 70:16. [PMID: 39276284 DOI: 10.1007/s00294-024-01302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024]
Abstract
Histidine kinases (HKs) are important sensor proteins in fungi and play an essential role in environmental adaptation. However, the mechanisms by which fungi sense and respond to fungivores attack via HKs are not fully understood. In this study, we utilized Neurospora crassa to investigate the involvement of HKs in responding to fungivores attack. We found that the 11 HKs in N. crassa not only affected the growth and development, but also led to fluctuations in antioxidant production. Ten mutants in the genes encoding HKs (except ∆phy1) showed increased production of reactive oxygen species (ROS), especially upon Sinella curviseta attack. The ROS burst triggered changes in conidia and perithecial beaks formation, as well as accumulation of β-glucan, ergothioneine, ergosterol, and carotenoids. β-glucan was increased in ∆hk9, ∆os1, ∆hcp1, ∆nik2, ∆sln1, ∆phy1 and ∆phy2 mutants compared to the wild-type strain. In parallel, ergothioneine accumulation was improved in ∆phy1 and ∆hk16 mutants and further increased upon attack, except in ∆os1 and ∆hk16 mutants. Additionally, fungivores attack stimulated ergosterol and dehydroergosterol production in ∆hk9 and ∆os1 mutants. Furthermore, deletion of these genes altered carotenoid accumulation, with wild-type strain, ∆hk9, ∆os1, ∆hcp1, ∆sln1, ∆phy2, and ∆dcc1mutants showing an increase in carotenoids upon attack. Taken together, HKs are involved in regulating the production of conidia and antioxidants. Thus, HKs may act as sensors of fungivores attack and effectively improve the adaptive capacity of fungi to environmental stimuli.
Collapse
Affiliation(s)
- Ting Lu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xiao-Meng Wang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Peng-Xu Chen
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Juan Xi
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Han-Bing Yang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Wei-Fa Zheng
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China.
| | - Yan-Xia Zhao
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China.
| |
Collapse
|
7
|
Vincek A, Wolf A, Thomas A, Ebel F, Schruefer S. The N-terminus of the Aspergillus fumigatus group III hybrid histidine kinase TcsC is essential for its physiological activity and targets the protein to the nucleus. mBio 2024; 15:e0118424. [PMID: 38832777 PMCID: PMC11253588 DOI: 10.1128/mbio.01184-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
Group III hybrid histidine kinases are fungal-specific proteins and part of the multistep phosphorelay, representing the initial part of the high osmolarity glycerol (HOG) pathway. TcsC, the corresponding kinase in Aspergillus fumigatus, was expected to be a cytosolic protein but is targeted to the nucleus. Activation of TcsC by the antifungal fludioxonil has lethal consequences for the fungus. The agent triggers a fast and TcsC-dependent activation of SakA and later on a redistribution of TcsC to the cytoplasm. High osmolarity also activates TcsC, which then exits the nucleus or concentrates in spot-like, intra-nuclear structures. The sequence corresponding to the N-terminal 208 amino acids of TcsC lacks detectable domains. Its loss renders TcsC cytosolic and non-responsive to hyperosmotic stress, but it has no impact on the antifungal activity of fludioxonil. A point mutation in one of the three putative nuclear localization sequences, which are present in the N-terminus, prevents the nuclear localization of TcsC, but not its ability to respond to hyperosmotic stress. Hence, this striking intracellular localization is no prerequisite for the role of TcsC in the adaptive response to hyperosmotic stress, instead, TcsC proteins that are present in the nuclei seem to modulate the cell wall composition of hyphae, which takes place in the absence of stress. The results of the present study underline that the spatiotemporal dynamics of the individual components of the multistep phosphorelay is a crucial feature of this unique signaling hub. IMPORTANCE Signaling pathways enable pathogens, such as Aspergillus fumigatus, to respond to a changing environment. The TcsC protein is the major sensor of the high osmolarity glycerol (HOG) pathway of A. fumigatus and it is also the target of certain antifungals. Insights in its function are therefore relevant for the pathogenicity and new therapeutic treatment options. TcsC was expected to be cytoplasmic, but we detected it in the nucleus and showed that it translocates to the cytoplasm upon activation. We have identified the motif that guides TcsC to the nucleus. An exchange of a single amino acid in this motif prevents a nuclear localization, but this nuclear targeting is no prerequisite for the TcsC-mediated stress response. Loss of the N-terminal 208 amino acids prevents the nuclear localization and renders TcsC unable to respond to hyperosmotic stress demonstrating that this part of the protein is of crucial importance.
Collapse
Affiliation(s)
- Anna Vincek
- Institute for Infectious Diseases and Zoonoses, LMU Munich, Germany
| | - Anja Wolf
- Institute for Infectious Diseases and Zoonoses, LMU Munich, Germany
| | - Astrid Thomas
- Institute for Infectious Diseases and Zoonoses, LMU Munich, Germany
| | - Frank Ebel
- Institute for Infectious Diseases and Zoonoses, LMU Munich, Germany
| | | |
Collapse
|
8
|
Paredes-Martínez F, Eixerés L, Zamora-Caballero S, Casino P. Structural and functional insights underlying recognition of histidine phosphotransfer protein in fungal phosphorelay systems. Commun Biol 2024; 7:814. [PMID: 38965424 PMCID: PMC11224324 DOI: 10.1038/s42003-024-06459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 06/14/2024] [Indexed: 07/06/2024] Open
Abstract
In human pathogenic fungi, receiver domains from hybrid histidine kinases (hHK) have to recognize one HPt. To understand the recognition mechanism, we have assessed phosphorelay from receiver domains of five hHKs of group III, IV, V, VI, and XI to HPt from Chaetomium thermophilum and obtained the structures of Ct_HPt alone and in complex with the receiver domain of hHK group VI. Our data indicate that receiver domains phosphotransfer to Ct_HPt, show a low affinity for complex formation, and prevent a Leu-Thr switch to stabilize phosphoryl groups, also derived from the structures of the receiver domains of hHK group III and Candida albicans Sln1. Moreover, we have elucidated the envelope structure of C. albicans Ypd1 using small-angle X-ray scattering which reveals an extended flexible conformation of the long loop αD-αE which is not involved in phosphotransfer. Finally, we have analyzed the role of salt bridges in the structure of Ct_HPt alone.
Collapse
Affiliation(s)
- Francisco Paredes-Martínez
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot, Spain
- Instituto Universitario en Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain
| | - Lluís Eixerés
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot, Spain
- Instituto Universitario en Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain
| | - Sara Zamora-Caballero
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain
| | - Patricia Casino
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot, Spain.
- Instituto Universitario en Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain.
- CIBER de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain.
| |
Collapse
|
9
|
Yin Z, Shen D, Zhao Y, Peng H, Liu J, Dou D. Cross-kingdom analyses of transmembrane protein kinases show their functional diversity and distinct origins in protists. Comput Struct Biotechnol J 2023; 21:4070-4078. [PMID: 37649710 PMCID: PMC10463195 DOI: 10.1016/j.csbj.2023.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023] Open
Abstract
Transmembrane kinases (TMKs) are important mediators of cellular signaling cascades. The kinase domains of most metazoan and plant TMKs belong to the serine/threonine/tyrosine kinase (S/T/Y-kinase) superfamily. They share a common origin with prokaryotic kinases and have diversified into distinct subfamilies. Diverse members of the eukaryotic crown radiation such as amoebae, ciliates, and red and brown algae (grouped here under the umbrella term "protists") have long diverged from higher eukaryotes since their ancient common ancestry, making them ideal organisms for studying TMK evolution. Here, we developed an accurate and high-throughput pipeline to predict TMKomes in cellular organisms. Cross-kingdom analyses revealed distinct features of TMKomes in each grouping. Two-transmembrane histidine kinases constitute the main TMKomes of bacteria, while metazoans, plants, and most protists have a large proportion of single-pass TM S/T/Y-kinases. Phylogenetic analyses classified most protist S/T/Y-kinases into three clades, with clades II and III specifically expanded in amoebae and oomycetes, respectively. In contrast, clade I kinases were widespread in all protists examined here, and likely shared a common origin with other eukaryotic S/T/Y-kinases. Functional annotation further showed that most non-kinase domains were grouping-specific, suggesting that their recombination with the more conserved kinase domains led to the divergence of S/T/Y-kinases. However, we also found that protist leucine-rich repeat (LRR)- and G-protein-coupled receptor (GPCR)-type TMKs shared similar sensory domain architectures with respective plant and animal TMKs, despite that they belong to distinct kinase subfamilies. Collectively, our study revealed the functional diversity of TMKomes and the distinct origins of S/T/Y-kinases in protists.
Collapse
Affiliation(s)
- Zhiyuan Yin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaning Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Peng
- USDA Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648, USA
| | - Jinding Liu
- Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
10
|
Transcriptomic Analysis of Resistant and Wild-Type Botrytis cinerea Isolates Revealed Fludioxonil-Resistance Mechanisms. Int J Mol Sci 2023; 24:ijms24020988. [PMID: 36674501 PMCID: PMC9861754 DOI: 10.3390/ijms24020988] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023] Open
Abstract
Botrytis cinerea, the causal agent of gray mold, is one of the most destructive pathogens of cherry tomatoes, causing fruit decay and economic loss. Fludioxonil is an effective fungicide widely used for crop protection and is effective against tomato gray mold. The emergence of fungicide-resistant strains has made the control of B. cinerea more difficult. While the genome of B. cinerea is available, there are few reports regarding the large-scale functional annotation of the genome using expressed genes derived from transcriptomes, and the mechanism(s) underlying such fludioxonil resistance remain unclear. The present study prepared RNA-sequencing (RNA-seq) libraries for three B. cinerea strains (two highly resistant (LR and FR) versus one highly sensitive (S) to fludioxonil), with and without fludioxonil treatment, to identify fludioxonil responsive genes that associated to fungicide resistance. Functional enrichment analysis identified nine resistance related DEGs in the fludioxonil-induced LR and FR transcriptome that were simultaneously up-regulated, and seven resistance related DEGs down-regulated. These included adenosine triphosphate (ATP)-binding cassette (ABC) transporter-encoding genes, major facilitator superfamily (MFS) transporter-encoding genes, and the high-osmolarity glycerol (HOG) pathway homologues or related genes. The expression patterns of twelve out of the sixteen fludioxonil-responsive genes, obtained from the RNA-sequence data sets, were validated using quantitative real-time PCR (qRT-PCR). Based on RNA-sequence analysis, it was found that hybrid histidine kinase, fungal HHKs, such as BOS1, BcHHK2, and BcHHK17, probably involved in the fludioxonil resistance of B. cinerea, in addition, a number of ABC and MFS transporter genes that were not reported before, such as BcATRO, BMR1, BMR3, BcNMT1, BcAMF1, BcTOP1, BcVBA2, and BcYHK8, were differentially expressed in the fludioxonil-resistant strains, indicating that overexpression of these efflux transporters located in the plasma membranes may associate with the fludioxonil resistance mechanism of B. cinerea. All together, these lines of evidence allowed us to draw a general portrait of the anti-fludioxonil mechanisms for B. cinerea, and the assembled and annotated transcriptome data provide valuable genomic resources for further study of the molecular mechanisms of B. cinerea resistance to fludioxonil.
Collapse
|
11
|
Kao CY, Wu CT, Lin HC, Hsieh DK, Lin HL, Lee MH. The G protein subunit α1, CaGα1, mediates ethylene sensing of mango anthracnose pathogen Colletotrichum asianum to regulate fungal development and virulence and mediates surface sensing for spore germination. Front Microbiol 2022; 13:1048447. [PMID: 36504764 PMCID: PMC9731116 DOI: 10.3389/fmicb.2022.1048447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/03/2022] [Indexed: 11/27/2022] Open
Abstract
Mango is an important tropic fruit, but its production is highly restricted by anthracnose diseases. Mango anthracnose development is related to the fruit-ripening hormone ethylene, but how the pathogen senses ethylene and affects the infection remains largely unknown. In this study, mango pathogen Colletotrichum asianum strain TYC-2 was shown to sense ethylene to enhance spore germination, appressorium formation and virulence. Upon further analysis of ethylene sensing signaling, three histidine kinase genes (CaHKs) and a G-protein gene (CaGα1) were functionally characterized. Ethylene upregulated the expression of the three CaHKs but had no influence on CaGα1 expression. No function in ethylene sensing was identified for the three CaHKs. Ethylene enhanced spore germination and multiple appressorium formation of the wild-type TYC-2 but not CaGα1 mutants. TYC-2 has extremely low germination in water, where self-inhibition may play a role in ethylene sensing via CaGα1 signaling. Self-inhibitors extracted from TYC-2 inhibited spore germination of TYC-2 and CaGα1 mutants, but ethylene could not rescue the inhibition, indicating that the self-inhibition was not mediated by CaGα1 and had no interactions with ethylene. Interestingly, spore germination of CaGα1 mutants was significantly enhanced in water on hydrophobic but not hydrophilic surfaces, suggesting that CaGα1 is involved in surface sensing. In the pathogenicity assay, CaGα1 mutants showed less virulence with delayed germination and little appressorium formation at early infection on mango leaves and fruit. Transcriptome and qRT-PCR analyses identified several pathogenicity-related genes regulated by ethylene, indicating that ethylene may regulate TYC-2 virulence partially by regulating the expression of these genes.
Collapse
Affiliation(s)
- Chao-Yang Kao
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan,Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Ta Wu
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan
| | - Hsien-Che Lin
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Dai-Keng Hsieh
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan,Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Huey-Ling Lin
- Department of Horticulture, National Chung Hsing University, Taichung, Taiwan
| | - Miin-Huey Lee
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan,Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan,*Correspondence: Miin-Huey Lee,
| |
Collapse
|
12
|
Mikhailov KV, Karpov SA, Letcher PM, Lee PA, Logacheva MD, Penin AA, Nesterenko MA, Pozdnyakov IR, Potapenko EV, Sherbakov DY, Panchin YV, Aleoshin VV. Genomic analysis reveals cryptic diversity in aphelids and sheds light on the emergence of Fungi. Curr Biol 2022; 32:4607-4619.e7. [PMID: 36126656 DOI: 10.1016/j.cub.2022.08.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/26/2022] [Accepted: 08/24/2022] [Indexed: 11/28/2022]
Abstract
Over the past decade, molecular phylogenetics has reshaped our understanding of the fungal tree of life by unraveling a hitherto elusive diversity of the protistan relatives of Fungi. Aphelida constitutes one of these novel deep branches that precede the emergence of osmotrophic fungal lifestyle and hold particular significance as the pathogens of algae. Here, we obtain and analyze the genomes of aphelid species Amoeboaphelidium protococcarum and Amoeboaphelidium occidentale. Genomic data unmask the vast divergence between these species, hidden behind their morphological similarity, and reveal hybrid genomes with a complex evolutionary history in two strains of A. protococcarum. We confirm the proposed sister relationship between Aphelida and Fungi using phylogenomic analysis and chart the reduction of characteristic proteins involved in phagocytic activity in the evolution of Holomycota. Annotation of aphelid genomes demonstrates the retention of actin nucleation-promoting complexes associated with phagocytosis and amoeboid motility and also reveals a conspicuous expansion of receptor-like protein kinases, uncharacteristic of fungal lineages. We find that aphelids possess multiple carbohydrate-processing enzymes that are involved in fungal cell wall synthesis but do not display rich complements of algal cell-wall-processing enzymes, suggesting an independent origin of fungal plant-degrading capabilities. Aphelid genomes show that the emergence of Fungi from phagotrophic ancestors relied on a common cell wall synthetic machinery but required a different set of proteins for digestion and interaction with the environment.
Collapse
Affiliation(s)
- Kirill V Mikhailov
- Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russian Federation; Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russian Federation.
| | - Sergey A Karpov
- Zoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russian Federation; Biological Faculty, St. Petersburg State University, St. Petersburg 199034, Russian Federation
| | - Peter M Letcher
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487-0344, USA
| | - Philip A Lee
- Allegheny Science and Technology, Bridgeport, WV 26330, USA
| | - Maria D Logacheva
- Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russian Federation; Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russian Federation; Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 121205, Russian Federation
| | - Aleksey A Penin
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russian Federation
| | - Maksim A Nesterenko
- Zoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russian Federation; Biological Faculty, St. Petersburg State University, St. Petersburg 199034, Russian Federation
| | - Igor R Pozdnyakov
- Zoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russian Federation
| | - Evgenii V Potapenko
- Institute of Evolution, University of Haifa, Haifa 3498838, Israel; Department of Evolutionary and Environmental Biology, University of Haifa, Haifa 3498838, Israel
| | - Dmitry Y Sherbakov
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033, Russian Federation; Novosibirsk State University, Novosibirsk 630090, Russian Federation
| | - Yuri V Panchin
- Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russian Federation; Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russian Federation
| | - Vladimir V Aleoshin
- Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russian Federation; Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russian Federation
| |
Collapse
|
13
|
Navarro MV, de Barros YN, Segura WD, Chaves AFA, Jannuzzi GP, Ferreira KS, Xander P, Batista WL. The Role of Dimorphism Regulating Histidine Kinase (Drk1) in the Pathogenic Fungus Paracoccidioides brasiliensis Cell Wall. J Fungi (Basel) 2021; 7:jof7121014. [PMID: 34946996 PMCID: PMC8707131 DOI: 10.3390/jof7121014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Dimorphic fungi of the Paracoccidioides genus are the causative agents of paracoccidioidomycosis (PCM), an endemic disease in Latin America with a high incidence in Brazil. This pathogen presents as infective mycelium at 25 °C in the soil, reverting to its pathogenic form when inhaled by the mammalian host (37 °C). Among these dimorphic fungal species, dimorphism regulating histidine kinase (Drk1) plays an essential role in the morphological transition. These kinases are present in bacteria and fungi but absent in mammalian cells and are important virulence and cellular survival regulators. Hence, the purpose of this study was to investigate the role of PbDrk1 in the cell wall modulation of P. brasiliensis. We observed that PbDrk1 participates in fungal resistance to different cell wall-disturbing agents by reducing viability after treatment with iDrk1. To verify the role of PbDRK1 in cell wall morphogenesis, qPCR results showed that samples previously exposed to iDrk1 presented higher expression levels of several genes related to cell wall modulation. One of them was FKS1, a β-glucan synthase that showed a 3.6-fold increase. Furthermore, confocal microscopy analysis and flow cytometry showed higher β-glucan exposure on the cell surface of P. brasiliensis after incubation with iDrk1. Accordingly, through phagocytosis assays, a significantly higher phagocytic index was observed in yeasts treated with iDrk1 than the control group, demonstrating the role of PbDrk1 in cell wall modulation, which then becomes a relevant target to be investigated. In parallel, the immune response profile showed increased levels of proinflammatory cytokines. Finally, our data strongly suggest that PbDrk1 modulates cell wall component expression, among which we can identify β-glucan. Understanding this signalling pathway may be of great value for identifying targets of antifungal molecular activity since HKs are not present in mammals.
Collapse
Affiliation(s)
- Marina Valente Navarro
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04023-062, Brazil;
| | - Yasmin Nascimento de Barros
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, Brazil; (Y.N.d.B.); (W.D.S.); (K.S.F.); (P.X.)
| | - Wilson Dias Segura
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, Brazil; (Y.N.d.B.); (W.D.S.); (K.S.F.); (P.X.)
| | | | - Grasielle Pereira Jannuzzi
- Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo 05508-000, Brazil;
| | - Karen Spadari Ferreira
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, Brazil; (Y.N.d.B.); (W.D.S.); (K.S.F.); (P.X.)
| | - Patrícia Xander
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, Brazil; (Y.N.d.B.); (W.D.S.); (K.S.F.); (P.X.)
| | - Wagner Luiz Batista
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04023-062, Brazil;
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, Brazil; (Y.N.d.B.); (W.D.S.); (K.S.F.); (P.X.)
- Correspondence: ; Tel.: +55-11-3319-3594; Fax: +55-11-3319-3300
| |
Collapse
|
14
|
Marcos CM, de Oliveira HC, Assato PA, Castelli RF, Fusco-Almeida AM, Mendes-Giannini MJS. Drk1, a Dimorphism Histidine Kinase, Contributes to Morphology, Virulence, and Stress Adaptation in Paracoccidioides brasiliensis. J Fungi (Basel) 2021; 7:jof7100852. [PMID: 34682273 PMCID: PMC8539220 DOI: 10.3390/jof7100852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 10/25/2022] Open
Abstract
P. brasiliensis is a thermally dimorphic fungus belonging to Paracoccidioides complex, causative of a systemic, endemic mycosis limited to Latin American countries. Signal transduction pathways related to important aspects as surviving, proliferation according to the biological niches are linked to the fungal pathogenicity in many species, but its elucidation in P. brasiliensis remains poorly explored. As Drk1, a hybrid histidine kinase, plays regulators functions in other dimorphic fungi species, mainly in dimorphism and virulence, here we investigated its importance in P. brasilensis. We, therefore generated the respective recombinant protein, anti-PbDrk1 polyclonal antibody and a silenced strain. The Drk1 protein shows a random distribution including cell wall location that change its pattern during osmotic stress condition; moreover the P. brasiliensis treatment with anti-PbDrk1 antibody, which does not modify the fungus's viability, resulted in decreased virulence in G. mellonella model and reduced interaction with pneumocytes. Down-regulating PbDRK1 yielded phenotypic alterations such as yeast cells with more elongated morphology, virulence attenuation in G. mellonella infection model, lower amount of chitin content, increased resistance to osmotic and cell wall stresses, and also caspofungin, and finally increased sensitivity to itraconazole. These observations highlight the importance of PbDrk1 to P. brasiliensis virulence, stress adaptation, morphology, and cell wall organization, and therefore it an interesting target that could help develop new antifungals.
Collapse
Affiliation(s)
- Caroline Maria Marcos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (A.M.F.-A.)
| | - Haroldo Cesar de Oliveira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (A.M.F.-A.)
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba 81350-010, Brazil;
| | - Patrícia Akemi Assato
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (A.M.F.-A.)
- Laboratório Central de Multiusuários, Faculdade de Ciências Agronômicas, Campus Botucatu, UNESP—Universidade Estadual Paulista, São Paulo 18610-034, Brazil
| | - Rafael Fernando Castelli
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba 81350-010, Brazil;
- Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, Brazil
| | - Ana Marisa Fusco-Almeida
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (A.M.F.-A.)
| | - Maria José Soares Mendes-Giannini
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (A.M.F.-A.)
- Correspondence:
| |
Collapse
|
15
|
Li T, Xiu Q, Wang Q, Wang J, Duan Y, Zhou M. Functional dissection of individual domains in group III histidine kinase Sshk1p from the phytopathogenic fungus Sclerotinia sclerotiorum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104914. [PMID: 34446190 DOI: 10.1016/j.pestbp.2021.104914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
A conserved kinase domain and phosphoryl group receiver domain at the C-terminus and poly-HAMP domains at the N-terminus comprise the structural components of the group III HK which was considered as a potential antifungal target. However, the roles of individual domains in the function of group III HKs have rarely been dissected in fungi. In this study, we dissected the roles of individual domains to better understand the function of Sshk1p, a group III HK from Sclerotinia sclerotiorum. The results suggest that individual domains play different roles in the functionality of Sshk1p and are implicated in the regulation of mycelial growth, sclerotia formation, pathogenicity. And the mutants of each domain in Sshk1 showed significantly increased sensitivity to hyperosmotic stress. However, the mutants of each domain in Sshk1 showed high resistance to fludioxonil and dimethachlon which suggested that all nine domains of Sshk1p were indispensable for susceptibility to fludioxonil and dimethachlon. Moreover, deletion of each individual domain in Sshk1 cancelled intracellular glycerol accumulation and increased SsHog1p phosphorylation level triggered by NaCl and fludioxonil, suggesting that all the domains of Sshk1 were essential for Sshk1-mediated SsHog1p phosphorylation and subsequent polyol accumulation in response to fludioxonil and hyperosmotic stress.
Collapse
Affiliation(s)
- Tao Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Xiu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiao Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianxin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Research Center of Pesticide Resistance & Management Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yabing Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Research Center of Pesticide Resistance & Management Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Research Center of Pesticide Resistance & Management Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
16
|
Distinct role of HAMP and HAMP-like linker domains in regulating the activity of Hik1p, a hybrid histidine kinase 3 from Magnaporthe oryzae. Mol Genet Genomics 2021; 296:1135-1145. [PMID: 34196769 DOI: 10.1007/s00438-021-01809-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
Nik1 orthologs or group III hybrid histidine kinases (HHK3) represent a unique cytoplasmic osmosensor that act upstream of HOG/p38 MAPK pathway in fungi. It is an important molecular target for developing new antifungal agents against human pathogens. HHK3 orthologs contain a linear array of alternative HAMP and HAMP-like linker domains (poly-HAMP) in the N-terminal region. HAMP domains are quite common in prokaryotic histidine kinases where it mostly functions as signal transducer mediating conformational changes in the kinase domains. In contrast, poly-HAMP in HHK3 acts as a sensor and signal transducer to regulate histidine kinase activity. However, the mechanistic detail of this is poorly understood. Interestingly, recent studies indicate that the poly-HAMP-mediated regulation of the kinase activity varies among the orthologs. Hik1 is an important HHK3 ortholog from fungus Magnaporthe oryzae. In this paper, we aimed to decipher the role HAMP and HAMP-like linker domains in regulating the activity of Hik1p. We show that Hik1p acts as a bona fide osmosensor and negatively regulates the downstream HOG/p38 MAPK pathway in Saccharomyces cerevisiae. Our data suggest a differential role of the HAMP domains in the functionality of Hik1p. Most interestingly, the deletion of individual domains in poly-HAMP resulted in distinct active forms of Hik1p and thereby indicating that the poly-HAMP domain, instead of acting as on-off switch, regulates the histidine kinase activity by transition through multiple conformational states.
Collapse
|
17
|
Bühring S, Yemelin A, Michna T, Tenzer S, Jacob S. Evidence of a New MoYpd1p Phosphotransferase Isoform in the Multistep Phosphorelay System of Magnaporthe oryzae. J Fungi (Basel) 2021; 7:jof7050389. [PMID: 34063560 PMCID: PMC8156605 DOI: 10.3390/jof7050389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/05/2021] [Accepted: 05/14/2021] [Indexed: 01/01/2023] Open
Abstract
Different external stimuli are perceived by multiple sensor histidine kinases and transmitted by phosphorylation via the phosphotransfer protein Ypd1p in the multistep phosphorelay system of the high osmolarity glycerol signaling pathway of filamentous fungi. How the signal propagation takes place is still not known in detail since multiple sensor histidine kinase genes in most filamentous fungi are coded in the genome, whereas only one gene for Ypd1p exists. That raises the hypothesis that various Ypd1p isoforms are produced from a single gene sequence, perhaps by alternative splicing, facilitating a higher variability in signal transduction. We found that the mRNA of MoYPD1 in the rice blast fungus Magnaporthe oryzae is subjected to an increased structural variation and amplified putative isoforms on a cDNA level. We then generated mutant strains overexpressing these isoforms, purified the products, and present here one previously unknown MoYpd1p isoform on a proteome level. Alternative splicing was found to be a valid molecular mechanism to increase the signal diversity in eukaryotic multistep phosphorelay systems.
Collapse
Affiliation(s)
- Sri Bühring
- Institute for Biotechnology and Drug Research gGmbH, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany; (S.B.); (A.Y.)
| | - Alexander Yemelin
- Institute for Biotechnology and Drug Research gGmbH, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany; (S.B.); (A.Y.)
| | - Thomas Michna
- Institut für Immunologie, Universitätsmedizin der Johannes-Gutenberg Universität Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (T.M.); (S.T.)
| | - Stefan Tenzer
- Institut für Immunologie, Universitätsmedizin der Johannes-Gutenberg Universität Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (T.M.); (S.T.)
| | - Stefan Jacob
- Institute for Biotechnology and Drug Research gGmbH, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany; (S.B.); (A.Y.)
- Correspondence:
| |
Collapse
|
18
|
Bourret RB, Kennedy EN, Foster CA, Sepúlveda VE, Goldman WE. A Radical Reimagining of Fungal Two-Component Regulatory Systems. Trends Microbiol 2021; 29:883-893. [PMID: 33853736 DOI: 10.1016/j.tim.2021.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/17/2022]
Abstract
Bacterial two-component regulatory systems (TCSs) mediate signal transduction by transferring phosphoryl groups between sensor kinase and response regulator proteins, sometimes using intermediary histidine-phosphotransferase (Hpt) domains to form multistep phosphorelays. Because (i) almost all known fungal sensor kinases exhibit a domain architecture characteristic of bacterial TCS phosphorelays, (ii) all known fungal Hpts are stand-alone proteins suited to shuttle between cytoplasm and nucleus, and (iii) the best-characterized fungal TCS is a canonical phosphorelay, it is widely assumed that most or all fungal TCSs function via phosphorelays. However, fungi generally encode more sensor kinases than Hpts or response regulators, leading to a disparity between putative phosphorelay inputs and outputs. The simplest resolution of this paradox is to hypothesize that most fungal sensor kinases do not participate in phosphorelays. Reimagining how fungal TCSs might function leads to multiple testable predictions.
Collapse
Affiliation(s)
- Robert B Bourret
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC 27599-7290, USA.
| | - Emily N Kennedy
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | - Clay A Foster
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | - Victoria E Sepúlveda
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | - William E Goldman
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| |
Collapse
|
19
|
Incel A, Arribas Díez I, Wierzbicka C, Gajoch K, Jensen ON, Sellergren B. Selective Enrichment of Histidine Phosphorylated Peptides Using Molecularly Imprinted Polymers. Anal Chem 2021; 93:3857-3866. [PMID: 33591162 PMCID: PMC8023515 DOI: 10.1021/acs.analchem.0c04474] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Protein histidine
phosphorylation
(pHis) is involved in molecular signaling networks in bacteria, fungi,
plants, and higher eukaryotes including mammals and is implicated
in human diseases such as cancer. Detailed investigations of the pHis
modification are hampered due to its acid-labile nature and consequent
lack of tools to study this post-translational modification (PTM).
We here demonstrate three molecularly imprinted polymer (MIP)-based
reagents, MIP1–MIP3, for enrichment of pHis peptides and subsequent
characterization by chromatography and mass spectrometry (LC–MS).
The combination of MIP1 and β-elimination provided some selectivity
for improved detection of pHis peptides. MIP2 was amenable to larger
pHis peptides, although with poor selectivity. Microsphere-based MIP3
exhibited improved selectivity and was amenable to enrichment and
detection by LC–MS of pHis peptides in tryptic digests of protein
mixtures. These MIP protocols do not involve any acidic solvents during
sample preparation and enrichment, thus preserving the pHis modification.
The presented proof-of-concept results will lead to new protocols
for highly selective enrichment of labile protein phosphorylations
using molecularly imprinted materials.
Collapse
Affiliation(s)
- Anıl Incel
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden
| | - Ignacio Arribas Díez
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Celina Wierzbicka
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden
| | - Katarzyna Gajoch
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden
| | - Ole N Jensen
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Börje Sellergren
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden
| |
Collapse
|
20
|
Stępień Ł, Lalak-Kańczugowska J. Signaling pathways involved in virulence and stress response of plant-pathogenic Fusarium species. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2020.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Sánchez-Arreguin JA, Ruiz-Herrera J, Mares-Rodriguez FDJ, León-Ramírez CG, Sánchez-Segura L, Zapata-Morín PA, Coronado-Gallegos J, Aréchiga-Carvajal ET. Acid pH Strategy Adaptation through NRG1 in Ustilago maydis. J Fungi (Basel) 2021; 7:91. [PMID: 33525315 PMCID: PMC7912220 DOI: 10.3390/jof7020091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022] Open
Abstract
The role of the Ustilago maydis putative homolog of the transcriptional repressor ScNRG1, previously described in Saccharomyces cerevisiae, Candida albicans and Cryptococcus neoformans, was analyzed by means of its mutation. In S. cerevisiae this gene regulates a set of stress-responsive genes, and in C. neoformans it is involved in pathogenesis. It was observed that the U. maydisNRG1 gene regulates several aspects of the cell response to acid pH, such as the production of mannosyl-erythritol lipids, inhibition of the expression of the siderophore cluster genes, filamentous growth, virulence and oxidative stress. A comparison of the gene expression pattern of the wild type strain versus the nrg1 mutant strain of the fungus, through RNA Seq analyses, showed that this transcriptional factor alters the expression of 368 genes when growing at acid pH (205 up-regulated, 163 down-regulated). The most relevant genes affected by NRG1 were those previously reported as the key ones for particular cellular stress responses, such as HOG1 for osmotic stress and RIM101 for alkaline pH. Four of the seven genes included WCO1 codifying PAS domain ( These has been shown as the key structural motif involved in protein-protein interactions of the circadian clock, and it is also a common motif found in signaling proteins, where it functions as a signaling sensor) domains sensors of blue light, two of the three previously reported to encode opsins, one vacuolar and non-pH-responsive, and another one whose role in the acid pH response was already known. It appears that all these light-reactive cell components are possibly involved in membrane potential equilibrium and as virulence sensors. Among previously described specific functions of this transcriptional regulator, it was found to be involved in glucose repression, metabolic adaptation to adverse conditions, cellular transport, cell rescue, defense and interaction with an acidic pH environment.
Collapse
Affiliation(s)
- José Alejandro Sánchez-Arreguin
- Laboratorio de Micología y Fitopatología, Unidad de Manipulación Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451 San Nicolás de los Garza, Nuevo León, Mexico
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6, Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - F de Jesus Mares-Rodriguez
- Laboratorio de Micología y Fitopatología, Unidad de Manipulación Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451 San Nicolás de los Garza, Nuevo León, Mexico
| | - Claudia Geraldine León-Ramírez
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6, Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Lino Sánchez-Segura
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6, Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Patricio Adrián Zapata-Morín
- Laboratorio de Micología y Fitopatología, Unidad de Manipulación Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451 San Nicolás de los Garza, Nuevo León, Mexico
| | - Jordan Coronado-Gallegos
- Laboratorio de Micología y Fitopatología, Unidad de Manipulación Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451 San Nicolás de los Garza, Nuevo León, Mexico
| | - Elva Teresa Aréchiga-Carvajal
- Laboratorio de Micología y Fitopatología, Unidad de Manipulación Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451 San Nicolás de los Garza, Nuevo León, Mexico
| |
Collapse
|
22
|
Pezzotti G, Fujita Y, Boschetto F, Zhu W, Marin E, Vandelle E, McEntire BJ, Bal SB, Giarola M, Makimura K, Polverari A. Activity and Mechanism of Action of the Bioceramic Silicon Nitride as an Environmentally Friendly Alternative for the Control of the Grapevine Downy Mildew Pathogen Plasmopara viticola. Front Microbiol 2020; 11:610211. [PMID: 33381101 PMCID: PMC7767917 DOI: 10.3389/fmicb.2020.610211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/11/2020] [Indexed: 02/03/2023] Open
Abstract
Downy mildew of grapevine, caused by Plasmopara viticola (Berk. and Curt.) Berl. and de Toni, is one of the most devastating diseases of grapevine, severely affecting grape and wine production and quality worldwide. Infections are usually controlled by the intensive application of synthetic fungicides or by copper-based products in organic farming, rising problems for soil contamination and adverse impacts on environment and human health. While strict regulations attempt to minimize their harmful consequences, the situation calls for the development of alternative fungicidal strategies. This study presents the unprecedented case of a bioceramic, silicon nitride, with antimicrobial properties against P. viticola, but without adverse effects on human cells and environment, opening the way to the possible extension of silicon nitride applications in agriculture. Raman spectroscopic assessments of treated sporangia in conjunction with microscopic observations mechanistically showed that the nitrogen-chemistry of the bioceramic surface affects pathogen's biochemical components and cell viability, thus presenting a high potential for host protection from P. viticola infections.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Orthopedic Surgery, Tokyo Medical University, Tokyo, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - Yuki Fujita
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
| | - Francesco Boschetto
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Elodie Vandelle
- Laboratory of Phytopathology, Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Sonny B. Bal
- SINTX Technologies Corporation, Salt Lake City, UT, United States
| | - Marco Giarola
- Raman Laboratory, Centro Piattaforme Tecnologiche, University of Verona, Verona, Italy
| | - Koichi Makimura
- Medical Mycology, Graduate School of Medicine, Teikyo University, Tokyo, Japan
| | - Annalisa Polverari
- Laboratory of Phytopathology, Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
23
|
Cytokinin and Ethylene Cell Signaling Pathways from Prokaryotes to Eukaryotes. Cells 2020; 9:cells9112526. [PMID: 33238457 PMCID: PMC7700396 DOI: 10.3390/cells9112526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
Cytokinins (CKs) and ethylene (ET) are among the most ancient organic chemicals on Earth. A wide range of organisms including plants, algae, fungi, amoebae, and bacteria use these substances as signaling molecules to regulate cellular processes. Because of their ancestral origin and ubiquitous occurrence, CKs and ET are also considered to be ideal molecules for inter-kingdom communication. Their signal transduction pathways were first historically deciphered in plants and are related to the two-component systems, using histidine kinases as primary sensors. Paradoxically, although CKs and ET serve as signaling molecules in different kingdoms, it has been supposed for a long time that the canonical CK and ET signaling pathways are restricted to terrestrial plants. These considerations have now been called into question following the identification over recent years of genes encoding CK and ET receptor homologs in many other lineages within the tree of life. These advances shed new light on the dissemination and evolution of these hormones as both intra- and inter-specific communication molecules in prokaryotic and eukaryotic organisms.
Collapse
|
24
|
Böhmer I, Spadinger A, Ebel F. Functional comparison of the group III hybrid histidine kinases TcsC of Aspergillus fumigatus and NikA of Aspergillus nidulans. Med Mycol 2020; 58:362-371. [PMID: 31254343 DOI: 10.1093/mmy/myz069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/14/2019] [Accepted: 06/04/2019] [Indexed: 11/13/2022] Open
Abstract
In filamentous fungi, group III hybrid histidine kinases (HHKs) are major and nonredundant sensing proteins of the high osmolarity glycerol pathway. In this study, we have compared the biological functions of the two homologous group III HHKs TcsC of Aspergillus fumigatus and NikA of A. nidulans. As expected from previous studies, the corresponding mutants are severely impaired in their ability to adapt to hyperosmotic stress and are both resistant to the antifungal agent fludioxonil. However, our data also reveal novel phenotypes and differences between these mutants. Both TcsC and NikA are required for wild-type-like growth on Czapek-Dox medium and a normal resistance to certain oxidative stressors, whereas an increased resistance to the cell wall disturbing agents Congo red and Calcofluor white was found for the ΔtcsC but not for the ΔnikA mutant. With respect to the cell wall reorganizations that are triggered by fludioxonil in a TcsC/NikA-dependent manner, we observed similarities but also striking differences. Strains from seven Aspergillus species, including A. fumigatus and A. nidulans incorporated more chitin into their cell walls in response to fludioxonil. In contrast, fludioxonil treatment resulted in a shedding of surface accessible galactomannan and β-1,3-glucan in all Aspergillus strains tested except A. nidulans. Hence, the fludioxonil-induced activation of NikA results in a distinct and apparently A. nidulans-specific pattern of cell wall reorganizations that is not due to NikA itself, but its integration into the A. nidulans signaling network.
Collapse
Affiliation(s)
- Isabella Böhmer
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University, Munich, Germany
| | - Anja Spadinger
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University, Munich, Germany
| | - Frank Ebel
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
25
|
Sarmiento-Villamil JL, García-Pedrajas NE, Cañizares MC, García-Pedrajas MD. Molecular Mechanisms Controlling the Disease Cycle in the Vascular Pathogen Verticillium dahliae Characterized Through Forward Genetics and Transcriptomics. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:825-841. [PMID: 32154756 DOI: 10.1094/mpmi-08-19-0228-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The soil-borne pathogen Verticillium dahliae has a worldwide distribution and a plethora of hosts of agronomic value. Molecular analysis of virulence processes can identify targets for disease control. In this work, we compared the global gene transcription profile of random T-DNA insertion mutant strain D-10-8F, which exhibits reduced virulence and alterations in microsclerotium formation and polar growth, with that of the wild-type strain. Three genes identified as differentially expressed were selected for functional characterization. To produce deletion mutants, we developed an updated version of one-step construction of Agrobacterium-recombination-ready plasmids (OSCAR) that included the negative selection marker HSVtk (herpes simplex virus thymidine kinase gene) to prevent ectopic integration of the deletion constructs. Deletion of VdRGS1 (VDAG_00683), encoding a regulator of G protein signaling (RGS) protein and highly upregulated in the wild type versus D-10-8F, resulted in phenotypic alterations in development and virulence that were indistinguishable from those of the random T-DNA insertion mutant. In contrast, deletion of the other two genes selected, vrg1 (VDAG_07039) and vvs1 (VDAG_01858), showed that they do not play major roles in morphogenesis or virulence in V. dahliae. Taken together the results presented here on the transcriptomic analysis and phenotypic characterization of D-10-8F and ∆VdRGS1 strains provide evidence that variations in G protein signaling control the progression of the disease cycle in V. dahliae. We propose that G protein-mediated signals induce the expression of multiple virulence factors during biotrophic growth, whereas massive production of microsclerotia at late stages of infection requires repression of G protein signaling via upregulation of VdRGS1 activity.
Collapse
Affiliation(s)
- Jorge L Sarmiento-Villamil
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"- Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", 29750 Algarrobo-Costa, Málaga, Spain
- Centre d'étude de la forêt (CEF) and Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Québec QC G1V 0A6, Canada
| | - Nicolás E García-Pedrajas
- Department of Computing and Numerical Analysis, C2 Building 3rd Floor, Campus Universitario de Rabanales, 14071 Córdoba, Spain
| | - M Carmen Cañizares
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"- Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", 29750 Algarrobo-Costa, Málaga, Spain
| | - María D García-Pedrajas
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"- Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", 29750 Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
26
|
Wang FF, Qian W. The roles of histidine kinases in sensing host plant and cell-cell communication signal in a phytopathogenic bacterium. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180311. [PMID: 30967026 DOI: 10.1098/rstb.2018.0311] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
It has long been known that phytopathogenic bacteria react to plant-specific stimuli or environmental factors. However, how bacterial cells sense these environmental cues remains incompletely studied. Recently, three kinds of histidine kinases (HKs) were identified as receptors to perceive plant-associated or quorum-sensing signals. Among these kinases, HK VgrS detects iron depletion by binding to ferric iron via an ExxE motif, RpfC binds diffusible signal factor (DSF) by its N-terminal peptide and activates its autokinase activity through relaxation of autoinhibition, and PcrK specifically senses plant hormone-cytokinin and elicits bacterial responses to oxidative stress. These HKs are critical sensors that regulate the virulence of a Gram-negative bacterium, Xanthomonas campestris pv. campestris. Research progress on the signal perception of phytopathogenic bacterial HKs suggests that inter-kingdom signalling between host plants and pathogens controls pathogenesis and can be used as a potential molecular target to protect plants from bacterial diseases. This article is part of the theme issue 'Biotic signalling sheds light on smart pest management'.
Collapse
Affiliation(s)
- Fang-Fang Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China
| | - Wei Qian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China
| |
Collapse
|
27
|
Abstract
Signal transduction systems configured around a core phosphotransfer step between a histidine kinase and a cognate response regulator protein occur in organisms from all domains of life. These systems, termed two-component systems, constitute the majority of multi-component signaling pathways in Bacteria but are less prevalent in Archaea and Eukarya. The core signaling domains are modular, allowing versatility in configuration of components into single-step phosphotransfer and multi-step phosphorelay pathways, the former being predominant in bacteria and the latter in eukaryotes. Two-component systems regulate key cellular regulatory processes that provide adaptive responses to environmental stimuli and are of interest for the development of antimicrobial therapeutics, biotechnology applications, and biosensor engineering. In bacteria, two-component systems have been found to mediate responses to an extremely broad array of extracellular and intracellular chemical and physical stimuli, whereas in archaea and eukaryotes, the use of two-component systems is more limited. This review summarizes recent advances in exploring the repertoire of sensor histidine kinases in the Archaea and Eukarya domains of life.
Collapse
Affiliation(s)
- Nicolas Papon
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Angers, France
| | - Ann M Stock
- Department of Biochemistry and Molecular Biology, Center for Advanced Biotechnology and Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| |
Collapse
|
28
|
Shin JH, Gumilang A, Kim MJ, Han JH, Kim KS. A PAS-Containing Histidine Kinase is Required for Conidiation, Appressorium Formation, and Disease Development in the Rice Blast Fungus, Magnaporthe oryzae. MYCOBIOLOGY 2019; 47:473-482. [PMID: 32010469 PMCID: PMC6968698 DOI: 10.1080/12298093.2019.1689037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Rice blast disease, caused by the ascomycete fungus Magnaporthe oryzae, is one of the most important diseases in rice production. PAS (period circadian protein, aryl hydrocarbon receptor nuclear translocator protein, single-minded protein) domains are known to be involved in signal transduction pathways, but their functional roles have not been well studied in fungi. In this study, targeted gene deletion was carried out to investigate the functional roles of the PAS-containing gene MoPAS1 (MGG_02665) in M. oryzae. The deletion mutant ΔMopas1 exhibited easily wettable mycelia, reduced conidiation, and defects in appressorium formation and disease development compared to the wild type and complemented transformant. Exogenous cAMP restored appressorium formation in ΔMopas1, but the shape of the restored appressorium was irregular, indicating that MoPAS1 is involved in sensing the hydrophobic surface. To examine the expression and localization of MoPAS1 in M. oryzae during appressorium development and plant infection, we constructed a MoPAS1:GFP fusion construct. MoPAS1:GFP was observed in conidia and germ tubes at 0 and 2 h post-infection (hpi) on hydrophobic cover slips. By 8 hpi, most of the GFP signal was observed in the appressoria. During invasive growth in host cells, MoPAS1:GFP was found to be fully expressed in not only the appressoria but also invasive hyphae, suggesting that MoPAS may contribute to disease development in host cells. These results expand our knowledge of the roles of PAS-containing regulatory genes in the plant-pathogenic fungus M. oryzae.
Collapse
Affiliation(s)
- Jong-Hwan Shin
- Division of Bio-Resource Sciences and BioHerb Research Institute, Kangwon National University, Chuncheon, Korea
| | - Adiyantara Gumilang
- Division of Bio-Resource Sciences and BioHerb Research Institute, Kangwon National University, Chuncheon, Korea
| | - Moon-Jong Kim
- Division of Bio-Resource Sciences and BioHerb Research Institute, Kangwon National University, Chuncheon, Korea
| | - Joon-Hee Han
- Division of Bio-Resource Sciences and BioHerb Research Institute, Kangwon National University, Chuncheon, Korea
| | - Kyoung Su Kim
- Division of Bio-Resource Sciences and BioHerb Research Institute, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
29
|
Kilani J, Davanture M, Simon A, Zivy M, Fillinger S. Comparative quantitative proteomics of osmotic signal transduction mutants in Botrytis cinerea explain mutant phenotypes and highlight interaction with cAMP and Ca 2+ signalling pathways. J Proteomics 2019; 212:103580. [PMID: 31733416 DOI: 10.1016/j.jprot.2019.103580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/21/2019] [Accepted: 11/09/2019] [Indexed: 12/18/2022]
Abstract
Signal transduction (ST) is essential for rapid adaptive responses to changing environmental conditions. It acts through rapid post-translational modifications of signalling proteins and downstream effectors that regulate the activity and/or subcellular localisation of target proteins, or the expression of downstream genes. We have performed a quantitative, comparative proteomics study of ST mutants in the phytopathogenic fungus Botrytis cinerea during axenic growth under non-stressed conditions to decipher the roles of two kinases of the hyper-osmolarity pathway in B. cinerea physiology. We studied the mutants of the sensor histidine kinase Bos1 and of the MAP kinase Sak1. Label-free shotgun proteomics detected 2425 proteins, 628 differentially abundant between mutants and wild-type, 270 common to both mutants, indicating independent and shared regulatory functions for both kinases. Gene ontology analysis showed significant changes in functional categories that may explain in vitro growth and virulence defects of both mutants (secondary metabolism enzymes, lytic enzymes, proteins linked to osmotic, oxidative and cell wall stress). The proteome data also highlight a new link between Sak1 MAPK, cAMP and Ca2+ signalling. This study reveals the potential of proteomic analyses of signal transduction mutants to decipher their biological functions. TEXT-VULGARISATION: The fungus Botrytis cinerea is responsible for grey mold disease of hundreds of plant species. During infection, the fungus has to face important changes of its environment. Adaptation to these changing environmental conditions involves proteins of such called signal transduction pathways that regulate the production, activity or localisation of cellular components, mainly proteins. While the components of such signal transduction pathways are well known, their role globally understood, the precise impact on protein production remains unknown. In this study we have analysed and compared the global protein content of two Botrytis cinerea signal transduction mutants - both avirulent - to the pathogenic parental strain. The data of 628 differential proteins between mutants and wild-type, showed significant changes in proteins related to plant infection (secondary metabolism enzymes, lytic enzymes, proteins linked to osmotic, oxidative and cell wall stress) that may explain the virulence defects of both mutants. Moreover, we observed intracellular accumulation of secreted proteins in one of the mutants suggesting a potential secretion defect.
Collapse
Affiliation(s)
- Jaafar Kilani
- UMR BIOGER, INRA, AgroParisTech, Université Paris Saclay, Thiverval-Grignon, France; Univ. Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Marlène Davanture
- PAPPSO, GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Adeline Simon
- UMR BIOGER, INRA, AgroParisTech, Université Paris Saclay, Thiverval-Grignon, France
| | - Michel Zivy
- PAPPSO, GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Sabine Fillinger
- UMR BIOGER, INRA, AgroParisTech, Université Paris Saclay, Thiverval-Grignon, France.
| |
Collapse
|
30
|
Comparative genomics reveals the origin of fungal hyphae and multicellularity. Nat Commun 2019; 10:4080. [PMID: 31501435 PMCID: PMC6733946 DOI: 10.1038/s41467-019-12085-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 08/20/2019] [Indexed: 02/01/2023] Open
Abstract
Hyphae represent a hallmark structure of multicellular fungi. The evolutionary origins of hyphae and of the underlying genes are, however, hardly known. By systematically analyzing 72 complete genomes, we here show that hyphae evolved early in fungal evolution probably via diverse genetic changes, including co-option and exaptation of ancient eukaryotic (e.g. phagocytosis-related) genes, the origin of new gene families, gene duplications and alterations of gene structure, among others. Contrary to most multicellular lineages, the origin of filamentous fungi did not correlate with expansions of kinases, receptors or adhesive proteins. Co-option was probably the dominant mechanism for recruiting genes for hypha morphogenesis, while gene duplication was apparently less prevalent, except in transcriptional regulators and cell wall - related genes. We identified 414 novel gene families that show correlated evolution with hyphae and that may have contributed to its evolution. Our results suggest that hyphae represent a unique multicellular organization that evolved by limited fungal-specific innovations and gene duplication but pervasive co-option and modification of ancient eukaryotic functions.
Collapse
|
31
|
Kabbara S, Bidon B, Kilani J, Dugé de Bernonville T, Clastre M, Courdavault V, Cock JM, Papon N. Megaviruses: An involvement in phytohormone receptor gene transfer in brown algae? Gene 2019; 704:149-151. [PMID: 31009683 DOI: 10.1016/j.gene.2019.04.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/18/2019] [Indexed: 01/27/2023]
Affiliation(s)
- Samar Kabbara
- Groupe d'Etude des Interactions Hôte-Pathogène, GEIHP, EA3142, Univ Angers, SFR 4208 ICAT, Angers, France
| | - Baptiste Bidon
- Groupe d'Etude des Interactions Hôte-Pathogène, GEIHP, EA3142, Univ Angers, SFR 4208 ICAT, Angers, France
| | - Jaafar Kilani
- Groupe d'Etude des Interactions Hôte-Pathogène, GEIHP, EA3142, Univ Angers, SFR 4208 ICAT, Angers, France
| | | | - Marc Clastre
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France
| | - J Mark Cock
- Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, UPMC Université Paris 06, CNRS, Roscoff, France
| | - Nicolas Papon
- Groupe d'Etude des Interactions Hôte-Pathogène, GEIHP, EA3142, Univ Angers, SFR 4208 ICAT, Angers, France.
| |
Collapse
|
32
|
Rutherford JC, Bahn YS, van den Berg B, Heitman J, Xue C. Nutrient and Stress Sensing in Pathogenic Yeasts. Front Microbiol 2019; 10:442. [PMID: 30930866 PMCID: PMC6423903 DOI: 10.3389/fmicb.2019.00442] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/20/2019] [Indexed: 12/23/2022] Open
Abstract
More than 1.5 million fungal species are estimated to live in vastly different environmental niches. Despite each unique host environment, fungal cells sense certain fundamentally conserved elements, such as nutrients, pheromones and stress, for adaptation to their niches. Sensing these extracellular signals is critical for pathogens to adapt to the hostile host environment and cause disease. Hence, dissecting the complex extracellular signal-sensing mechanisms that aid in this is pivotal and may facilitate the development of new therapeutic approaches to control fungal infections. In this review, we summarize the current knowledge on how two important pathogenic yeasts, Candida albicans and Cryptococcus neoformans, sense nutrient availability, such as carbon sources, amino acids, and ammonium, and different stress signals to regulate their morphogenesis and pathogenicity in comparison with the non-pathogenic model yeast Saccharomyces cerevisiae. The molecular interactions between extracellular signals and their respective sensory systems are described in detail. The potential implication of analyzing nutrient and stress-sensing systems in antifungal drug development is also discussed.
Collapse
Affiliation(s)
- Julian C Rutherford
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Yong-Sun Bahn
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Bert van den Berg
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Chaoyang Xue
- Public Health Research Institute, Rutgers University, Newark, NJ, United States.,Department of Molecular Genetics, Biochemistry and Microbiology, Rutgers University, Newark, NJ, United States
| |
Collapse
|
33
|
Ren W, Liu N, Yang Y, Yang Q, Chen C, Gao Q. The Sensor Proteins BcSho1 and BcSln1 Are Involved in, Though Not Essential to, Vegetative Differentiation, Pathogenicity and Osmotic Stress Tolerance in Botrytis cinerea. Front Microbiol 2019; 10:328. [PMID: 30858841 PMCID: PMC6397835 DOI: 10.3389/fmicb.2019.00328] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 02/08/2019] [Indexed: 01/18/2023] Open
Abstract
High-osmolarity glycerol (HOG) signaling pathway belongs to mitogen-activated protein kinase (MAPK) cascades that regulate responses of organism to diverse extracellular stimuli. The membrane spanning proteins Sho1 and Sln1 serve as biosensors of HOG pathway in Saccharomyces cerevisiae. In this study, we investigated the biological functions of BcSHO1 and BcSLN1 in the gray mold fungus Botrytis cinerea. Target gene deletion demonstrated that both BcSHO1 and BcSLN1 are important for mycelial growth, conidiation and sclerotial formation. The BcSHO1 and BcSLN1 double deletion mutant ΔBcSln1-Sho1 produced much more, but smaller sclerotia than ΔBcSho1 and the wild-type (WT) strain, while ΔBcSln1 failed to develop sclerotia on all tested media, instead, formed a large number of conidia. Infection tests revealed that the virulence of ΔBcSln1-Sho1 decreased significantly, however, ΔBcSho1 or ΔBcSln1 showed no difference with the WT strain. In addition, ΔBcSln1-Sho1 exhibited resistance to osmotic stress by negatively regulating the phosphorylation of BcSak1 (yeast Hog1). All the phenotypic defects of mutants were recovered by target gene complementation. These results suggest that BcSHO1 and BcSLN1 share some functional redundancy in the regulation of fungal development, pathogenesis and osmotic stress response in B. cinerea.
Collapse
Affiliation(s)
- Weichao Ren
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Na Liu
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yalan Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qianqian Yang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Changjun Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qingli Gao
- Plant Protection Station of Pizhou City, Xuzhou, China
| |
Collapse
|
34
|
Kabbara S, Hérivaux A, Dugé de Bernonville T, Courdavault V, Clastre M, Gastebois A, Osman M, Hamze M, Cock JM, Schaap P, Papon N. Diversity and Evolution of Sensor Histidine Kinases in Eukaryotes. Genome Biol Evol 2019; 11:86-108. [PMID: 30252070 PMCID: PMC6324907 DOI: 10.1093/gbe/evy213] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2018] [Indexed: 12/20/2022] Open
Abstract
Histidine kinases (HKs) are primary sensor proteins that act in cell signaling pathways generically referred to as "two-component systems" (TCSs). TCSs are among the most widely distributed transduction systems used by both prokaryotic and eukaryotic organisms to detect and respond to a broad range of environmental cues. The structure and distribution of HK proteins are now well documented in prokaryotes, but information is still fragmentary for eukaryotes. Here, we have taken advantage of recent genomic resources to explore the structural diversity and the phylogenetic distribution of HKs in the prominent eukaryotic supergroups. Searches of the genomes of 67 eukaryotic species spread evenly throughout the phylogenetic tree of life identified 748 predicted HK proteins. Independent phylogenetic analyses of predicted HK proteins were carried out for each of the major eukaryotic supergroups. This allowed most of the compiled sequences to be categorized into previously described HK groups. Beyond the phylogenetic analysis of eukaryotic HKs, this study revealed some interesting findings: 1) characterization of some previously undescribed eukaryotic HK groups with predicted functions putatively related to physiological traits; 2) discovery of HK groups that were previously believed to be restricted to a single kingdom in additional supergroups, and 3) indications that some evolutionary paths have led to the appearance, transfer, duplication, and loss of HK genes in some phylogenetic lineages. This study provides an unprecedented overview of the structure and distribution of HKs in the Eukaryota and represents a first step toward deciphering the evolution of TCS signaling in living organisms.
Collapse
Affiliation(s)
- Samar Kabbara
- Groupe d’Etude des Interactions Hôte-Pathogène, GEIHP, EA3142, Université d’Angers, SFR 4208 ICAT, France
| | - Anaïs Hérivaux
- Groupe d’Etude des Interactions Hôte-Pathogène, GEIHP, EA3142, Université d’Angers, SFR 4208 ICAT, France
| | | | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université François Rabelais de Tours, France
| | - Marc Clastre
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université François Rabelais de Tours, France
| | - Amandine Gastebois
- Groupe d’Etude des Interactions Hôte-Pathogène, GEIHP, EA3142, Université d’Angers, SFR 4208 ICAT, France
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - J Mark Cock
- Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, UPMC Université Paris 06, CNRS, Roscoff, France
| | - Pauline Schaap
- School of Life Sciences, University of Dundee, United Kingdom
| | - Nicolas Papon
- Groupe d’Etude des Interactions Hôte-Pathogène, GEIHP, EA3142, Université d’Angers, SFR 4208 ICAT, France
| |
Collapse
|
35
|
Bicalho Nogueira G, Dos Santos LV, de Queiroz CB, Ribeiro Corrêa TL, Pedrozo Menicucci R, Soares Bazzolli DM, de Araújo EF, de Queiroz MV. The histidine kinase slnCl1 of Colletotrichum lindemuthianum as a pathogenicity factor against Phaseolus vulgaris L. Microbiol Res 2018; 219:110-122. [PMID: 30642461 DOI: 10.1016/j.micres.2018.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 10/28/2022]
Abstract
Colletotrichum lindemuthianum, the causal agent of anthracnose, is responsible for significant damage in the common bean (Phaseolus vulgaris L.). Unraveling the genetic mechanisms involved in the plant/pathogen interaction is a powerful approach for devising efficient methods to control this disease. In the present study, we employed the Restriction Enzyme-Mediated Integration (REMI) methodology to identify the gene slnCl1, encoding a histidine kinase protein, as involved in pathogenicity. The mutant strain, MutCl1, generated by REMI, showed an insertion in the slnCl1 gene, deficiency of the production and melanization of appressoria, as well as the absence of pathogenicity on bean leaves when compared with the wild-type strain. The slnCl1 gene encodes a histidine kinase class IV called SlnCl1 showing identity of 97% and 83% with histidine kinases from Colletotrichum orbiculare and Colletotrichum gloesporioides, respectively. RNA interference was used for silencing the histidine kinase gene and confirm slnCl1 as a pathogenicity factor. Furthermore, we identified four major genes involved in the RNA interference-mediated gene silencing in Colletotrichum spp. and demonstrated the functionality of this process in C. lindemuthianum. Silencing of the EGFP reporter gene and slnCl1 were demonstrated using qPCR. This work reports for the first time the isolation and characterization of a HK in C. lindemuthianum and the occurrence of gene silencing mediated by RNA interference in this organism, demonstrating its potential use in the functional characterization of pathogenicity genes.
Collapse
Affiliation(s)
- Guilherme Bicalho Nogueira
- Laboratório de Genética Molecular de Fungos (LGMF)/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, CEP: 36570-900, Brazil
| | - Leandro Vieira Dos Santos
- Laboratório de Genética Molecular de Fungos (LGMF)/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, CEP: 36570-900, Brazil; Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, São Paulo, Brazil
| | - Casley Borges de Queiroz
- Laboratório de Genética Molecular de Fungos (LGMF)/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, CEP: 36570-900, Brazil
| | - Thamy Lívia Ribeiro Corrêa
- Laboratório de Genética Molecular de Fungos (LGMF)/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, CEP: 36570-900, Brazil; Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, São Paulo, Brazil
| | - Renato Pedrozo Menicucci
- Laboratório de Genética Molecular de Fungos (LGMF)/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, CEP: 36570-900, Brazil
| | - Denise Mara Soares Bazzolli
- Laboratório de Genética Molecular de Fungos (LGMF)/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, CEP: 36570-900, Brazil
| | - Elza Fernandes de Araújo
- Laboratório de Genética Molecular de Fungos (LGMF)/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, CEP: 36570-900, Brazil
| | - Marisa Vieira de Queiroz
- Laboratório de Genética Molecular de Fungos (LGMF)/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, CEP: 36570-900, Brazil.
| |
Collapse
|
36
|
Wu T, Ye Z, Guo L, Yang X, Lin J. De novo transcriptome sequencing of Flammulina velutipes uncover candidate genes associated with cold-induced fruiting. J Basic Microbiol 2018; 58:698-703. [PMID: 29873407 DOI: 10.1002/jobm.201800037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/05/2018] [Accepted: 05/12/2018] [Indexed: 11/05/2022]
Abstract
To understand molecular mechanism of cold-induced fruiting in Flammulina velutipes, which is one of most popular edible fungi in east Asia, de novo assembly of the F. velutipes transcriptome was carried out. There were 26,888,494 and 26,275,146 clean reads obtained from mycelium and primordia of F. velutipes, respectively. A total of 20,157 unigenes were de novo assembled and 15,058 of them were annotated. Moreover, 7935 unigenes were differentially expressed between mycelium and primordia, 4025 of them were up-regulated and 3910 were down-regulated. GO and KEGG pathway analysis of the differentially expressed unigenes indicated that functional groups associated with two-component signaling pathway, calcium signaling, mitogen-actived protein kinase pathway, molecular chaperones, cell wall and membrane system, play an important role in cold-induced fruiting of F. velutipes. In this work 643 EST-SSRs were identified in 20,157 unigenes and 1560 EST-SSRs primers pairs were designed. Moreover, 5548 and 5955 SNPs were detected in mycelium and primordia, respectively. Consequently, results of this work can serve as a valuable resource for functional genomics study of cold-induced fruiting in F. velutipes.
Collapse
Affiliation(s)
- Tuheng Wu
- College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, P.R. China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, P.R. China
| | - Zhiwei Ye
- College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, P.R. China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, P.R. China
| | - Liqiong Guo
- College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, P.R. China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, P.R. China
| | - Xueqin Yang
- College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, P.R. China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, P.R. China
| | - Junfang Lin
- College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, P.R. China.,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, P.R. China
| |
Collapse
|
37
|
Progressive loss of hybrid histidine kinase genes during the evolution of budding yeasts (Saccharomycotina). Curr Genet 2017; 64:841-851. [DOI: 10.1007/s00294-017-0797-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/29/2017] [Accepted: 12/11/2017] [Indexed: 11/26/2022]
|
38
|
Carapia-Minero N, Castelán-Vega JA, Pérez NO, Rodríguez-Tovar AV. The phosphorelay signal transduction system in Candida glabrata: an in silico analysis. J Mol Model 2017; 24:13. [PMID: 29248994 DOI: 10.1007/s00894-017-3545-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/24/2017] [Indexed: 01/18/2023]
Abstract
Signaling systems allow microorganisms to sense and respond to different stimuli through the modification of gene expression. The phosphorelay signal transduction system in eukaryotes involves three proteins: a sensor protein, an intermediate protein and a response regulator, and requires the transfer of a phosphate group between two histidine-aspartic residues. The SLN1-YPD1-SSK1 system enables yeast to adapt to hyperosmotic stress through the activation of the HOG1-MAPK pathway. The genetic sequences available from Saccharomyces cerevisiae were used to identify orthologous sequences in Candida glabrata, and putative genes were identified and characterized by in silico assays. An interactome analysis was carried out with the complete genome of C. glabrata and the putative proteins of the phosphorelay signal transduction system. Next, we modeled the complex formed between the sensor protein CgSln1p and the intermediate CgYpd1p. Finally, phosphate transfer was examined by a molecular dynamic assay. Our in silico analysis showed that the putative proteins of the C. glabrata phosphorelay signal transduction system present the functional domains of histidine kinase, a downstream response regulator protein, and an intermediate histidine phosphotransfer protein. All the sequences are phylogenetically more related to S. cerevisiae than to C. albicans. The interactome suggests that the C. glabrata phosphorelay signal transduction system interacts with different proteins that regulate cell wall biosynthesis and responds to oxidative and osmotic stress the same way as similar systems in S. cerevisiae and C. albicans. Molecular dynamics simulations showed complex formation between the response regulator domain of histidine kinase CgSln1 and intermediate protein CgYpd1 in the presence of a phosphate group and interactions between the aspartic residue and the histidine residue. Overall, our research showed that C. glabrata harbors a functional SLN1-YPD1-SSK1 phosphorelay system.
Collapse
Affiliation(s)
- Natalee Carapia-Minero
- Laboratorio de Micología Médica, Depto. de Microbiología, Escuela Nacional de Ciencias Biológicas (ENCB) , Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, CP 11340, Ciudad de México, Mexico
| | - Juan Arturo Castelán-Vega
- Laboratorio de Producción y Control de Biológicos ENCB, Instituto Politécnico Nacional, Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, CP 11340, Ciudad de México, Mexico
| | - Néstor Octavio Pérez
- Unidad de investigación y Desarrollo, Probiomed, SA de CV, Cruce de Carreteras Acatzingo-Zumpahuacan S/N, CP 52400, Tenancingo, Edo de México, Mexico.
| | - Aída Verónica Rodríguez-Tovar
- Laboratorio de Micología Médica, Depto. de Microbiología, Escuela Nacional de Ciencias Biológicas (ENCB) , Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, CP 11340, Ciudad de México, Mexico.
| |
Collapse
|
39
|
Huberman LB, Coradetti ST, Glass NL. Network of nutrient-sensing pathways and a conserved kinase cascade integrate osmolarity and carbon sensing in Neurospora crassa. Proc Natl Acad Sci U S A 2017; 114:E8665-E8674. [PMID: 28973881 PMCID: PMC5642704 DOI: 10.1073/pnas.1707713114] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Identifying nutrients available in the environment and utilizing them in the most efficient manner is a challenge common to all organisms. The model filamentous fungus Neurospora crassa is capable of utilizing a variety of carbohydrates, from simple sugars to the complex carbohydrates found in plant cell walls. The zinc binuclear cluster transcription factor CLR-1 is necessary for utilization of cellulose, a major, recalcitrant component of the plant cell wall; however, expression of clr-1 in the absence of an inducer is not sufficient to induce cellulase gene expression. We performed a screen for unidentified actors in the cellulose-response pathway and identified a gene encoding a hypothetical protein (clr-3) that is required for repression of CLR-1 activity in the absence of an inducer. Using clr-3 mutants, we implicated the hyperosmotic-response pathway in the tunable regulation of glycosyl hydrolase production in response to changes in osmolarity. The role of the hyperosmotic-response pathway in nutrient sensing may indicate that cells use osmolarity as a proxy for the presence of free sugar in their environment. These signaling pathways form a nutrient-sensing network that allows Ncrassa cells to tightly regulate gene expression in response to environmental conditions.
Collapse
Affiliation(s)
- Lori B Huberman
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94720
- Energy Biosciences Institute, University of California, Berkeley, CA 94720
| | - Samuel T Coradetti
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94720
- Energy Biosciences Institute, University of California, Berkeley, CA 94720
| | - N Louise Glass
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94720;
- Energy Biosciences Institute, University of California, Berkeley, CA 94720
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
40
|
Multistep phosphorelay in fungi: the enigma of multiple signals and a limited number of signaling pathways. Mycol Prog 2017. [DOI: 10.1007/s11557-017-1342-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
41
|
|
42
|
Basso V, Znaidi S, Lagage V, Cabral V, Schoenherr F, LeibundGut-Landmann S, d'Enfert C, Bachellier-Bassi S. The two-component response regulator Skn7 belongs to a network of transcription factors regulating morphogenesis in Candida albicans and independently limits morphogenesis-induced ROS accumulation. Mol Microbiol 2017; 106:157-182. [PMID: 28752552 DOI: 10.1111/mmi.13758] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2017] [Indexed: 01/01/2023]
Abstract
Skn7 is a conserved fungal heat shock factor-type transcriptional regulator. It participates in maintaining cell wall integrity and regulates the osmotic/oxidative stress response (OSR) in S. cerevisiae, where it is part of a two-component signal transduction system. Here, we comprehensively address the function of Skn7 in the human fungal pathogen Candida albicans. We provide evidence reinforcing functional divergence, with loss of the cell wall/osmotic stress-protective roles and acquisition of the ability to regulate morphogenesis on solid medium. Mapping of the Skn7 transcriptional circuitry, through combination of genome-wide expression and location technologies, pointed to a dual regulatory role encompassing OSR and filamentous growth. Genetic interaction analyses revealed close functional interactions between Skn7 and master regulators of morphogenesis, including Efg1, Cph1 and Ume6. Intracellular biochemical assays revealed that Skn7 is crucial for limiting the accumulation of reactive oxygen species (ROS) in filament-inducing conditions on solid medium. Interestingly, functional domain mapping using site-directed mutagenesis allowed decoupling of Skn7 function in morphogenesis from protection against intracellular ROS. Our work identifies Skn7 as an integral part of the transcriptional circuitry controlling C. albicans filamentous growth and illuminates how C. albicans relies on an evolutionarily-conserved regulator to protect itself from intracellular ROS during morphological development.
Collapse
Affiliation(s)
- Virginia Basso
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, 25 rue du Docteur Roux, Paris, France.,Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, rue du Dr. Roux, Paris, France
| | - Sadri Znaidi
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, 25 rue du Docteur Roux, Paris, France.,Institut Pasteur de Tunis, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, 13 Place Pasteur, Tunis-Belvédère, B.P. 74, 1002, Tunisia.,University of Tunis El Manar, Tunis 1036, Tunisia
| | - Valentine Lagage
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, 25 rue du Docteur Roux, Paris, France
| | - Vitor Cabral
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, 25 rue du Docteur Roux, Paris, France.,Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, rue du Dr. Roux, Paris, France
| | - Franziska Schoenherr
- Institute of Virology, Winterthurerstr. 266a, Zürich, Switzerland.,SUPSI, Laboratorio Microbiologia Applicata, via Mirasole 22a, Bellinzona, Switzerland
| | | | - Christophe d'Enfert
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, 25 rue du Docteur Roux, Paris, France
| | - Sophie Bachellier-Bassi
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, 25 rue du Docteur Roux, Paris, France
| |
Collapse
|
43
|
Hérivaux A, Dugé de Bernonville T, Roux C, Clastre M, Courdavault V, Gastebois A, Bouchara JP, James TY, Latgé JP, Martin F, Papon N. The Identification of Phytohormone Receptor Homologs in Early Diverging Fungi Suggests a Role for Plant Sensing in Land Colonization by Fungi. mBio 2017; 8:e01739-16. [PMID: 28143977 PMCID: PMC5285503 DOI: 10.1128/mbio.01739-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Histidine kinases (HKs) are among the most prominent sensing proteins studied in the kingdom Fungi. Their distribution and biological functions in early diverging fungi (EDF), however, remain elusive. We have taken advantage of recent genomic resources to elucidate whether relationships between the occurrence of specific HKs in some EDF and their respective habitat/lifestyle could be established. This led to the unexpected discovery of fungal HKs that share a high degree of similarity with receptors for plant hormones (ethylene and cytokinin). Importantly, these phytohormone receptor homologs are found not only in EDF that behave as plant root symbionts or endophytes but also in EDF species that colonize decaying plant material. We hypothesize that these particular sensing proteins promoted the interaction of EDF with plants, leading to the conquest of land by these ancestral fungi.
Collapse
Affiliation(s)
- Anaïs Hérivaux
- Université d'Angers, Groupe d'Etude des Interactions Hôte-Pathogène, Angers, France
| | - Thomas Dugé de Bernonville
- Université François-Rabelais de Tours, EA 2106, Biomolécules et Biotechnologies Végétales, Tours, France
| | - Christophe Roux
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, Castanet-Tolosan, France
| | - Marc Clastre
- Université François-Rabelais de Tours, EA 2106, Biomolécules et Biotechnologies Végétales, Tours, France
| | - Vincent Courdavault
- Université François-Rabelais de Tours, EA 2106, Biomolécules et Biotechnologies Végétales, Tours, France
| | - Amandine Gastebois
- Université d'Angers, Groupe d'Etude des Interactions Hôte-Pathogène, Angers, France
| | | | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jean-Paul Latgé
- Institut Pasteur de Paris, Unité des Aspergillus, Paris, France
| | - Francis Martin
- Institut National de la Recherche Agronomique, Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Nancy, France
| | - Nicolas Papon
- Université d'Angers, Groupe d'Etude des Interactions Hôte-Pathogène, Angers, France
| |
Collapse
|
44
|
Kilani J, Fillinger S. Phenylpyrroles: 30 Years, Two Molecules and (Nearly) No Resistance. Front Microbiol 2016; 7:2014. [PMID: 28018333 PMCID: PMC5159414 DOI: 10.3389/fmicb.2016.02014] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/01/2016] [Indexed: 12/30/2022] Open
Abstract
Phenylpyrroles are chemical analogs of the natural antifungal compound pyrrolnitrin. Fenpiclonil, but mainly fludioxonil are registered against multiple fungal crop diseases since over 25 years for seed or foliar treatment. They have severe physiological impacts on the pathogen, including membrane hyperpolarization, changes in carbon metabolism and the accumulation of metabolites leading to hyphal swelling and burst. The selection and characterization of mutants resistant to phenylpyrroles have revealed that these fungicides activate the fungal osmotic signal transduction pathway through their perception by a typical fungal hybrid histidine kinase (HHK). The HHK is prone to point mutations that confer fungicide resistance and affect its sensor domain, composed of tandem repeats of HAMP motifs. Fludioxonil resistant mutants have been selected in many fungal species under laboratory conditions. Generally they present severe impacts on fitness parameters. Since only few cases of field resistance specific to phenylpyrroles have been reported one may suspect that the fitness penalty of phenylpyrrole resistance is the reason for the lack of field resistance.
Collapse
Affiliation(s)
- Jaafar Kilani
- UMR BIOGER, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris SaclayThiverval-Grignon, France
- Université Paris-Sud, Université Paris-SaclayOrsay, France
| | - Sabine Fillinger
- UMR BIOGER, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris SaclayThiverval-Grignon, France
| |
Collapse
|