1
|
Yee WX, Barnes G, Lavender H, Tang CM. Meningococcal factor H-binding protein: implications for disease susceptibility, virulence, and vaccines. Trends Microbiol 2023; 31:805-815. [PMID: 36941192 PMCID: PMC10914675 DOI: 10.1016/j.tim.2023.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/23/2023]
Abstract
Neisseria meningitidis is a human-adapted pathogen that causes meningitis and sepsis worldwide. N. meningitidis factor H-binding protein (fHbp) provides a mechanism for immune evasion by binding human complement factor H (CFH) to protect it from complement-mediated killing. Here, we discuss features of fHbp which enable it to engage human CFH (hCFH), and the regulation of fHbp expression. Studies of host susceptibility and bacterial genome-wide association studies (GWAS) highlight the importance of the interaction between fHbp and CFH and other complement factors, such as CFHR3, on the development of invasive meningococcal disease (IMD). Understanding the basis of fHbp:CFH interactions has also informed the design of next-generation vaccines as fHbp is a protective antigen. Structure-informed refinement of fHbp vaccines will help to combat the threat posed by the meningococcus, and accelerate the elimination of IMD.
Collapse
Affiliation(s)
- Wearn-Xin Yee
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Grace Barnes
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Hayley Lavender
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
2
|
Sharma P, Mondal K, Kumar S, Tamang S, Najar IN, Das S, Thakur N. RNA thermometers in bacteria: Role in thermoregulation. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - GENE REGULATORY MECHANISMS 2022; 1865:194871. [DOI: 10.1016/j.bbagrm.2022.194871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/09/2022] [Accepted: 08/21/2022] [Indexed: 04/09/2023]
|
3
|
RNA thermometer-coordinated assembly of the Yersinia injectisome. J Mol Biol 2022; 434:167667. [PMID: 35667470 DOI: 10.1016/j.jmb.2022.167667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/20/2022] [Accepted: 05/30/2022] [Indexed: 11/21/2022]
Abstract
The type III secretion system (T3SS) is indispensable for successful host cell infection by many Gram-negative pathogens. The molecular syringe delivers effector proteins that suppress the host immune response. Synthesis of T3SS components in Yersinia pseudotuberculosis relies on host body temperature, which induces the RNA thermometer (RNAT)-controlled translation of lcrF coding for a virulence master regulator that activates transcription of the T3SS regulon. The assembly of the secretion machinery follows a strict coordinated succession referred to as outside-in assembly, in which the membrane ring complex and the export apparatus represent the nucleation points. Two components essential for the initial assembly are YscJ and YscT. While YscJ connects the membrane ring complex with the export apparatus in the inner membrane, YscT is required for a functional export apparatus. Previous transcriptome-wide RNA structuromics data suggested the presence of unique intercistronic RNATs upstream of yscJ and yscT. Here, we show by reporter gene fusions that both upstream regions confer translational control. Moreover, we demonstrate the temperature-induced opening of the Shine-Dalgarno region, which facilitates ribosome binding, by in vitro structure probing and toeprinting methods. Rationally designed thermostable RNAT variants of the yscJ and yscT thermometers confirmed their physiological relevance with respect to T3SS assembly and host infection. Since we have shown in a recent study that YopN, the gatekeeper of type III secretion, also is under RNAT control, it appears that the synthesis, assembly and functionality of the Yersinia T3S machinery is coordinated by RNA-based temperature sensors at multiple levels.
Collapse
|
4
|
Borghi S, Antunes A, Haag AF, Spinsanti M, Brignoli T, Ndoni E, Scarlato V, Delany I. Multilayer Regulation of Neisseria meningitidis NHBA at Physiologically Relevant Temperatures. Microorganisms 2022; 10:microorganisms10040834. [PMID: 35456883 PMCID: PMC9031163 DOI: 10.3390/microorganisms10040834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/03/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
Neisseria meningitidis colonizes the nasopharynx of humans, and pathogenic strains can disseminate into the bloodstream, causing septicemia and meningitis. NHBA is a surface-exposed lipoprotein expressed by all N. meningitidis strains in different isoforms. Diverse roles have been reported for NHBA in heparin-mediated serum resistance, biofilm formation, and adherence to host tissues. We determined that temperature controls the expression of NHBA in all strains tested, with increased levels at 30−32 °C compared to 37 °C. Higher NHBA expression at lower temperatures was measurable both at mRNA and protein levels, resulting in higher surface exposure. Detailed molecular analysis indicated that multiple molecular mechanisms are responsible for the thermoregulated NHBA expression. The comparison of mRNA steady-state levels and half-lives at 30 °C and 37 °C demonstrated an increased mRNA stability/translatability at lower temperatures. Protein stability was also impacted, resulting in higher NHBA stability at lower temperatures. Ultimately, increased NHBA expression resulted in higher susceptibility to complement-mediated killing. We propose that NHBA regulation in response to temperature downshift might be physiologically relevant during transmission and the initial step(s) of interaction within the host nasopharynx. Together these data describe the importance of NHBA both as a virulence factor and as a vaccine antigen during neisserial colonization and invasion.
Collapse
Affiliation(s)
- Sara Borghi
- Immune Monitoring Laboratory, NYU Langone Health, 550 First Avenue, New York, NY 10016, USA;
- Department of Pathology, NYU Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA
- GlaxoSmithKline (GSK) Vaccines, 53100 Siena, Italy;
| | - Ana Antunes
- MabDesign, 69007 Lyon, France;
- GlaxoSmithKline (GSK) Vaccines, 53100 Siena, Italy;
| | - Andreas F. Haag
- School of Medicine, University of St Andrews, North-Haugh, St Andrews KY16 9TF, UK;
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
- GlaxoSmithKline (GSK) Vaccines, 53100 Siena, Italy;
| | | | - Tarcisio Brignoli
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TH, UK;
- GlaxoSmithKline (GSK) Vaccines, 53100 Siena, Italy;
| | - Enea Ndoni
- Lonza Group AG, 4057 Basel, Switzerland;
- GlaxoSmithKline (GSK) Vaccines, 53100 Siena, Italy;
| | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy;
| | - Isabel Delany
- GlaxoSmithKline (GSK) Vaccines, 53100 Siena, Italy;
- Correspondence:
| |
Collapse
|
5
|
The emerging role of bacterial regulatory RNAs in disease. Trends Microbiol 2022; 30:959-972. [DOI: 10.1016/j.tim.2022.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 02/02/2023]
|
6
|
Pienkoß S, Javadi S, Chaoprasid P, Nolte T, Twittenhoff C, Dersch P, Narberhaus F. The gatekeeper of Yersinia type III secretion is under RNA thermometer control. PLoS Pathog 2021; 17:e1009650. [PMID: 34767606 PMCID: PMC8612567 DOI: 10.1371/journal.ppat.1009650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/24/2021] [Accepted: 10/27/2021] [Indexed: 01/03/2023] Open
Abstract
Many bacterial pathogens use a type III secretion system (T3SS) as molecular syringe to inject effector proteins into the host cell. In the foodborne pathogen Yersinia pseudotuberculosis, delivery of the secreted effector protein cocktail through the T3SS depends on YopN, a molecular gatekeeper that controls access to the secretion channel from the bacterial cytoplasm. Here, we show that several checkpoints adjust yopN expression to virulence conditions. A dominant cue is the host body temperature. A temperature of 37°C is known to induce the RNA thermometer (RNAT)-dependent synthesis of LcrF, a transcription factor that activates expression of the entire T3SS regulon. Here, we uncovered a second layer of temperature control. We show that another RNAT silences translation of the yopN mRNA at low environmental temperatures. The long and short 5’-untranslated region of both cellular yopN isoforms fold into a similar secondary structure that blocks ribosome binding. The hairpin structure with an internal loop melts at 37°C and thereby permits formation of the translation initiation complex as shown by mutational analysis, in vitro structure probing and toeprinting methods. Importantly, we demonstrate the physiological relevance of the RNAT in the faithful control of type III secretion by using a point-mutated thermostable RNAT variant with a trapped SD sequence. Abrogated YopN production in this strain led to unrestricted effector protein secretion into the medium, bacterial growth arrest and delayed translocation into eukaryotic host cells. Cumulatively, our results show that substrate delivery by the Yersinia T3SS is under hierarchical surveillance of two RNATs. Temperature serves as reliable external cue for pathogenic bacteria to recognize the entry into or exit from a warm-blooded host. At the molecular level, a temperature of 37°C induces various virulence-related processes that manipulate host cell physiology. Here, we demonstrate the temperature-dependent synthesis of the secretion regulator YopN in the foodborne pathogen Yersinia pseudotuberculosis, a close relative of Yersinia pestis. YopN blocks secretion of effector proteins through the type III secretion system unless host cell contact is established. Temperature-specific regulation relies on an RNA structure in the 5’-untranslated region of the yopN mRNA, referred to as RNA thermometer, which allows ribosome binding and thus translation initiation only at an infection-relevant temperature of 37°C. A mutated variant of the thermosensor resulting in a closed conformation prevented synthesis of the molecular gatekeeper YopN and led to permanent secretion and defective translocation of virulence factors into host cells. We suggest that the RNA thermometer plays a critical role in adjusting the optimal cellular concentration of a surveillance factor that maintains the controlled translocation of virulence factors.
Collapse
Affiliation(s)
| | - Soheila Javadi
- Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | - Paweena Chaoprasid
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Thomas Nolte
- Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | - Christian Twittenhoff
- Microbial Biology, Ruhr University Bochum, Bochum, Germany.,Rottendorf Pharma GmbH, Ennigerloh, Germany
| | - Petra Dersch
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | | |
Collapse
|
7
|
Earle SG, Lobanovska M, Lavender H, Tang C, Exley RM, Ramos-Sevillano E, Browning DF, Kostiou V, Harrison OB, Bratcher HB, Varani G, Tang CM, Wilson DJ, Maiden MCJ. Genome-wide association studies reveal the role of polymorphisms affecting factor H binding protein expression in host invasion by Neisseria meningitidis. PLoS Pathog 2021; 17:e1009992. [PMID: 34662348 PMCID: PMC8553145 DOI: 10.1371/journal.ppat.1009992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/28/2021] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
Many invasive bacterial diseases are caused by organisms that are ordinarily harmless components of the human microbiome. Effective interventions against these microbes require an understanding of the processes whereby symbiotic or commensal relationships transition into pathology. Here, we describe bacterial genome-wide association studies (GWAS) of Neisseria meningitidis, a common commensal of the human respiratory tract that is nevertheless a leading cause of meningitis and sepsis. An initial GWAS discovered bacterial genetic variants, including single nucleotide polymorphisms (SNPs), associated with invasive meningococcal disease (IMD) versus carriage in several loci across the meningococcal genome, encoding antigens and other extracellular components, confirming the polygenic nature of the invasive phenotype. In particular, there was a significant peak of association around the fHbp locus, encoding factor H binding protein (fHbp), which promotes bacterial immune evasion of human complement by recruiting complement factor H (CFH) to the meningococcal surface. The association around fHbp with IMD was confirmed by a validation GWAS, and we found that the SNPs identified in the validation affected the 5' region of fHbp mRNA, altering secondary RNA structures, thereby increasing fHbp expression and enhancing bacterial escape from complement-mediated killing. This finding is consistent with the known link between complement deficiencies and CFH variation with human susceptibility to IMD. These observations demonstrate the importance of human and bacterial genetic variation across the fHbp:CFH interface in determining IMD susceptibility, the transition from carriage to disease.
Collapse
Affiliation(s)
- Sarah G. Earle
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
| | - Mariya Lobanovska
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Hayley Lavender
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Changyan Tang
- Department of Chemistry, University of Washington, Seattle, Washington United States of America
| | - Rachel M. Exley
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | - Douglas F. Browning
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Vasiliki Kostiou
- Nuffield Department of Clinical Medicine, Experimental Medicine Division, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, Washington United States of America
- * E-mail: (GV); (CMT); (DJW); (MCJM)
| | - Christoph M. Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail: (GV); (CMT); (DJW); (MCJM)
| | - Daniel J. Wilson
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
- Department for Continuing Education, University of Oxford, Oxford, United Kingdom
- * E-mail: (GV); (CMT); (DJW); (MCJM)
| | - Martin C. J. Maiden
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail: (GV); (CMT); (DJW); (MCJM)
| |
Collapse
|
8
|
Lactate-induced dispersal of Neisseria meningitidis microcolonies is mediated by changes in cell density and pilus retraction and is influenced by temperature change. Infect Immun 2021; 89:e0029621. [PMID: 34125601 PMCID: PMC8445170 DOI: 10.1128/iai.00296-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis is the etiologic agent of meningococcal meningitis and sepsis. Initial colonization of meningococci to the upper respiratory tract epithelium is crucial for disease development. The colonization occurs in several steps and expression of type IV pili (Tfp) is essential for both attachment and microcolony formation of encapsulated bacteria. Previously, we have shown that host-derived lactate induces synchronized dispersal of meningococcal microcolonies. In this study, we demonstrated that lactate-induced dispersal is dependent on bacterial concentration but not on the quorum sensing system autoinducer-2 or the two-component systems NarP/NarQ, PilR/PilS, NtrY/NtrX, and MisR/MisS. Further, there were no changes in expression of genes related to assembly, elongation, retraction, and modification of Tfp throughout the time course of lactate induction. By using pilT and pptB mutants, however, we found that lactate-induced dispersal was dependent on PilT-retraction but not on phosphoglycerol-modification of Tfp even though the PptB activity was important for preventing re-aggregation post-dispersal. Furthermore, protein synthesis was required for lactate-induced dispersal. Finally, we found that at a lower temperature, lactate-induced dispersal was delayed and unsynchronized, and bacteria reformed microcolonies. We conclude that lactate-induced microcolony dispersal is dependent on bacterial concentration, PilT-dependent Tfp retraction, and protein synthesis and influenced by environmental temperature.
Collapse
|
9
|
Spinsanti M, Brignoli T, Bodini M, Fontana LE, De Chiara M, Biolchi A, Muzzi A, Scarlato V, Delany I. Deconvolution of intergenic polymorphisms determining high expression of Factor H binding protein in meningococcus and their association with invasive disease. PLoS Pathog 2021; 17:e1009461. [PMID: 33770146 PMCID: PMC8026042 DOI: 10.1371/journal.ppat.1009461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/07/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Neisseria meningitidis is a strictly human pathogen and is the major cause of septicemia and meningitis worldwide. Factor H binding protein (fHbp) is a meningococcal surface-exposed lipoprotein that binds the human Complement factor H allowing the bacterium to evade the host innate immune response. FHbp is also a key antigen in two vaccines against N. meningitidis serogroup B. Although the fHbp gene is present in most circulating meningococcal strains, level of fHbp expression varies among isolates and has been correlated to differences in promoter sequences upstream of the gene. Here we elucidated the sequence determinants that control fHbp expression in globally circulating strains. We analyzed the upstream fHbpintergenic region (fIR) of more than 5800 strains representative of the UK circulating isolates and we identified eleven fIR sequence alleles which represent 88% of meningococcal strains. By engineering isogenic recombinant strains where fHbp expression was under the control of each of the eleven fIR alleles, we confirmed that the fIR sequence determines a specific and distinct level of expression. Moreover, we identified the molecular basis for variation in expression through polymorphisms within key regulatory regions that are known to affect fHbp expression. We experimentally established three expression groups, high–medium–low, that correlated directly with the susceptibility to killing mediated by anti-fHbp antibodies and the ability of the meningococcal strain to survive within human serum. By using this sequence classification and information about the variant, we predicted fHbp expression in the panel of UK strains and we observed that strains with higher expressing fIR alleles are more likely associated with invasive disease. Overall, our findings can contribute to understand and predict vaccine coverage mediated by fHbp as well as to shed light on the role of this virulence factor in determining an invasive phenotype. Complement plays a key role in the immunity against Neisseria meningitidis. The meningococcus uses the Factor H binding protein (fHbp), to bind a negative regulator of the alternative complement pathway, factor H, to its surface thus preventing complement deposition and lysis. The use of fHbp as an antigen in two licensed vaccines highlights its public health relevance. Therefore the levels of this antigen produced by the bacterium are pivotal on the one hand for the survival of N. meningitidis in blood and on the other hand for the susceptibility to vaccine-induced killing antibodies. Here, we identify the predominant nucleotide sequences that drive distinct levels of the fHbp antigen in circulating meningococcal strains. We cluster them into distinct groups with increasing levels and observe that strains expressing higher fHbp amounts are associated with invasive disease. Our findings show that the nucleotide sequence of the fHbp promoter can be used for the prediction of antigen levels of any given strain and consequently for both the assessment of its sensitivity to killing by fHbp antibodies and its likelihood to cause invasive disease.
Collapse
Affiliation(s)
| | - Tarcisio Brignoli
- GSK, Siena, Italy
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | | | | | | | | | | | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | | |
Collapse
|
10
|
Moore SR, Menon SS, Cortes C, Ferreira VP. Hijacking Factor H for Complement Immune Evasion. Front Immunol 2021; 12:602277. [PMID: 33717083 PMCID: PMC7947212 DOI: 10.3389/fimmu.2021.602277] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
The complement system is an essential player in innate and adaptive immunity. It consists of three pathways (alternative, classical, and lectin) that initiate either spontaneously (alternative) or in response to danger (all pathways). Complement leads to numerous outcomes detrimental to invaders, including direct killing by formation of the pore-forming membrane attack complex, recruitment of immune cells to sites of invasion, facilitation of phagocytosis, and enhancement of cellular immune responses. Pathogens must overcome the complement system to survive in the host. A common strategy used by pathogens to evade complement is hijacking host complement regulators. Complement regulators prevent attack of host cells and include a collection of membrane-bound and fluid phase proteins. Factor H (FH), a fluid phase complement regulatory protein, controls the alternative pathway (AP) both in the fluid phase of the human body and on cell surfaces. In order to prevent complement activation and amplification on host cells and tissues, FH recognizes host cell-specific polyanionic markers in combination with complement C3 fragments. FH suppresses AP complement-mediated attack by accelerating decay of convertases and by helping to inactivate C3 fragments on host cells. Pathogens, most of which do not have polyanionic markers, are not recognized by FH. Numerous pathogens, including certain bacteria, viruses, protozoa, helminths, and fungi, can recruit FH to protect themselves against host-mediated complement attack, using either specific receptors and/or molecular mimicry to appear more like a host cell. This review will explore pathogen complement evasion mechanisms involving FH recruitment with an emphasis on: (a) characterizing the structural properties and expression patterns of pathogen FH binding proteins, as well as other strategies used by pathogens to capture FH; (b) classifying domains of FH important in pathogen interaction; and (c) discussing existing and potential treatment strategies that target FH interactions with pathogens. Overall, many pathogens use FH to avoid complement attack and appreciating the commonalities across these diverse microorganisms deepens the understanding of complement in microbiology.
Collapse
Affiliation(s)
- Sara R Moore
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Smrithi S Menon
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Claudio Cortes
- Department of Foundational Medical Sciences, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| |
Collapse
|
11
|
Novel hypercapsulation RNA thermosensor variants in Neisseria meningitidis and their association with invasive meningococcal disease: a genetic and phenotypic investigation and molecular epidemiological study. THE LANCET MICROBE 2020; 1:e319-e327. [DOI: 10.1016/s2666-5247(20)30146-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 01/13/2023] Open
|
12
|
Neisseria meningitidis Urethritis Outbreak Isolates Express a Novel Factor H Binding Protein Variant That Is a Potential Target of Group B-Directed Meningococcal (MenB) Vaccines. Infect Immun 2020; 88:IAI.00462-20. [PMID: 32958529 DOI: 10.1128/iai.00462-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Factor H binding protein (FHbp) is an important Neisseria meningitidis virulence factor that binds a negative regulator of the alternative complement pathway, human factor H (FH). Binding of FH increases meningococcal resistance to complement-mediated killing. FHbp also is reported to prevent interaction of the antimicrobial peptide (AMP) LL-37 with the meningococcal surface and meningococcal killing. FHbp is a target of two licensed group B-directed meningococcal (MenB) vaccines. We found a new FHbp variant, peptide allele identification no. 896 (ID 896), was highly expressed by an emerging meningococcal pathotype, the nonencapsulated urethritis clade (US_NmUC). This clade has been responsible for outbreaks of urethritis in multiple U.S. cities since 2015, other mucosal infections, and cases of invasive meningococcal disease. FHbp ID 896 is a member of the variant group 1 (subfamily B), bound protective anti-FHbp monoclonal antibodies, bound high levels of human FH, and enhanced the resistance of the clade to complement-mediated killing in low levels of human complement likely present at human mucosal surfaces. Interestingly, expression of FHbp ID 896 resulted in augmented killing of the clade by LL-37. FHbp ID 896 of the clade was recognized by antibodies elicited by FHbp in MenB vaccines.
Collapse
|
13
|
Gaudenzi G, Kumbakumba E, Rasti R, Nanjebe D, Réu P, Nyehangane D, Mårtensson A, Nassejje M, Karlsson J, Mzee J, Nilsson P, Businge S, Loh E, Boum Ii Y, Andersson-Svahn H, Gantelius J, Mwanga-Amumpaire J, Alfvén T. Point-of-Care Approaches for Meningitis Diagnosis in a Low-Resource Setting (Southwestern Uganda): Observational Cohort Study Protocol of the "PI-POC" Trial. JMIR Res Protoc 2020; 9:e21430. [PMID: 33146628 PMCID: PMC7690656 DOI: 10.2196/21430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND A timely differential diagnostic is essential to identify the etiology of central nervous system (CNS) infections in children, in order to facilitate targeted treatment, manage patients, and improve clinical outcome. OBJECTIVE The Pediatric Infection-Point-of-Care (PI-POC) trial is investigating novel methods to improve and strengthen the differential diagnostics of suspected childhood CNS infections in low-income health systems such as those in Southwestern Uganda. This will be achieved by evaluating (1) a novel DNA-based diagnostic assay for CNS infections, (2) a commercially available multiplex PCR-based meningitis/encephalitis (ME) panel for clinical use in a facility-limited laboratory setting, (3) proteomics profiling of blood from children with severe CNS infection as compared to outpatient controls with fever yet not severely ill, and (4) Myxovirus resistance protein A (MxA) as a biomarker in blood for viral CNS infection. Further changes in the etiology of childhood CNS infections after the introduction of the pneumococcal conjugate vaccine against Streptococcus pneumoniae will be investigated. In addition, the carriage and invasive rate of Neisseria meningitidis will be recorded and serotyped, and the expression of its major virulence factor (polysaccharide capsule) will be investigated. METHODS The PI-POC trial is a prospective observational study of children including newborns up to 12 years of age with clinical features of CNS infection, and age-/sex-matched outpatient controls with fever yet not severely ill. Participants are recruited at 2 Pediatric clinics in Mbarara, Uganda. Cerebrospinal fluid (for cases only), blood, and nasopharyngeal (NP) swabs (for both cases and controls) sampled at both clinics are analyzed at the Epicentre Research Laboratory through gold-standard methods for CNS infection diagnosis (microscopy, biochemistry, and culture) and a commercially available ME panel for multiplex PCR analyses of the cerebrospinal fluid. An additional blood sample from cases is collected on day 3 after admission. After initial clinical analyses in Mbarara, samples will be transported to Stockholm, Sweden for (1) validation analyses of a novel nucleic acid-based POC test, (2) biomarker research, and (3) serotyping and molecular characterization of S. pneumoniae and N. meningitidis. RESULTS A pilot study was performed from January to April 2019. The PI-POC trial enrollment of patients begun in April 2019 and will continue until September 2020, to include up to 300 cases and controls. Preliminary results from the PI-POC study are expected by the end of 2020. CONCLUSIONS The findings from the PI-POC study can potentially facilitate rapid etiological diagnosis of CNS infections in low-resource settings and allow for novel methods for determination of the severity of CNS infection in such environment. TRIAL REGISTRATION ClinicalTrials.gov NCT03900091; https://clinicaltrials.gov/ct2/show/NCT03900091. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/21430.
Collapse
Affiliation(s)
- Giulia Gaudenzi
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
- Division of Nanobiotechnology, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Elias Kumbakumba
- Department of Paediatrics and Child Health, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Reza Rasti
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | | | - Pedro Réu
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | | | - Andreas Mårtensson
- Department of Women's and Children's Health, International Maternal and Child Health, Uppsala University, Uppsala, Sweden
| | - Milly Nassejje
- Department of Paediatrics and Child Health, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Jens Karlsson
- Department of Microbiology, Tumor, and Cell Biology, BioClinicum, Karolinska University Hospital, Stockholm, Sweden
| | - John Mzee
- Department of Paediatrics and Child Health, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
- Holy Innocents Children's Hospital, Mbarara, Uganda
| | - Peter Nilsson
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Stephen Businge
- Department of Paediatrics and Child Health, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
- Holy Innocents Children's Hospital, Mbarara, Uganda
| | - Edmund Loh
- Department of Microbiology, Tumor, and Cell Biology, BioClinicum, Karolinska University Hospital, Stockholm, Sweden
- SCELSE, Nanyang Technological University, Singapore, Singapore
| | - Yap Boum Ii
- Department of Paediatrics and Child Health, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
- MSF Epicentre Mbarara Research Centre, Mbarara, Uganda
| | - Helene Andersson-Svahn
- Division of Nanobiotechnology, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Jesper Gantelius
- Division of Nanobiotechnology, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Juliet Mwanga-Amumpaire
- Department of Paediatrics and Child Health, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
- MSF Epicentre Mbarara Research Centre, Mbarara, Uganda
| | - Tobias Alfvén
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Barnawi H, Masri N, Hussain N, Al-Lawati B, Mayasari E, Gulbicka A, Jervis AJ, Huang MH, Cavet JS, Linton D. RNA-based thermoregulation of a Campylobacter jejuni zinc resistance determinant. PLoS Pathog 2020; 16:e1009008. [PMID: 33064782 PMCID: PMC7592916 DOI: 10.1371/journal.ppat.1009008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/28/2020] [Accepted: 09/28/2020] [Indexed: 01/04/2023] Open
Abstract
RNA thermometers (RNATs) trigger bacterial virulence factor expression in response to the temperature shift on entering a warm-blooded host. At lower temperatures these secondary structures sequester ribosome-binding sites (RBSs) to prevent translation initiation, whereas at elevated temperatures they "melt" allowing translation. Campylobacter jejuni is the leading bacterial cause of human gastroenteritis worldwide yet little is known about how it interacts with the host including host induced gene regulation. Here we demonstrate that an RNAT regulates a C. jejuni gene, Cj1163c or czcD, encoding a member of the Cation Diffusion Facilitator family. The czcD upstream untranslated region contains a predicted stem loop within the mRNA that sequesters the RBS to inhibit translation at temperatures below 37°C. Mutations that disrupt or enhance predicted secondary structure have significant and predictable effects on temperature regulation. We also show that in an RNAT independent manner, CzcD expression is induced by Zn(II). Mutants lacking czcD are hypersensitive to Zn(II) and also over-accumulate Zn(II) relative to wild-type, all consistent with CzcD functioning as a Zn(II) exporter. Importantly, we demonstrate that C. jejuni Zn(II)-tolerance at 32°C, a temperature at which the RNAT limits CzcD production, is increased by RNAT disruption. Finally we show that czcD inactivation attenuates larval killing in a Galleria infection model and that at 32°C disrupting RNAT secondary structure to allow CzcD production can enhance killing. We hypothesise that CzcD regulation by metals and temperature provides a mechanism for C. jejuni to overcome innate immune system-mediated Zn(II) toxicity in warm-blooded animal hosts.
Collapse
Affiliation(s)
- Heba Barnawi
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Nader Masri
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Natasha Hussain
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Bushra Al-Lawati
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Evita Mayasari
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Microbiology Department, Faculty of Medicine, Universitas Sumatera Utara, Indonesia
| | - Aleksandra Gulbicka
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Adrian J. Jervis
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Min-Hsuan Huang
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jennifer S. Cavet
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- * E-mail: (JSC); (DL)
| | - Dennis Linton
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- * E-mail: (JSC); (DL)
| |
Collapse
|
15
|
Abstract
Molecular mechanisms by which sex steroids interact with P. aeruginosa to modulate its virulence have yet to be reported. Our work provides the first characterization of a steroid-induced membrane stress mechanism promoting P. aeruginosa virulence, which includes the release of proinflammatory outer membrane vesicles, resulting in inflammation, host tissue damage, and reduced bacterial clearance. We further demonstrate that at nanomolar (physiological) concentrations, male and female sex steroids promote virulence in clinical strains of P. aeruginosa based on their dynamic membrane fluidic properties. This work provides, for the first-time, mechanistic insight to better understand and predict the P. aeruginosa related response to sex steroids and explain the interindividual patient variability observed in respiratory diseases such as cystic fibrosis that are complicated by gender differences and chronic P. aeruginosa infection. Estrogen, a major female sex steroid hormone, has been shown to promote the selection of mucoid Pseudomonas aeruginosa in the airways of patients with chronic respiratory diseases, including cystic fibrosis. This results in long-term persistence, poorer clinical outcomes, and limited therapeutic options. In this study, we demonstrate that at physiological concentrations, sex steroids, including testosterone and estriol, induce membrane stress responses in P. aeruginosa. This is characterized by increased virulence and consequent inflammation and release of proinflammatory outer membrane vesicles promoting in vivo persistence of the bacteria. The steroid-induced P. aeruginosa response correlates with the molecular polarity of the hormones and membrane fluidic properties of the bacteria. This novel mechanism of interaction between sex steroids and P. aeruginosa explicates the reported increased disease severity observed in females with cystic fibrosis and provides evidence for the therapeutic potential of the modulation of sex steroids to achieve better clinical outcomes in patients with hormone-responsive strains.
Collapse
|
16
|
Righetti F, Materne SL, Boss J, Eichner H, Charpentier E, Loh E. Characterization of a transcriptional TPP riboswitch in the human pathogen Neisseria meningitidis. RNA Biol 2020; 17:718-730. [PMID: 32079473 PMCID: PMC7237195 DOI: 10.1080/15476286.2020.1727188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Increasing evidence has demonstrated that regulatory RNA elements such as riboswitches (RS) play a pivotal role in the fine-tuning of bacterial gene expression. In this study, we investigated and characterized a novel transcriptional thiamine pyrophosphate (TPP) RS in the obligate human pathogen N. meningitidis MC58 (serogroup B). This RS is located in the 5´ untranslated region upstream of thiC gene, encoding a protein involved in TPP biosynthesis, an essential cofactor for all living beings. Primer extension revealed the transcriptional start site of thiC. Northern blot analysis of thiC mRNA and reporter gene studies confirmed the presence of an active TPP-sensing RS. Expression patterns of the wild-type RS and site-specific mutants showed that it is an OFF switch that controls transcription elongation of thiC mRNA. Interestingly, the regulatory mechanism of the meningococcal thiC RS resembles the Gram-positive Bacillus subtilis thiC RS rather than the Gram-negative Escherichia coli thiC RS. Therefore, the meningococcal thiC RS represents a rare example of transcriptional RS in a Gram-negative bacterium. We further observed that the RS is actively involved in modulating gene expression in response to different growth media and to supplemented bacterial and eukaryotic cell lysates as possible sources of nutrients in the nasopharynx. Our results suggest that RS-mediated gene regulation could influence meningococcal fitness, through the fine-tuning of biosynthesis and scavenging of nutrients and cofactors, such as thiamine.
Collapse
Affiliation(s)
- Francesco Righetti
- Department of Microbiology, Tumor- and Cell Biology, BioClinicum, Karolinska University Hospital, Stockholm, Sweden
| | - Solange Lise Materne
- Department of Microbiology, Tumor- and Cell Biology, BioClinicum, Karolinska University Hospital, Stockholm, Sweden
| | - John Boss
- Department of Microbiology, Tumor- and Cell Biology, BioClinicum, Karolinska University Hospital, Stockholm, Sweden
| | - Hannes Eichner
- Department of Microbiology, Tumor- and Cell Biology, BioClinicum, Karolinska University Hospital, Stockholm, Sweden
| | - Emmanuelle Charpentier
- Max Planck Unit for the Science of Pathogens, Berlin, Germany.,Department of Regulation in Infection Biology, Max Planck Institute for Infection Biology, Berlin, Germany.,Institute for Biology, Humboldt University, Berlin, Germany.,Department of Regulation in Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Edmund Loh
- Department of Microbiology, Tumor- and Cell Biology, BioClinicum, Karolinska University Hospital, Stockholm, Sweden.,SCELSE, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
17
|
Twittenhoff C, Heroven AK, Mühlen S, Dersch P, Narberhaus F. An RNA thermometer dictates production of a secreted bacterial toxin. PLoS Pathog 2020; 16:e1008184. [PMID: 31951643 PMCID: PMC6992388 DOI: 10.1371/journal.ppat.1008184] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 01/30/2020] [Accepted: 11/01/2019] [Indexed: 02/06/2023] Open
Abstract
Frequent transitions of bacterial pathogens between their warm-blooded host and external reservoirs are accompanied by abrupt temperature shifts. A temperature of 37°C serves as reliable signal for ingestion by a mammalian host, which induces a major reprogramming of bacterial gene expression and metabolism. Enteric Yersiniae are Gram-negative pathogens accountable for self-limiting gastrointestinal infections. Among the temperature-regulated virulence genes of Yersinia pseudotuberculosis is cnfY coding for the cytotoxic necrotizing factor (CNFY), a multifunctional secreted toxin that modulates the host’s innate immune system and contributes to the decision between acute infection and persistence. We report that the major determinant of temperature-regulated cnfY expression is a thermo-labile RNA structure in the 5’-untranslated region (5’-UTR). Various translational gene fusions demonstrated that this region faithfully regulates translation initiation regardless of the transcription start site, promoter or reporter strain. RNA structure probing revealed a labile stem-loop structure, in which the ribosome binding site is partially occluded at 25°C but liberated at 37°C. Consistent with translational control in bacteria, toeprinting (primer extension inhibition) experiments in vitro showed increased ribosome binding at elevated temperature. Point mutations locking the 5’-UTR in its 25°C structure impaired opening of the stem loop, ribosome access and translation initiation at 37°C. To assess the in vivo relevance of temperature control, we used a mouse infection model. Y. pseudotuberculosis strains carrying stabilized RNA thermometer variants upstream of cnfY were avirulent and attenuated in their ability to disseminate into mesenteric lymph nodes and spleen. We conclude with a model, in which the RNA thermometer acts as translational roadblock in a two-layered regulatory cascade that tightly controls provision of the CNFY toxin during acute infection. Similar RNA structures upstream of various cnfY homologs suggest that RNA thermosensors dictate the production of secreted toxins in a wide range of pathogens. Bacterial pathogens closely survey the ambient conditions and induce virulence genes only at appropriate conditions. Upon host contact, many pathogens secrete toxins in order to subvert host defense systems. We find that such a secreted toxin in enteropathogenic Yersinia pseudotuberculosis is produced only at host body temperature. This regulation depends on a temperature-responsive RNA structure, an RNA thermometer, in the 5’-untranslated region of the toxin mRNA, which prevents translation at low temperatures when the bacterium is outside the host. Preventing melting of the RNA structure at 37°C by nucleotide substitutions that stabilize base pairing resulted in avirulent Yersinia strains unable to infect mice. Given that similar RNA thermometer-like structures exist upstream of related toxin genes in various bacterial pathogens, we propose that RNA thermometer-mediated toxin production is an evolutionary conserved mechanism. Interfering with opening of such regulatory structures might thus be a promising strategy targeting a broad spectrum of bacterial pathogens.
Collapse
Affiliation(s)
| | - Ann Kathrin Heroven
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sabrina Mühlen
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Infectiology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Infectiology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Franz Narberhaus
- Microbial Biology, Ruhr University Bochum, Bochum, Germany
- * E-mail:
| |
Collapse
|
18
|
da Silva RAG, Karlyshev AV, Oldfield NJ, Wooldridge KG, Bayliss CD, Ryan A, Griffin R. Variant Signal Peptides of Vaccine Antigen, FHbp, Impair Processing Affecting Surface Localization and Antibody-Mediated Killing in Most Meningococcal Isolates. Front Microbiol 2019; 10:2847. [PMID: 31921030 PMCID: PMC6930937 DOI: 10.3389/fmicb.2019.02847] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/25/2019] [Indexed: 11/24/2022] Open
Abstract
Meningococcal lipoprotein, Factor H binding protein (FHbp), is the sole antigen of the Trumenba vaccine (Pfizer) and one of four antigens of the Bexsero vaccine (GSK) targeting Neisseria meningitidis serogroup B isolates. Lipidation of FHbp is assumed to occur for all isolates. We show in the majority of a collection of United Kingdom isolates (1742/1895) non-synonymous single nucleotide polymorphisms (SNPs) in the signal peptide (SP) of FHbp. A single SNP, common to all, alters a polar amino acid that abolishes processing: lipidation and SP cleavage. Whilst some of the FHbp precursor is retained in the cytoplasm due to reduced binding to SecA, remarkably some is translocated and further surface-localized by Slam. Thus we show Slam is not lipoprotein-specific. In a panel of isolates tested, the overall reduced surface localization of the precursor FHbp, compared to isolates with an intact SP, corresponded with decreased susceptibility to antibody-mediated killing. Our findings shed new light on the canonical pathway for lipoprotein processing and translocation of important relevance for lipoprotein-based vaccines in development and in particular for Trumenba.
Collapse
Affiliation(s)
- Ronni A G da Silva
- Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Andrey V Karlyshev
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, United Kingdom
| | - Neil J Oldfield
- Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Karl G Wooldridge
- Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Christopher D Bayliss
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Ali Ryan
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, United Kingdom
| | - Ruth Griffin
- Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
19
|
Cayrou C, Akinduko AA, Mirkes EM, Lucidarme J, Clark SA, Green LR, Cooper HJ, Morrissey J, Borrow R, Bayliss CD. Clustered intergenic region sequences as predictors of factor H Binding Protein expression patterns and for assessing Neisseria meningitidis strain coverage by meningococcal vaccines. PLoS One 2018; 13:e0197186. [PMID: 29847547 PMCID: PMC5976157 DOI: 10.1371/journal.pone.0197186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/27/2018] [Indexed: 11/18/2022] Open
Abstract
Factor H binding protein (fHbp) is a major protective antigen in 4C-MenB (Bexsero®) and Trumenba®, two serogroup B meningococcal vaccines, wherein expression level is a determinant of protection. Examination of promoter-containing intergenic region (IGR) sequences indicated that nine fHbp IGR alleles covered 92% of 1,032 invasive meningococcal strains with variant 1 fHbp alleles. Relative expression values for fHbp were determined for 79 meningococcal isolates covering ten IGR alleles by quantitative reverse transcriptase polymerase chain reaction (qRT PCR). Derivation of expression clusters of IGR sequences by linear regression identified five expression clusters with five nucleotides and one insertion showing statistically associations with differences in expression level. Sequence analysis of 273 isolates examined by the Meningococcal Antigen Typing Scheme, a sandwich ELISA, found that coverage depended on the IGR expression cluster and vaccine peptide homology combination. Specific fHbp peptide-IGR expression cluster combinations were designated as 'at risk' for coverage by 4C-MenB and were detected in multiple invasive meningococcal disease cases confirmed by PCR alone and occurring in partially-vaccinated infants. We conclude that sequence-based analysis of IGR sequences is informative for assessing protein expression and has utility for culture-independent assessments of strain coverage by protein-based vaccines.
Collapse
MESH Headings
- Alleles
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Base Sequence
- Complement Factor H/genetics
- Complement Factor H/immunology
- DNA, Bacterial/genetics
- DNA, Bacterial/immunology
- DNA, Intergenic/genetics
- DNA, Intergenic/immunology
- Gene Expression
- Humans
- Immunogenicity, Vaccine
- Infant
- Meningitis, Meningococcal/genetics
- Meningitis, Meningococcal/immunology
- Meningitis, Meningococcal/prevention & control
- Meningococcal Vaccines/administration & dosage
- Meningococcal Vaccines/genetics
- Meningococcal Vaccines/immunology
- Multigene Family
- Neisseria meningitidis, Serogroup B/genetics
- Neisseria meningitidis, Serogroup B/immunology
- Promoter Regions, Genetic
- Protein Binding
- Sequence Alignment
- Vaccination
Collapse
Affiliation(s)
- Caroline Cayrou
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- * E-mail: (CDB); (CC)
| | - Ayodeji A. Akinduko
- Department of Mathematics, University of Leicester, Leicester, United Kingdom
| | - Evgeny M. Mirkes
- Department of Mathematics, University of Leicester, Leicester, United Kingdom
| | - Jay Lucidarme
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Stephen A. Clark
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Luke R. Green
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Helen J. Cooper
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Julie Morrissey
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Ray Borrow
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Christopher D. Bayliss
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- * E-mail: (CDB); (CC)
| |
Collapse
|
20
|
Loh E, Righetti F, Eichner H, Twittenhoff C, Narberhaus F. RNA Thermometers in Bacterial Pathogens. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0012-2017. [PMID: 29623874 PMCID: PMC11633587 DOI: 10.1128/microbiolspec.rwr-0012-2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Indexed: 01/01/2023] Open
Abstract
Temperature variation is one of the multiple parameters a microbial pathogen encounters when it invades a warm-blooded host. To survive and thrive at host body temperature, human pathogens have developed various strategies to sense and respond to their ambient temperature. An instantaneous response is mounted by RNA thermometers (RNATs), which are integral sensory structures in mRNAs that modulate translation efficiency. At low temperatures outside the host, the folded RNA blocks access of the ribosome to the translation initiation region. The temperature shift upon entering the host destabilizes the RNA structure and thus permits ribosome binding. This reversible zipper-like mechanism of RNATs is ideally suited to fine-tune virulence gene expression when the pathogen enters or exits the body of its host. This review summarizes our present knowledge on virulence-related RNATs and discusses recent developments in the field.
Collapse
Affiliation(s)
- Edmund Loh
- Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
- SCELSE, Nanyang Technological University, 639798, Singapore
| | - Francesco Righetti
- Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Hannes Eichner
- Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | | |
Collapse
|
21
|
Abstract
Cell-free synthetic biology approaches enable engineering of biomolecular systems exhibiting complex, cell-like behaviors in the absence of living entities. Often essential to these systems are user-controllable mechanisms to regulate gene expression. Here we describe synthetic RNA thermometers that enable temperature-dependent translation in the PURExpress in vitro protein synthesis system. Previously described cellular thermometers lie wholly in the 5' untranslated region and do not retain their intended function in PURExpress. By contrast, we designed hairpins between the Shine-Dalgarno sequence and complementary sequences within the gene of interest. The resulting thermometers enable high-yield, cell-free protein expression in an inducible temperature range compatible with in vitro translation systems (30-37 °C). Moreover, expression efficiency and switching behavior are tunable via small variations to the coding sequence. Our approach and resulting thermometers provide new tools for exploiting temperature as a rapid, external trigger for in vitro gene regulation.
Collapse
Affiliation(s)
- Fredrik W. Sadler
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
| | - Igor Dodevski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
| | - Casim A. Sarkar
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
22
|
Neisseria cinerea Expresses a Functional Factor H Binding Protein Which Is Recognized by Immune Responses Elicited by Meningococcal Vaccines. Infect Immun 2017; 85:IAI.00305-17. [PMID: 28739825 PMCID: PMC5607398 DOI: 10.1128/iai.00305-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/07/2017] [Indexed: 12/12/2022] Open
Abstract
Neisseria meningitidis is a major cause of bacterial meningitis and sepsis worldwide. Capsular polysaccharide vaccines are available against meningococcal serogroups A, C, W, and Y. More recently two protein-based vaccines, Bexsero and Trumenba, against meningococcal serogroup B strains have been licensed; both vaccines contain meningococcal factor H binding protein (fHbp). fHbp is a surface-exposed lipoprotein that binds the negative complement regulator complement factor H (CFH), thereby inhibiting the alternative pathway of complement activation. Recent analysis of available genomes has indicated that some commensal Neisseria species also contain genes that potentially encode fHbp, although the functions of these genes and how immunization with fHbp-containing vaccines could affect the commensal flora have yet to be established. Here, we show that the commensal species Neisseria cinerea expresses functional fHbp on its surface and that it is responsible for recruitment of CFH by the bacterium. N. cinerea fHbp binds CFH with affinity similar to that of meningococcal fHbp and promotes survival of N. cinerea in human serum. We examined the potential impact of fHbp-containing vaccines on N. cinerea We found that immunization with Bexsero elicits serum bactericidal activity against N. cinerea, which is primarily directed against fHbp. The shared function of fHbp in N. cinerea and N. meningitidis and cross-reactive responses elicited by Bexsero suggest that the introduction of fHbp-containing vaccines has the potential to affect carriage of N. cinerea and other commensal species.
Collapse
|
23
|
Ignatov D, Johansson J. RNA-mediated signal perception in pathogenic bacteria. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28792118 DOI: 10.1002/wrna.1429] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 11/09/2022]
Abstract
Bacterial pathogens encounter several different environments during an infection, many of them possibly being detrimental. In order to sense its surroundings and adjust the gene expression accordingly, different regulatory schemes are undertaken. With these, the bacterium appropriately can differentiate between various environmental cues to express the correct virulence factor at the appropriate time and place. An attractive regulator device is RNA, which has an outstanding ability to alter its structure in response to external stimuli, such as metabolite concentration or alterations in temperature, to control its downstream gene expression. This review will describe the function of riboswitches and thermometers, with a particular emphasis on regulatory RNAs being important for bacterial pathogenicity. WIREs RNA 2017, 8:e1429. doi: 10.1002/wrna.1429 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Dmitriy Ignatov
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Jörgen Johansson
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| |
Collapse
|
24
|
Tommassen J, Arenas J. Biological Functions of the Secretome of Neisseria meningitidis. Front Cell Infect Microbiol 2017; 7:256. [PMID: 28670572 PMCID: PMC5472700 DOI: 10.3389/fcimb.2017.00256] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/29/2017] [Indexed: 11/13/2022] Open
Abstract
Neisseria meningitidis is a Gram-negative bacterial pathogen that normally resides as a commensal in the human nasopharynx but occasionally causes disease with high mortality and morbidity. To interact with its environment, it transports many proteins across the outer membrane to the bacterial cell surface and into the extracellular medium for which it deploys the common and well-characterized autotransporter, two-partner and type I secretion mechanisms, as well as a recently discovered pathway for the surface exposure of lipoproteins. The surface-exposed and secreted proteins serve roles in host-pathogen interactions, including adhesion to host cells and extracellular matrix proteins, evasion of nutritional immunity imposed by iron-binding proteins of the host, prevention of complement activation, neutralization of antimicrobial peptides, degradation of immunoglobulins, and permeabilization of epithelial layers. Furthermore, they have roles in interbacterial interactions, including the formation and dispersal of biofilms and the suppression of the growth of bacteria competing for the same niche. Here, we will review the protein secretion systems of N. meningitidis and focus on the functions of the secreted proteins.
Collapse
Affiliation(s)
- Jan Tommassen
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht UniversityUtrecht, Netherlands
| | - Jesús Arenas
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht UniversityUtrecht, Netherlands
| |
Collapse
|