1
|
Batista BB, de Lima VM, Picinato BA, Koide T, da Silva Neto JF. A quorum-sensing regulatory cascade for siderophore-mediated iron homeostasis in Chromobacterium violaceum. mSystems 2024; 9:e0139723. [PMID: 38501880 PMCID: PMC11019928 DOI: 10.1128/msystems.01397-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/24/2024] [Indexed: 03/20/2024] Open
Abstract
Iron is a transition metal used as a cofactor in many biochemical reactions. In bacteria, iron homeostasis involves Fur-mediated de-repression of iron uptake systems, such as the iron-chelating compounds siderophores. In this work, we identified and characterized novel regulatory systems that control siderophores in the environmental opportunistic pathogen Chromobacterium violaceum. Screening of a 10,000-transposon mutant library for siderophore halos identified seven possible regulatory systems involved in siderophore-mediated iron homeostasis in C. violaceum. Further characterization revealed a regulatory cascade that controls siderophores involving the transcription factor VitR acting upstream of the quorum-sensing (QS) system CviIR. Mutation of the regulator VitR led to an increase in siderophore halos, and a decrease in biofilm, violacein, and protease production. We determined that these effects occurred due to VitR-dependent de-repression of vioS. Increased VioS leads to direct inhibition of the CviR regulator by protein-protein interaction. Indeed, insertion mutations in cviR and null mutations of cviI and cviR led to an increase of siderophore halos. RNA-seq of the cviI and cviR mutants revealed that CviR regulates CviI-dependent and CviI-independent regulons. Classical QS-dependent processes (violacein, proteases, and antibiotics) were activated at high cell density by both CviI and CviR. However, genes related to iron homeostasis and many other processes were regulated by CviR but not CviI, suggesting that CviR acts without its canonical CviI autoinducer. Our data revealed a complex regulatory cascade involving QS that controls siderophore-mediated iron homeostasis in C. violaceum.IMPORTANCEThe iron-chelating compounds siderophores play a major role in bacterial iron acquisition. Here, we employed a genetic screen to identify novel siderophore regulatory systems in Chromobacterium violaceum, an opportunistic human pathogen. Many mutants with increased siderophore halos had transposon insertions in genes encoding transcription factors, including a novel regulator called VitR, and CviR, the regulator of the quorum-sensing (QS) system CviIR. We found that VitR is upstream in the pathway and acts as a dedicated repressor of vioS, which encodes a direct CviR-inhibitory protein. Indeed, all QS-related phenotypes of a vitR mutant were rescued in a vitRvioS mutant. At high cell density, CviIR activated classical QS-dependent processes (violacein, proteases, and antibiotics production). However, genes related to iron homeostasis and type-III and type-VI secretion systems were regulated by CviR in a CviI- or cell density-independent manner. Our data unveil a complex regulatory cascade integrating QS and siderophores in C. violaceum.
Collapse
Affiliation(s)
- Bianca B. Batista
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Vinicius M. de Lima
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Beatriz A. Picinato
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Tie Koide
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - José F. da Silva Neto
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
2
|
Verma RK, Gondu P, Saha T, Chatterjee S. The Global Transcription Regulator XooClp Governs Type IV Pili System-Mediated Bacterial Virulence by Directly Binding to TFP-Chp Promoters to Coordinate Virulence Associated Functions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:357-369. [PMID: 38105438 DOI: 10.1094/mpmi-07-23-0100-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Type IV pili (TFP) play a crucial role in the sensing of the external environment for several bacteria. This surface sensing is essential for the lifestyle transitions of several bacteria and involvement in pathogenesis. However, the precise mechanisms underlying TFP's integration of environmental cues, particularly in regulating the TFP-Chp system and its effects on Xanthomonas physiology, social behavior, and virulence, remain poorly understood. In this study, we focused on investigating Clp, a global transcriptional regulator similar to CRP-like proteins, in Xanthomonas oryzae pv. oryzae, a plant pathogen. Our findings reveal that Clp integrates environmental cues detected through diffusible signaling factor (DSF) quorum sensing into the TFP-Chp regulatory system. It accomplishes this by directly binding to TFP-Chp promoters in conjunction with intracellular levels of cyclic-di-GMP, a ubiquitous bacterial second messenger, thereby controlling TFP expression. Moreover, Clp-mediated regulation is involved in regulating several cellular processes, including the production of virulence-associated functions. Collectively, these processes contribute to host colonization and disease initiation. Our study elucidates the intricate regulatory network encompassing Clp, environmental cues, and the TFP-Chp system, providing insights into the molecular mechanisms that drive bacterial virulence in Xanthomonas spp. These findings offer valuable knowledge regarding Xanthomonas pathogenicity and present new avenues for innovative strategies aimed at combating plant diseases caused by these bacteria. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Raj Kumar Verma
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, India
| | - Parimala Gondu
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, India
| | - Tirthankar Saha
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, India
| | | |
Collapse
|
3
|
Pandey SS. The Role of Iron in Phytopathogenic Microbe-Plant Interactions: Insights into Virulence and Host Immune Response. PLANTS (BASEL, SWITZERLAND) 2023; 12:3173. [PMID: 37687419 PMCID: PMC10563075 DOI: 10.3390/plants12173173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Iron is an essential element required for the growth and survival of nearly all forms of life. It serves as a catalytic component in multiple enzymatic reactions, such as photosynthesis, respiration, and DNA replication. However, the excessive accumulation of iron can result in cellular toxicity due to the production of reactive oxygen species (ROS) through the Fenton reaction. Therefore, to maintain iron homeostasis, organisms have developed a complex regulatory network at the molecular level. Besides catalyzing cellular redox reactions, iron also regulates virulence-associated functions in several microbial pathogens. Hosts and pathogens have evolved sophisticated strategies to compete against each other over iron resources. Although the role of iron in microbial pathogenesis in animals has been extensively studied, mechanistic insights into phytopathogenic microbe-plant associations remain poorly understood. Recent intensive research has provided intriguing insights into the role of iron in several plant-pathogen interactions. This review aims to describe the recent advances in understanding the role of iron in the lifestyle and virulence of phytopathogenic microbes, focusing on bacteria and host immune responses.
Collapse
Affiliation(s)
- Sheo Shankar Pandey
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, India; ; Tel.: +91-361-2270095 (ext. 216)
- Citrus Research and Education Center (CREC), Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, USA
| |
Collapse
|
4
|
Padhi Y, Chatterjee S. XdfA, a novel membrane-associated DedA family protein of Xanthomonas campestris, is required for optimum virulence, maintenance of magnesium, and membrane homeostasis. mBio 2023; 14:e0136123. [PMID: 37498088 PMCID: PMC10470534 DOI: 10.1128/mbio.01361-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 07/28/2023] Open
Abstract
Xanthomonas campestris is an important member of the Xanthomonas group of phytopathogens that causes diseases in crucifers. In X. campestris, several virulence-associated functions, including some belonging to unknown predicted functions, have been implicated in the colonization and disease processes. However, the role of many of these unknown predicted proteins in Xanthomonas-host interaction and their exact physiological function is not clearly known. In this study, we identified a novel membrane-associated protein belonging to the DedA super family, XdfA, which is required for virulence in X. campestris. The DedA family of proteins are generally ubiquitous in bacteria; however, their function and actual physiological role are largely elusive. Characterization of ∆xdfA by homology modeling, membrane localization, and physiological studies indicated that XdfA is a membrane-associated protein that plays a role in the maintenance of membrane integrity. Furthermore, functional homology modeling analysis revealed that the XdfA exhibits structural similarity to a CorA-like magnesium transporter and is required for optimum growth under low magnesium ion concentration. We report for the first time that a putative DedA family of protein in Xanthomonas is required for optimum virulence and plays a role in the maintenance of membrane-associated functions and magnesium homeostasis. IMPORTANCE Bacterial DedA family proteins are involved in a range of cellular processes such as ion transport, signal transduction, and cell division. Here, we have discussed about a novel DedA family protein XdfA in Xanthomonas campestris pv. campestris that has a role in membrane homeostasis, magnesium transport, and virulence. Understanding membrane and magnesium homeostasis will aid in our comprehension of bacterial physiology and eventually will help us devise effective antimicrobial strategies to safeguard horticulturally and agriculturally important crop plants.
Collapse
Affiliation(s)
- Yasobanta Padhi
- Laboratory of Plant-Microbe Interactions, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
- Graduate Studies, Manipal Academy of Higher Education, Udupi, Karnataka, India
| | - Subhadeep Chatterjee
- Laboratory of Plant-Microbe Interactions, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| |
Collapse
|
5
|
Ramnarine SDBJ, Jayaraman J, Ramsubhag A. copLAB gene prevalence and diversity among Trinidadian Xanthomonas spp. black-rot lesion isolates with variable copper resistance profiles. PeerJ 2023; 11:e15657. [PMID: 37397015 PMCID: PMC10312155 DOI: 10.7717/peerj.15657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/07/2023] [Indexed: 07/04/2023] Open
Abstract
Background There has been limited exploration of copLAB genotypes and associated copper resistance phenotypes in Xanthomonas spp. in the southern Caribbean region. An earlier study highlighted a variant copLAB gene cluster found in one Trinidadian Xanthomonas campestris pv. campestris (Xcc) strain (BrA1), with <90% similarity to previously reported Xanthomonas copLAB genes. With only one report describing this copper resistance genotype, the current study investigated the distribution of the BrA1 variant copLAB gene cluster and previously reported forms of copper resistance genes in local Xanthomonas spp. Methods Xanthomonas spp. were isolated from black-rot infected lesions on leaf tissue from crucifer crops at intensively farmed sites with high agrochemical usage in Trinidad. The identity of morphologically identified isolates were confirmed using a paired primer PCR based screen and 16s rRNA partial gene sequencing. MGY agar amended with CuSO4.5H2O up to 2.4 mM was used to establish MIC's for confirmed isolates and group strains as sensitive, tolerant, or resistant to copper. Separate primer pairs targeting the BrA1 variant copLAB genes and those predicted to target multiple homologs found in Xanthomonas and Stenotrophomonas spp. were used to screen copper resistant isolates. Select amplicons were sanger sequenced and evolutionary relationships inferred from global reference sequences using a ML approach. Results Only four copper sensitive/tolerant Xanthomonas sp. strains were isolated, with 35 others classed as copper-resistant from a total population of 45 isolates. PCR detection of copLAB genes revealed two PCR negative copper-resistant resistant strains. Variant copLAB genes were only found in Xcc from the original source location of the BrA1 strain, Aranguez. Other copper-resistant strains contained other copLAB homologs that clustered into three distinct clades. These groups were more similar to genes from X. perforans plasmids and Stenotrophomonas spp. chromosomal homologs than reference Xcc sequences. This study highlights the localisation of the BrA1 variant copLAB genes to one agricultural community and the presence of three distinct copLAB gene groupings in Xcc and related Xanthomonas spp. with defined CuSO4.5H2O MIC. Further characterisation of these gene groups and copper resistance gene exchange dynamics on and within leaf tissue between Xcc and other Xanthomonas species are needed as similar gene clusters showed variable copper sensitivity profiles. This work will serve as a baseline for copper resistance gene characterisation in Trinidad and the wider Caribbean region and can be used to boost already lacking resistant phytopathogen management in the region.
Collapse
|
6
|
Das J, Kumar R, Yadav SK, Jha G. Nicotinic Acid Catabolism Modulates Bacterial Mycophagy in Burkholderia gladioli Strain NGJ1. Microbiol Spectr 2023; 11:e0445722. [PMID: 37014254 PMCID: PMC10269826 DOI: 10.1128/spectrum.04457-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/03/2023] [Indexed: 04/05/2023] Open
Abstract
Burkholderia gladioli strain NGJ1 exhibits mycophagous activity on a broad range of fungi, including Rhizoctonia solani, a devastating plant pathogen. Here, we demonstrate that the nicotinic acid (NA) catabolic pathway in NGJ1 is required for mycophagy. NGJ1 is auxotrophic to NA and it potentially senses R. solani as a NA source. Mutation in the nicC and nicX genes involved in NA catabolism renders defects in mycophagy and the mutant bacteria are unable to utilize R. solani extract as the sole nutrient source. As supplementation of NA, but not FA (fumaric acid, the end product of NA catabolism) restores the mycophagous ability of ΔnicC/ΔnicX mutants, we anticipate that NA is not required as a carbon source for the bacterium during mycophagy. Notably, nicR, a MarR-type of transcriptional regulator that functions as a negative regulator of the NA catabolic pathway is upregulated in ΔnicC/ΔnicX mutant and upon NA supplementation the nicR expression is reduced to the basal level in both the mutants. The ΔnicR mutant produces excessive biofilm and is completely defective in swimming motility. On the other hand, ΔnicC/ΔnicX mutants are compromised in swimming motility as well as biofilm formation, potentially due to the upregulation of nicR. Our data suggest that a defect in NA catabolism alters the NA pool in the bacterium and upregulates nicR which in turn suppresses bacterial motility as well as biofilm formation, leading to mycophagy defects. IMPORTANCE Mycophagy is an important trait through which certain bacteria forage over fungal mycelia and utilize fungal biomass as a nutrient source to thrive in hostile environments. The present study emphasizes that nicotinic acid (NA) is important for bacterial motility and biofilm formation during mycophagy by Burkholderia gladioli strain NGJ1. Defects in NA catabolism potentially alter the cellular NA pool, upregulate the expression of nicR, a negative regulator of biofilm, and therefore suppress bacterial motility as well as biofilm formation, leading to mycophagy defects.
Collapse
Affiliation(s)
- Joyati Das
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, India
| | - Rahul Kumar
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, India
| | - Sunil Kumar Yadav
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, India
| | - Gopaljee Jha
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
7
|
Dutta K, Shityakov S, Maruyama F. DSF inactivator RpfB homologous FadD upregulated in Bradyrhizobium japonicum under iron limiting conditions. Sci Rep 2023; 13:8701. [PMID: 37248242 DOI: 10.1038/s41598-023-35487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
Phytopathogenic bacteria Xanthomonas campestris pv. campestris (Xcc) causes black rot and other plant diseases. Xcc senses diffusible signal factor (DSF) as a quorum-sensing (QS) signal that mediates mainly iron uptake and virulence. RpfB deactivates DSF in this DSF-QS circuit. We examined differential gene expression profiles of Bradyrhizobium japonicum under low versus high iron conditions and found that fadD and irr were upregulated under low iron (log2 fold change 0.825 and 1.716, respectively). In addition to having similar protein folding patterns and functional domain similarities, FadD shared 58% sequence similarity with RpfB of Xcc. The RpfB-DSF and FadD-DSF complexes had SWISSDock molecular docking scores of - 8.88 kcal/mol and - 9.85 kcal/mol, respectively, and the 100 ns molecular dynamics simulation results were in accord with the docking results. However, significant differences were found between the binding energies of FadD-DSF and RpfB-DSF, indicating possible FadD-dependent DSF turnover. The protein-protein interaction network showed that FadD connected indirectly with ABC transporter permease (ABCtp), which was also upregulated (log2 fold change 5.485). We speculate that the low iron condition may be a mimetic environmental stimulus for fadD upregulation in B. japonicum to deactivate DSF, inhibit iron uptake and virulence of DSF-producing neighbors. This finding provides a new option of using B. japonicum or a genetically improved B. japonicum as a potential biocontrol agent against Xcc, with the added benefit of plant growth-promoting properties.
Collapse
Affiliation(s)
- Kunal Dutta
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint Petersburg, Russian Federation.
| | - Sergey Shityakov
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint Petersburg, Russian Federation.
| | - Fumito Maruyama
- Microbial Genomics and Ecology, The IDEC Institute, Hiroshima University, Higashihiroshima, Japan.
| |
Collapse
|
8
|
Wang B, Xu Z, Zhao Y, Wu G, Li K, Hou R, Guo B, Tang B, Zhao Y, Liu F. SstF, a novel sulforaphane-sensing transcription factor of Xanthomonas campestris, is required for sulforaphane tolerance and virulence. MOLECULAR PLANT PATHOLOGY 2023; 24:452-465. [PMID: 36829260 PMCID: PMC10098062 DOI: 10.1111/mpp.13314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 05/03/2023]
Abstract
Avoiding the host defence system is necessary for the survival of pathogens. However, the mechanisms by which pathogenic bacteria sense and resist host defence signals are still unknown. Sulforaphane (SFN) is a secondary metabolite of crucifers. It not only plays an important role in maintaining the local defence response but also directly inhibits the growth of some pathogens. In this study, we identified a key SFN tolerance-related gene, saxF, in Xanthomonas campestris pv. campestris (Xcc), the causal agent of black rot in crucifers. More interestingly, we found that the transcription of saxF was regulated by the novel transcription factor SFN-sensing transcription factor (SstF). As a LysR family transcription factor, SstF can sense SFN and regulate the expression of saxF cluster genes to increase SFN resistance by directly binding to the promoter of saxF. In addition, we found that SstF and saxF also play an important role in positively regulating the virulence of Xcc. Collectively, our results illustrate a previously unknown mechanism by which Xcc senses the host defence signal SFN and activates the expression of SFN tolerance-related genes to increase virulence. Therefore, this study provides a remarkable result; that is, during pathogen-plant co-evolution, new functions of existing scaffolds are activated, thus improving the proficiency of the pathogenic mechanism.
Collapse
Affiliation(s)
- Bo Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| | - Zhizhou Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Yangyang Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| | - Guichun Wu
- School of Life ScienceAnhui Agricultural UniversityHefeiChina
| | - Kaihuai Li
- College of AgricultureGuizhou UniversityGuiyangChina
| | - Rongxian Hou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Baodian Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| | - Bao Tang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| | - Yancun Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| |
Collapse
|
9
|
Shao Y, Tang G, Huang Y, Ke W, Wang S, Zheng D, Ruan L. Transcriptional regulator Sar regulates the multiple secretion systems in Xanthomonas oryzae. MOLECULAR PLANT PATHOLOGY 2023; 24:16-27. [PMID: 36177860 PMCID: PMC9742495 DOI: 10.1111/mpp.13272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is a notorious plant pathogen that causes leaf blight of rice cultivars. The pathogenic bacteria possess numerous transcriptional regulators to regulate various biological processes, such as pathogenicity in the host plant. Our previous study identified a new master regulator PXO_RS20790 that is involved in pathogenicity for Xoo against the host rice. However, the molecular functions of PXO_RS20790 are still unclear. Here, we demonstrate that transcriptional regulator Sar (PXO_RS20790) regulates multiple secretion systems. The RNA-sequencing analysis, bacterial one-hybrid assay, and electrophoretic mobility shift assay revealed that Sar enables binding of the promoters of the T1SS-related genes, the avirulence gene, raxX, and positively regulates these genes' expression. Meanwhile, we found that Sar positively regulated the T6SS-1 clusters but did not regulate the T6SS-2 clusters. Furthermore, we revealed that only T6SS-2 is involved in interbacterial competition. We also indicated that Sar could bind the promoters of the T3SS regulators, hrpG and hrpX, to activate these two genes' transcription. Our findings revealed that Sar is a crucial regulator of multiple secretion systems and virulence.
Collapse
Affiliation(s)
- Yanan Shao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Guiyu Tang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yuanyuan Huang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Wenli Ke
- State Key Laboratory of Agricultural Microbiology, College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Shasha Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Dehong Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- National Demonstration Center for Experimental Plant Science Education, College of AgricultureGuangxi UniversityNanningChina
| | - Lifang Ruan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- College of Resources and EnvironmentTibet Agriculture & Animal Husbandry UniversityLinzhiChina
| |
Collapse
|
10
|
Yang W, Yan H, Dong G, Li Z, Jiang C, Gu D, Niu D, Zhou D, Luo Y. Comparative transcriptomics reveal different genetic adaptations of biofilm formation in Bacillus subtilis isolate 1JN2 in response to Cd2+ treatment. Front Microbiol 2022; 13:1002482. [PMID: 36267191 PMCID: PMC9577173 DOI: 10.3389/fmicb.2022.1002482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/05/2022] [Indexed: 12/01/2022] Open
Abstract
Biofilm plays important roles in the life cycle of Bacillus species, such as promoting host and object surface colonization and resisting heavy metal stress. This study utilized transcriptomics to evaluate the impacts of cadmium on the components, morphology, and function of biofilms of Bacillus subtilis strain 1JN2. Under cadmium ion stress, the morphology of the B. subtilis 1JN2 biofilm was flattened, and its mobility increased. Moreover, differential gene expression analysis showed that the main regulator of biofilm formation, Spo0A, decreased in expression under cadmium ion stress, thereby inhibiting extracellular polysaccharide synthesis through the SinI/SinR two-component regulatory system and the AbrB pathway. Cadmium ion treatment also increased the SigD content significantly, thereby increasing the expression of the flagella encoding and assembly genes in the strain. This promoted poly-γ-glutamic acid production via the DegS/DegU two-component regulatory system and the conversion of biofilm extracellular polysaccharide to poly-γ-glutamic acid. This conferred cadmium stress tolerance in the strain. Additionally, the cadmium ion-mediated changes in the biofilm composition affected the colonization of the strain on the host plant root surface. Cadmium ions also induced surfactin synthesis. These findings illustrate the potential of Bacillus species as biocontrol strains that can mitigate plant pathogenic infections and heavy metal stress. The results also provide a basis for the screening of multifunctional biocontrol strains.
Collapse
Affiliation(s)
- Wei Yang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huai’an, China
| | - Haixia Yan
- Agro-Tech Extension and Service Center, Huai’an, China
| | - Guanghui Dong
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai’an, China
| | - Zhengpeng Li
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huai’an, China
| | - Chunhao Jiang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Dalu Gu
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huaian Academy of Agricultural Sciences, Huai’an, China
| | - Dongdong Niu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Danni Zhou
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai’an, China
| | - Yuming Luo
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huai’an, China
- *Correspondence: Yuming Luo,
| |
Collapse
|
11
|
Luneau JS, Baudin M, Quiroz Monnens T, Carrère S, Bouchez O, Jardinaud M, Gris C, François J, Ray J, Torralba B, Arlat M, Lewis JD, Lauber E, Deutschbauer AM, Noël LD, Boulanger A. Genome-wide identification of fitness determinants in the Xanthomonas campestris bacterial pathogen during early stages of plant infection. THE NEW PHYTOLOGIST 2022; 236:235-248. [PMID: 35706385 PMCID: PMC9543026 DOI: 10.1111/nph.18313] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/07/2022] [Indexed: 05/31/2023]
Abstract
Plant diseases are an important threat to food production. While major pathogenicity determinants required for disease have been extensively studied, less is known on how pathogens thrive during host colonization, especially at early infection stages. Here, we used randomly barcoded-transposon insertion site sequencing (RB-TnSeq) to perform a genome-wide screen and identify key bacterial fitness determinants of the vascular pathogen Xanthomonas campestris pv campestris (Xcc) during infection of the cauliflower host plant (Brassica oleracea). This high-throughput analysis was conducted in hydathodes, the natural entry site of Xcc, in xylem sap and in synthetic media. Xcc did not face a strong bottleneck during hydathode infection. In total, 181 genes important for fitness were identified in plant-associated environments with functional enrichment in genes involved in metabolism but only few genes previously known to be involved in virulence. The biological relevance of 12 genes was independently confirmed by phenotyping single mutants. Notably, we show that XC_3388, a protein with no known function (DUF1631), plays a key role in the adaptation and virulence of Xcc possibly through c-di-GMP-mediated regulation. This study revealed yet unsuspected social behaviors adopted by Xcc individuals when confined inside hydathodes at early infection stages.
Collapse
Affiliation(s)
- Julien S. Luneau
- LIPME, Université de Toulouse, INRAE, CNRSUniversité Paul Sabatier31320Castanet‐TolosanFrance
| | - Maël Baudin
- Plant Gene Expression Center, USDAAlbanyCA94710USA
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCA94720USA
| | - Thomas Quiroz Monnens
- LIPME, Université de Toulouse, INRAE, CNRSUniversité Paul Sabatier31320Castanet‐TolosanFrance
| | - Sébastien Carrère
- LIPME, Université de Toulouse, INRAE, CNRSUniversité Paul Sabatier31320Castanet‐TolosanFrance
| | - Olivier Bouchez
- Genotoul Genome & Transcriptome (GeT‐PlaGe), INRAE31320Castanet‐TolosanFrance
| | | | - Carine Gris
- LIPME, Université de Toulouse, INRAE, CNRSUniversité Paul Sabatier31320Castanet‐TolosanFrance
| | - Jonas François
- LIPME, Université de Toulouse, INRAE, CNRSUniversité Paul Sabatier31320Castanet‐TolosanFrance
| | - Jayashree Ray
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Babil Torralba
- LIPME, Université de Toulouse, INRAE, CNRSUniversité Paul Sabatier31320Castanet‐TolosanFrance
| | - Matthieu Arlat
- LIPME, Université de Toulouse, INRAE, CNRSUniversité Paul Sabatier31320Castanet‐TolosanFrance
| | - Jennifer D. Lewis
- Plant Gene Expression Center, USDAAlbanyCA94710USA
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCA94720USA
| | - Emmanuelle Lauber
- LIPME, Université de Toulouse, INRAE, CNRSUniversité Paul Sabatier31320Castanet‐TolosanFrance
| | - Adam M. Deutschbauer
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCA94720USA
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Laurent D. Noël
- LIPME, Université de Toulouse, INRAE, CNRSUniversité Paul Sabatier31320Castanet‐TolosanFrance
| | - Alice Boulanger
- LIPME, Université de Toulouse, INRAE, CNRSUniversité Paul Sabatier31320Castanet‐TolosanFrance
| |
Collapse
|
12
|
Jin K, Tian N, da Silva Ferreira JF, Sandhu D, Xiao L, Gu M, Luo Y, Zhang X, Liu G, Liu Z, Huang J, Liu S. Comparative Transcriptome Analysis of Agrobacterium tumefaciens Reveals the Molecular Basis for the Recalcitrant Genetic Transformation of Camellia sinensis L. Biomolecules 2022; 12:688. [PMID: 35625616 PMCID: PMC9138961 DOI: 10.3390/biom12050688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
Tea (Camellia sinensis L.), an important economic crop, is recalcitrant to Agrobacterium-mediated transformation (AMT), which has seriously hindered the progress of molecular research on this species. The mechanisms leading to low efficiency of AMT in tea plants, related to the morphology, growth, and gene expression of Agrobacterium tumefaciens during tea-leaf explant infection, were compared to AMT of Nicotiana benthamiana leaves in the present work. Scanning electron microscopy (SEM) images showed that tea leaves induced significant morphological aberrations on bacterial cells and affected pathogen-plant attachment, the initial step of a successful AMT. RNA sequencing and transcriptomic analysis on Agrobacterium at 0, 3 and 4 days after leaf post-inoculation resulted in 762, 1923 and 1656 differentially expressed genes (DEGs) between the tea group and the tobacco group, respectively. The expressions of genes involved in bacterial fundamental metabolic processes, ATP-binding cassette (ABC) transporters, two-component systems (TCSs), secretion systems, and quorum sensing (QS) systems were severely affected in response to the tea-leaf phylloplane. Collectively, these results suggest that compounds in tea leaves, especially gamma-aminobutyrate (GABA) and catechins, interfered with plant-pathogen attachment, essential minerals (iron and potassium) acquisition, and quorum quenching (QQ) induction, which may have been major contributing factors to hinder AMT efficiency of the tea plant.
Collapse
Affiliation(s)
- Ke Jin
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Na Tian
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Jorge Freire da Silva Ferreira
- United States Salinity Laboratory, United States Department of Agriculture, Agricultural Research Service, Riverside, CA 92507, USA; (J.F.d.S.F.); (D.S.)
| | - Devinder Sandhu
- United States Salinity Laboratory, United States Department of Agriculture, Agricultural Research Service, Riverside, CA 92507, USA; (J.F.d.S.F.); (D.S.)
| | - Lizheng Xiao
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
| | - Meiyi Gu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
| | - Yiping Luo
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Xiangqin Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Guizhi Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Zhonghua Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Jianan Huang
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Shuoqian Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| |
Collapse
|
13
|
Li R, Ren P, Liu Q, Yao J, Wu L, Zhu G, Xian X, Tang J, Lu G. McvR, a single domain response regulator regulates motility and virulence in the plant pathogen Xanthomonas campestris. MOLECULAR PLANT PATHOLOGY 2022; 23:649-663. [PMID: 35152521 PMCID: PMC8995066 DOI: 10.1111/mpp.13186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/19/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Signal transduction pathways mediated by sensor histidine kinases and cognate response regulators control a variety of physiological processes in response to environmental conditions in most bacteria. Comparatively little is known about the mechanism(s) by which single-domain response regulators (SD-RRs), which lack a dedicated output domain but harbour a phosphoryl receiver domain, exert their various regulatory effects in bacteria. Here we have examined the role of the SD-RR proteins encoded by the phytopathogen Xanthomonas campestris pv. campestris (Xcc). We describe the identification and characterization of a SD-RR protein named McvR (motility, chemotaxis, and virulence-related response regulator) that is required for virulence and motility regulation in Xcc. Deletion of the mcvR open reading frame caused reduced motility, chemotactic movement, and virulence in Xcc. Global transcriptome analyses revealed the McvR had a broad regulatory role and that most motility and pathogenicity genes were down-regulated in the mcvR mutant. Bacterial two-hybrid and protein pull-down assays revealed that McvR did not physically interact with components of the bacterial flagellum but interacts with other SD-RR proteins (like CheY) and the subset of DNA-binding proteins involved in gene regulation. Site-directed mutagenesis and phosphor-transfer experiments revealed that the aspartyl residue at position 55 of the receiver domain is important for phosphorylation and the regulatory activity of McvR protein. Taken together, the findings describe a previously unrecognized class of SD-RR protein that contributes to the regulation of motility and virulence in Xcc.
Collapse
Affiliation(s)
- Rui‐Fang Li
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect PestsPlant Protection Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Pei‐Dong Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Qian‐Qian Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Jia‐Li Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Liu Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Gui‐Ning Zhu
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect PestsPlant Protection Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Xiao‐Yong Xian
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect PestsPlant Protection Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Ji‐Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Guang‐Tao Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| |
Collapse
|
14
|
Pandey SS, Chatterjee S. Insights into the Cell-to-Cell Signaling and Iron Homeostasis in Xanthomonas Virulence and Lifestyle. PHYTOPATHOLOGY 2022; 112:209-218. [PMID: 34289715 DOI: 10.1094/phyto-11-20-0513-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The Xanthomonas group of phytopathogens causes economically important diseases that lead to severe yield loss in major crops. Some Xanthomonas species are known to have an epiphytic and in planta lifestyle that is coordinated by several virulence-associated functions, cell-to-cell signaling (using diffusible signaling factor [DSF]), and environmental conditions, including iron availability. In this review, we described the role of cell-to-cell signaling by the DSF molecule and iron in the regulation of virulence-associated functions. Although DSF and iron are involved in the regulation of several virulence-associated functions, members of the Xanthomonas group of plant pathogens exhibit atypical patterns of regulation. Atypical patterns contribute to the adaptation to different lifestyles. Studies on DSF and iron biology indicate that virulence-associated functions can be regulated in completely contrasting fashions by the same signaling system in closely related xanthomonads.
Collapse
Affiliation(s)
- Sheo Shankar Pandey
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| | | |
Collapse
|
15
|
Samal B, Chatterjee S. Bacterial quorum sensing facilitates Xanthomonas campesteris pv. campestris invasion of host tissue to maximize disease symptoms. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6524-6543. [PMID: 33993246 DOI: 10.1093/jxb/erab211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Quorum sensing (QS) helps the Xanthomonas group of phytopathogens to infect several crop plants. The vascular phytopathogen Xanthomonas campestris pv. campestris (Xcc) is the causal agent of black rot disease on Brassicaceae leaves, where a typical v-shaped lesion spans both vascular and mesophyll regions with progressive leaf chlorosis. Recently, the role of QS has been elucidated during Xcc early infection stages. However, a detailed insight into the possible role of QS-regulated bacterial invasion in host chlorophagy during late infection stages remains elusive. In this study, using QS-responsive whole-cell bioreporters of Xcc, we present a detailed chronology of QS-facilitated Xcc colonization in the mesophyll region of cabbage (Brassica oleracea) leaves. We report that QS-enabled localization of Xcc to parenchymal chloroplasts triggers leaf chlorosis and promotion of systemic infection. Our results indicate that the QS response in the Xanthomonas group of vascular phytopathogens maximizes their population fitness across host tissues to trigger stage-specific host chlorophagy and establish a systemic infection.
Collapse
Affiliation(s)
- Biswajit Samal
- Lab of Plant-Microbe Interactions, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Subhadeep Chatterjee
- Lab of Plant-Microbe Interactions, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| |
Collapse
|
16
|
Kakkar A, Verma RK, Samal B, Chatterjee S. Interplay between the cyclic di-GMP network and the cell-cell signalling components coordinates virulence-associated functions in Xanthomonas oryzae pv. oryzae. Environ Microbiol 2021; 23:5433-5462. [PMID: 34240791 DOI: 10.1111/1462-2920.15664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) causes a serious disease of rice known as bacterial leaf blight. Several virulence-associated functions have been characterized in Xoo. However, the role of important second messenger c-di-GMP signalling in the regulation of virulence-associated functions still remains elusive in this phytopathogen. In this study we have performed an investigation of 13 c-di-GMP modulating deletion mutants to understand their contribution in Xoo virulence and lifestyle transition. We show that four Xoo proteins, Xoo2331, Xoo2563, Xoo2860 and Xoo2616, are involved in fine-tuning the in vivo c-di-GMP abundance and also play a role in the regulation of virulence-associated functions. We have further established the importance of the GGDEF domain of Xoo2563, a previously characterized c-di-GMP phosphodiesterase, in the virulence-associated functions of Xoo. Interestingly the strain harbouring the GGDEF domain deletion (ΔXoo2563GGDEF ) exhibited EPS deficiency and hypersensitivity to streptonigrin, indicative of altered iron metabolism. This is in contrast to the phenotype exhibited by an EAL overexpression strain wherein, the ΔXoo2563GGDEF exhibited other phenotypes, similar to the strain overexpressing the EAL domain. Taken together, our results indicate a complex interplay of c-di-GMP signalling with the cell-cell signalling to coordinate virulence-associated function in Xoo.
Collapse
Affiliation(s)
- Akanksha Kakkar
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Mangalore, Karnataka, 576104, India
| | - Raj Kumar Verma
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Mangalore, Karnataka, 576104, India
| | - Biswajit Samal
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Mangalore, Karnataka, 576104, India
| | | |
Collapse
|
17
|
Wang X, Zhang M, Loh B, Leptihn S, Ahmed T, Li B. A novel NRPS cluster, acquired by horizontal gene transfer from algae, regulates siderophore iron metabolism in Burkholderia seminalis R456. Int J Biol Macromol 2021; 182:838-848. [PMID: 33862079 DOI: 10.1016/j.ijbiomac.2021.04.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 11/27/2022]
Abstract
In an environment with limited iron levels, sufficiently high intracellular iron concentrations are critical for bacterial survival. When iron levels are low, many bacteria including those of the Burkholderia cepacia group secrete chemically diverse siderophores to capture Fe3+. The synthesis of the two main siderophores, ornibactin and pyochelin, is regulated in an iron concentration dependent manner via the regulator protein Fur. In this study, we identified a novel Nonribosomal Peptide Synthetase (NRPS) cluster in strain R456 of Burkholderia seminalis, a member of the B. cepacia group. We show that the NRPS cluster not only allows the production of a so-far undescribed siderophore, but is also required for ornibactin and pyochelin production as it is a crucial component in the signaling pathway targeting the global iron regulating effector Fur which regulates siderophore production. Furthermore, the NRPS cluster is also involved in cell motility and biofilm formation, both of which are directly dependent on iron concentration in various bacteria. Interestingly, our data suggests that this newly discovered NRPS cluster which regulates siderophore iron metabolism in bacteria was obtained by horizontal gene transfer from algae.
Collapse
Affiliation(s)
- Xiaoxuan Wang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Muchen Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Belinda Loh
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 314400, China
| | - Sebastian Leptihn
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 314400, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058 Hangzhou, China.
| |
Collapse
|
18
|
Liu Y, Kong D, Wu HL, Ling HQ. Iron in plant-pathogen interactions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2114-2124. [PMID: 33161430 DOI: 10.1093/jxb/eraa516] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
Iron is an essential element for most organisms. As an indispensable co-factor of many enzymes, iron is involved in various crucial metabolic processes that are required for the survival of plants and pathogens. Conversely, excessive iron produces highly active reactive oxygen species, which are toxic to the cells of plants and pathogens. Therefore, plants and pathogens have evolved sophisticated mechanisms to modulate iron status at a moderate level for maintaining their fitness. Over the past decades, many efforts have been made to reveal these mechanisms, and some progress has been made. In this review, we describe recent advances in understanding the roles of iron in plant-pathogen interactions and propose prospects for future studies.
Collapse
Affiliation(s)
- Yi Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Danyu Kong
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| | - Hui-Lan Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Hong-Qing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
The HrpG/HrpX Regulon of Xanthomonads-An Insight to the Complexity of Regulation of Virulence Traits in Phytopathogenic Bacteria. Microorganisms 2021; 9:microorganisms9010187. [PMID: 33467109 PMCID: PMC7831014 DOI: 10.3390/microorganisms9010187] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/05/2022] Open
Abstract
Bacteria of the genus Xanthomonas cause a wide variety of economically important diseases in most crops. The virulence of the majority of Xanthomonas spp. is dependent on secretion and translocation of effectors by the type 3 secretion system (T3SS) that is controlled by two master transcriptional regulators HrpG and HrpX. Since their discovery in the 1990s, the two regulators were the focal point of many studies aiming to decipher the regulatory network that controls pathogenicity in Xanthomonas bacteria. HrpG controls the expression of HrpX, which subsequently controls the expression of T3SS apparatus genes and effectors. The HrpG/HrpX regulon is activated in planta and subjected to tight metabolic and genetic regulation. In this review, we cover the advances made in understanding the regulatory networks that control and are controlled by the HrpG/HrpX regulon and their conservation between different Xanthomonas spp.
Collapse
|
20
|
Puławska J, Kałużna M, Warabieda W, Pothier JF, Gétaz M, van der Wolf JM. Transcriptome analysis of Xanthomonas fragariae in strawberry leaves. Sci Rep 2020; 10:20582. [PMID: 33239704 PMCID: PMC7688646 DOI: 10.1038/s41598-020-77612-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 11/09/2020] [Indexed: 11/21/2022] Open
Abstract
Xanthomonas fragariae is a quarantine bacterial pathogen that causes angular leaf spot on strawberry. The aim of our study was to analyse the mechanism of interaction of this bacterium with its host plant at the transcriptome level. For this purpose, mRNAs of X. fragariae growing in Wilbrink’s medium and from infected strawberry cv. Elsanta plants were isolated and sequenced using the Illumina MiSeq platform. The expression profiles of the bacteria in Wilbrink’s medium and in planta were very diverse. Of the 3939 CDSs recorded, 1995 had significantly different expression in planta (966 and 1029 genes were down- and upregulated, respectively). Among the genes showing increased expression in planta, those with eggNOG/COG (evolutionary genealogy of genes: Non-supervised Orthologous Groups/Cluster of Orthologous Groups) categories associated with bacterial cell motility, signal transduction, transport and metabolism of inorganic ions and carbohydrates and transcription were overrepresented. Among the genes with the most increased expression in planta, genes primarily associated with flagella synthesis and chemotaxis were found. It is also interesting to note that out of the 31 genes localized on a plasmid, 16 were expressed differently in planta, which may indicate their potential role in plant–pathogen interactions. Many genes with differentiated expression that were localized on chromosome and plasmid encode proteins of unknown function.
Collapse
Affiliation(s)
- Joanna Puławska
- Department of Phytopathology, Research Institute of Horticulture, 96-100, Skierniewice, Poland.
| | - Monika Kałużna
- Department of Phytopathology, Research Institute of Horticulture, 96-100, Skierniewice, Poland
| | - Wojciech Warabieda
- Department of Phytopathology, Research Institute of Horticulture, 96-100, Skierniewice, Poland
| | - Joël F Pothier
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Michael Gétaz
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | | |
Collapse
|
21
|
Verma RK, Biswas A, Kakkar A, Lomada SK, Pradhan BB, Chatterjee S. A Bacteriophytochrome Mediates Interplay between Light Sensing and the Second Messenger Cyclic Di-GMP to Control Social Behavior and Virulence. Cell Rep 2020; 32:108202. [DOI: 10.1016/j.celrep.2020.108202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/13/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
|
22
|
Yang J, Pan X, Xu Y, Li Y, Xu N, Huang Z, Ye J, Gao D, Guo M. Agrobacterium tumefaciens ferritins play an important role in full virulence through regulating iron homeostasis and oxidative stress survival. MOLECULAR PLANT PATHOLOGY 2020; 21:1167-1178. [PMID: 32678502 PMCID: PMC7411545 DOI: 10.1111/mpp.12969] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 05/23/2023]
Abstract
Ferritins are a large family of iron storage proteins, which are used by bacteria and other organisms to avoid iron toxicity and as a safe iron source in the cytosol. Agrobacterium tumefaciens, a phytopathogen, has two ferritin-encoding genes: atu2771 and atu2477. Atu2771 is annotated as a Bfr-encoding gene (Bacterioferritin, Bfr) and atu2477 as a Dps-encoding gene (DNA binding protein from starved cells, Dps). Three deletion mutants (Δbfr, Δdps, and bfr-dps double-deletion mutant ΔbdF) of these two ferritin-encoding genes were constructed to investigate the effects of ferritin deficiency on the iron homeostasis, oxidative stress resistance, and pathogenicity of A. tumefaciens. Deficiency of two ferritins affects the growth of A. tumefaciens under iron starvation and excess. When supplied with moderate iron, the growth of A. tumefaciens is not affected by the deficiency of ferritin. Deficiency of ferritin significantly reduces iron accumulation in the cells of A. tumefaciens, but the effect of Bfr deficiency on iron accumulation is severer than Dps deficiency and the double mutant ΔbdF has the least intracellular iron content. All three ferritin-deficient mutants showed a decreased tolerance to 3 mM H2 O2 in comparison with the wild type. The tumour induced by each of three ferritin-deficient mutants is less than that of the wild type. Complementation reversed the effects of ferritin deficiency on the growth, iron homeostasis, oxidative stress resistance, and tumorigenicity of A. tumefaciens. Therefore, ferritin plays an important role in the pathogenesis of A. tumefaciens through regulating iron homeostasis and oxidative stress survival.
Collapse
Affiliation(s)
- Jing Yang
- College of Bioscience and BiotechnologyYangzhou UniversityJiangsu ProvinceYangzhou CityChina
| | - Xiaoyue Pan
- College of Bioscience and BiotechnologyYangzhou UniversityJiangsu ProvinceYangzhou CityChina
| | - Yujuan Xu
- College of Bioscience and BiotechnologyYangzhou UniversityJiangsu ProvinceYangzhou CityChina
| | - Yuan Li
- College of Bioscience and BiotechnologyYangzhou UniversityJiangsu ProvinceYangzhou CityChina
| | - Nan Xu
- College of Bioscience and BiotechnologyYangzhou UniversityJiangsu ProvinceYangzhou CityChina
| | - Zhiwei Huang
- College of Bioscience and BiotechnologyYangzhou UniversityJiangsu ProvinceYangzhou CityChina
| | - Jingyang Ye
- College of Bioscience and BiotechnologyYangzhou UniversityJiangsu ProvinceYangzhou CityChina
| | - Dawei Gao
- College of Bioscience and BiotechnologyYangzhou UniversityJiangsu ProvinceYangzhou CityChina
| | - Minliang Guo
- College of Bioscience and BiotechnologyYangzhou UniversityJiangsu ProvinceYangzhou CityChina
| |
Collapse
|
23
|
Abstract
Coxiella burnetii, the causative agent of Query (Q) fever in humans, is a highly infectious obligate intracellular bacterium. Following uptake into a host cell, C. burnetii replicates within a phagolysosome-derived compartment referred to as the Coxiella-containing vacuole (CCV). During infection, C. burnetii exhibits tropism for tissues related to iron storage and recycling (e.g., the liver and splenic red pulp), suggesting that pathogen physiology is linked to host iron metabolism. Iron has been described to have a limited role in C. burnetii virulence regulation, despite evidence that C. burnetii -infected host cells increase expression of transferrin receptors, thereby suggesting that active iron acquisition by the bacterium occurs upon infection. Through the use of host cell-free culture, C. burnetii was separated from the host cell in order to directly assess the role of different forms of iron in C. burnetii replication and viability, and therefore virulence. Results indicate that C. burnetii tolerates molecular iron over a broad concentration range (i.e., ∼0.001 to 1 mM) and undergoes gross loss of viability upon iron starvation. C. burnetii protein synthesis and energy metabolism, however, occur nearly uninhibited under iron concentrations not permissive to replication. Despite the apparent absence of genes related to acquisition of host-associated iron-containing proteins, C. burnetii replication is supported by hemoglobin, transferrin, and ferritin, likely due to release of iron from such proteins under acidic conditions. Moreover, chelation of host iron pools inhibited pathogen replication during infection of cultured cells.IMPORTANCE Host organisms restrict the availability of iron to invading pathogens in order to reduce pathogen replication. To counteract the host's response to infection, bacteria can rely on redundant mechanisms to obtain biologically diverse forms of iron during infection. C. burnetii appears specifically dependent on molecular iron for replication and viability and exhibits a response to iron akin to bacteria that colonize iron-rich environments. Physiological adaptation of C. burnetii to the unique acidic and degradative environment of the CCV is consistent with access of this pathogen to molecular iron.
Collapse
|
24
|
Rusu IG, Suharoschi R, Vodnar DC, Pop CR, Socaci SA, Vulturar R, Istrati M, Moroșan I, Fărcaș AC, Kerezsi AD, Mureșan CI, Pop OL. Iron Supplementation Influence on the Gut Microbiota and Probiotic Intake Effect in Iron Deficiency-A Literature-Based Review. Nutrients 2020; 12:E1993. [PMID: 32635533 PMCID: PMC7400826 DOI: 10.3390/nu12071993] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022] Open
Abstract
Iron deficiency in the human body is a global issue with an impact on more than two billion individuals worldwide. The most important functions ensured by adequate amounts of iron in the body are related to transport and storage of oxygen, electron transfer, mediation of oxidation-reduction reactions, synthesis of hormones, the replication of DNA, cell cycle restoration and control, fixation of nitrogen, and antioxidant effects. In the case of iron deficiency, even marginal insufficiencies may impair the proper functionality of the human body. On the other hand, an excess in iron concentration has a major impact on the gut microbiota composition. There are several non-genetic causes that lead to iron deficiencies, and thus, several approaches in their treatment. The most common methods are related to food fortifications and supplements. In this review, following a summary of iron metabolism and its health implications, we analyzed the scientific literature for the influence of iron fortification and supplementation on the gut microbiome and the effect of probiotics, prebiotics, and/or synbiotics in iron absorption and availability for the organism.
Collapse
Affiliation(s)
- Ioana Gabriela Rusu
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (I.G.R.); (R.S.); (D.C.V.); (C.R.P.); (S.A.S.); (A.C.F.); (A.D.K.); (C.I.M.)
| | - Ramona Suharoschi
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (I.G.R.); (R.S.); (D.C.V.); (C.R.P.); (S.A.S.); (A.C.F.); (A.D.K.); (C.I.M.)
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (I.G.R.); (R.S.); (D.C.V.); (C.R.P.); (S.A.S.); (A.C.F.); (A.D.K.); (C.I.M.)
| | - Carmen Rodica Pop
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (I.G.R.); (R.S.); (D.C.V.); (C.R.P.); (S.A.S.); (A.C.F.); (A.D.K.); (C.I.M.)
| | - Sonia Ancuța Socaci
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (I.G.R.); (R.S.); (D.C.V.); (C.R.P.); (S.A.S.); (A.C.F.); (A.D.K.); (C.I.M.)
| | - Romana Vulturar
- Department of Molecular Sciences, University of Medicine and Pharmacy Iuliu Hatieganu, 400349 Cluj-Napoca, Romania;
- Cognitive Neuroscience Laboratory, University Babes-Bolyai, 400327 Cluj-Napoca, Romania
| | - Magdalena Istrati
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400158 Cluj-Napoca, Romania;
| | - Ioana Moroșan
- Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400349 Cluj-Napoca, Romania;
| | - Anca Corina Fărcaș
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (I.G.R.); (R.S.); (D.C.V.); (C.R.P.); (S.A.S.); (A.C.F.); (A.D.K.); (C.I.M.)
| | - Andreea Diana Kerezsi
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (I.G.R.); (R.S.); (D.C.V.); (C.R.P.); (S.A.S.); (A.C.F.); (A.D.K.); (C.I.M.)
| | - Carmen Ioana Mureșan
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (I.G.R.); (R.S.); (D.C.V.); (C.R.P.); (S.A.S.); (A.C.F.); (A.D.K.); (C.I.M.)
| | - Oana Lelia Pop
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (I.G.R.); (R.S.); (D.C.V.); (C.R.P.); (S.A.S.); (A.C.F.); (A.D.K.); (C.I.M.)
| |
Collapse
|
25
|
Park H, Do E, Kim M, Park HJ, Lee J, Han SW. A LysR-Type Transcriptional Regulator LcrX Is Involved in Virulence, Biofilm Formation, Swimming Motility, Siderophore Secretion, and Growth in Sugar Sources in Xanthomonas axonopodis Pv. glycines. FRONTIERS IN PLANT SCIENCE 2020; 10:1657. [PMID: 31998344 PMCID: PMC6965072 DOI: 10.3389/fpls.2019.01657] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/25/2019] [Indexed: 05/30/2023]
Abstract
Xanthomonas axonopodis pv. glycines (Xag) is a Gram-negative bacterium that causes bacterial pustule disease in soybean. To acclimate to new environments, the expression of genes in bacteria is controlled directly or indirectly by diverse transcriptional factors. Among them, LysR type transcriptional regulators are well-characterized and abundant in bacteria. In a previous study, comparative proteomic analysis revealed that LysR type carbohydrate-related transcriptional regulator in Xag (LcrX) was more abundant in XVM2, which is a minimal medium, compared with a rich medium. However, the functions of LcrX in Xag have not been characterized. In this study, we generated an LcrX-overexpressing strain, Xag(LcrX), and the knockout mutant strain, XagΔlcrX(EV), to elucidate the functions of LcrX. Bacterial multiplication of Xag(LcrX) in soybean was significantly impaired, indicating that LcrX is related to virulence. Comparative proteomic analysis revealed that LcrX is mainly involved in carbohydrate metabolism/transport and inorganic ion transport/metabolism. Based on the results of proteomics analysis, diverse phenotypic assays were carried out. A gel electrophoresis mobility shift assay demonstrated that LcrX specifically bound to the putative promoter regions of genes encoding putative fructose 1,6-bisphosphatase and protease. Through a 96-well plate assay under various conditions, we confirmed that the growth of Xag(LcrX) was dramatically affected in the presence of various carbon sources, while the growth of XagΔlcrX(EV) was only slightly changed. Biofilm formation activity was reduced in Xag(LcrX) but enhanced in XagΔlcrX(EV). The production of siderophores was also decreased in Xag(LcrX) but not altered in XagΔlcrX(EV). In contrast, LcrX was not associated with exopolysaccharide production, protease activity, or bacterial motility. These findings provide new insights into the functions of a carbohydrate-related transcriptional regulator in Xag.
Collapse
Affiliation(s)
- Hanbi Park
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Eunsoo Do
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| | - Minyoung Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Hye-Jee Park
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Jongchan Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Sang-Wook Han
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| |
Collapse
|
26
|
Genetic and structural determinants on iron assimilation pathways in the plant pathogen Xanthomonas citri subsp. citri and Xanthomonas sp. Braz J Microbiol 2019; 51:1219-1231. [PMID: 31848911 DOI: 10.1007/s42770-019-00207-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 12/06/2019] [Indexed: 10/25/2022] Open
Abstract
Iron is a vital nutrient to bacteria, not only in the basal metabolism but also for virulent species in infection and pathogenicity at their hosts. Despite its relevance, the role of iron in Xanthomonas citri infection, the etiological agent of citrus canker disease, is poorly understood in contrast to other pathogens, including other members of the Xanthomonas genus. In this review, we present iron assimilation pathways in X. citri including the ones for siderophore production and siderophore-iron assimilation, proven to be key factors to virulence in many organisms like Escherichia coli and Xanthomonas campestris. Based on classical iron-related proteins previously characterized in E. coli, Pseudomonas aeruginosa, and also Xanthomonadaceae, we identified orthologs in X. citri and evaluated their sequences, structural characteristics such as functional motifs, and residues that support their putative functions. Among the identified proteins are TonB-dependent receptors, periplasmic-binding proteins, active transporters, efflux pumps, and cytoplasmic enzymes. The role of each protein for the bacterium was analyzed and complemented with proteomics data previously reported. The global view of different aspects of iron regulation and nutrition in X. citri virulence and pathogenesis may help guide future investigations aiming the development of new drug targets against this important phytopathogen.
Collapse
|
27
|
Samal B, Chatterjee S. New insight into bacterial social communication in natural host: Evidence for interplay of heterogeneous and unison quorum response. PLoS Genet 2019; 15:e1008395. [PMID: 31527910 PMCID: PMC6764700 DOI: 10.1371/journal.pgen.1008395] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/27/2019] [Accepted: 08/30/2019] [Indexed: 01/31/2023] Open
Abstract
Many microbes exhibit quorum sensing (QS) to cooperate, share and perform a social task in unison. Recent studies have shown the emergence of reversible phenotypic heterogeneity in the QS-responding pathogenic microbial population under laboratory conditions as a possible bet-hedging survival strategy. However, very little is known about the dynamics of QS-response and the nature of phenotypic heterogeneity in an actual host-pathogen interaction environment. Here, we investigated the dynamics of QS-response of a Gram-negative phytopathogen Xanthomonas pv. campestris (Xcc) inside its natural host cabbage, that communicate through a fatty acid signal molecule called DSF (diffusible signal factor) for coordination of several social traits including virulence functions. In this study, we engineered a novel DSF responsive whole-cell QS dual-bioreporter to measure the DSF mediated QS-response in Xcc at the single cell level inside its natural host plant in vivo. Employing the dual-bioreporter strain of Xcc, we show that QS non-responsive cells coexist with responsive cells in microcolonies at the early stage of the disease; whereas in the late stages, the QS-response is more homogeneous as the QS non-responders exhibit reduced fitness and are out competed by the wild-type. Furthermore, using the wild-type Xcc and its QS mutants in single and mixed infection studies, we show that QS mutants get benefit to some extend at the early stage of disease and contribute to localized colonization. However, the QS-responding cells contribute to spread along xylem vessel. These results contrast with the earlier studies describing that expected cross-induction and cooperative sharing at high cell density in vivo may lead to synchronize QS-response. Our findings suggest that the transition from heterogeneity to homogeneity in QS-response within a bacterial population contributes to its overall virulence efficiency to cause disease in the host plant under natural environment. Pathogenic bacteria synchronize and coordinate the production of virulence associated function-components in a density dependent fashion via quorum sensing. In general, QS-response and regulation has been studied under laboratory conditions in vitro, where the QS-responding bacterial population exhibits heterogeneous QS-response with the emergence of both QS responders and non-responders irrespective of their parental kind, as a possible bet hedging strategy. However, very little is known about the dynamics of QS-response inside the host. Using Xanthomonas campestris pv. campestris (Xcc) and cabbage as a model plant pathogen-host, we show that there is stage specific interplay of heterogeneous and homogeneous QS-response in the wild-type Xcc population inside the host plant. We show that at the initial stage of the disease, Xcc maintains a stochastically heterogeneous population wherein, the QS non-responders are localized locally and QS-responders contribute to the migration and spread. However at the later stage of disease, the non-responders are outcompeted by the responders, thus minimizing QS signal benefit and in turn maximizing the utilization and optimizing limited recourses in the host. Our findings suggest that the interplay of heterogeneity and homogeneity in QS-response gives a stage specific adaptive advantage in a host-pathogen natural environment.
Collapse
Affiliation(s)
- Biswajit Samal
- Lab of Plant-Microbe Interactions, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telengana, India
- Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Subhadeep Chatterjee
- Lab of Plant-Microbe Interactions, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telengana, India
- * E-mail:
| |
Collapse
|
28
|
Teper D, Zhang Y, Wang N. TfmR, a novel TetR-family transcriptional regulator, modulates the virulence of Xanthomonas citri in response to fatty acids. MOLECULAR PLANT PATHOLOGY 2019; 20:701-715. [PMID: 30919570 PMCID: PMC6637906 DOI: 10.1111/mpp.12786] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The type III secretion system (T3SS) is required for Xanthomonas citri subsp. citri (Xcc) virulence by translocating effectors into host cytoplasm to promote disease development. The T3SS is controlled by the master transcriptional regulators HrpG and HrpX. While the function of HrpG and HrpX are well characterized, their upstream regulation remains elusive. By using transposon mutagenesis, we identified XAC3052, a TetR-family transcriptional regulator, which regulates T3SS gene expression. Deletion of XAC3052 caused significant reduction in the expression of T3SS and effector genes in vitro and in planta; as well as reduction of virulence in sweet orange (Citrus sinensis). Overexpression of hrpG restored the virulence of ∆XAC3052, suggesting that the loss of virulence is caused by reduction of T3SS gene expression. XAC3052 directly binds to the promoter region and represses the transcription of fadE, mhpC and fadH genes. FadE, MhpC and FadH are not involved in T3SS regulation, but involved in fatty acid catabolism. ∆XAC3052 displays altered fatty acid composition and retarded growth in environments limited in fatty acids. Exogenously supplemented long-chain fatty acids activate the fadE/mhpC promoter and suppress T3SS promoters in wild-type Xac but not in ∆XAC3052. Moreover, the binding of XAC3052 to its target promoter was disrupted by long-chain fatty acids in vitro. Herein, XAC3052 is designated as TfmR (T3SS and Fatty acid Mechanism Regulator). This study identifies a novel regulator of fatty acid metabolism and suggests that fatty acids play an important role in the metabolic control of virulence in Xcc.
Collapse
Affiliation(s)
- Doron Teper
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural SciencesUniversity of Florida700 Experiment Station RoadLake Alfred33850USA
| | - Yanan Zhang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural SciencesUniversity of Florida700 Experiment Station RoadLake Alfred33850USA
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural SciencesUniversity of Florida700 Experiment Station RoadLake Alfred33850USA
- China-USA Citrus Huanglongbing Joint Laboratory (A joint laboratory of The University of Florida’s Institute of Food and Agricultural Sciences and Gannan Normal University), National Navel Orange Engineering Research CenterGannan Normal UniversityGanzhou341000JiangxiChina
| |
Collapse
|
29
|
Park HJ, Jung B, Lee J, Han SW. Functional characterization of a putative DNA methyltransferase, EadM, in Xanthomonas axonopodis pv. glycines by proteomic and phenotypic analyses. Sci Rep 2019; 9:2446. [PMID: 30792399 PMCID: PMC6385262 DOI: 10.1038/s41598-019-38650-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/02/2019] [Indexed: 11/13/2022] Open
Abstract
Xanthomonas axonopodis pv. glycines (Xag) is a phytopathogenic bacterium causing bacterial pustule disease in soybean. Functions of DNA methyltransferases have been characterized in animal pathogenic bacteria, but are poorly understood in plant pathogens. Here, we report that functions of a putative DNA methyltransferase, EadM, in Xag. An EadM-overexpressing strain, Xag(EadM), was less virulent than the wild-type carrying an empty vector, Xag(EV). Interestingly, the viable cell numbers of Xag(EadM) were much lower (10-fold) than those of Xag(EV) at the same optical density. Comparative proteomic analysis revealed that proteins involved in cell wall/membrane/envelope and iron-transport were more abundant. Based on proteomic analysis we carried out diverse phenotypic assays. Scanning electron microscopy revealed abnormal bacterial envelopes in Xag(EadM). Additionally, Xag(EadM) showed decreased stress tolerance against ciprofloxacin and sorbitol, but enhanced resistance to desiccation. Exopolysaccharide production in Xag(EadM) was also decreased. Production of siderophores, which are iron-chelators, was much higher in Xag(EadM). As in Xag, Escherichia coli expressing EadM showed significantly reduced (1000-fold) viable cell numbers at the same optical density. Thus, EadM is associated with virulence, envelope biogenesis, stress tolerance, exopolysaccharide production, and siderophore production. Our results provide valuable and fundamental information regarding DNA methyltransferase functions and their related cellular mechanisms in plant pathogenic bacteria.
Collapse
Affiliation(s)
- Hye-Jee Park
- Department of Integrative Plant Science, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Boknam Jung
- Department of Applied Biology, Dong-A University, Busan, 49315, Republic of Korea
| | - Jungkwan Lee
- Department of Applied Biology, Dong-A University, Busan, 49315, Republic of Korea
| | - Sang-Wook Han
- Department of Integrative Plant Science, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
30
|
Han SW, Lee MA, Yoo Y, Cho MH, Lee SW. Genome-wide Screening to Identify Responsive Regulators Involved in the Virulence of Xanthomonas oryzae pv. oryzae. THE PLANT PATHOLOGY JOURNAL 2019; 35:84-89. [PMID: 30828283 PMCID: PMC6385649 DOI: 10.5423/ppj.nt.09.2018.0193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 06/09/2023]
Abstract
Two-component systems (TCSs) are critical to the pathogenesis of Xanthomonas oryzae pv. oryzae (Xoo). We mutated 55 of 62 genes annotated as responsive regulators (RRs) of TCSs in the genome of Xoo strain PXO99A and identified 9 genes involved in Xoo virulence. Four (rpfG, hrpG, stoS, and detR) of the 9 genes were previously reported as key regulators of Xoo virulence and the other 5 have not been characterized. Lesion lengths on rice leaves inoculated with the mutants were shorter than those of the wild type and were significantly restored with gene complementation. The population density of the 5 mutants in planta was smaller than that of PXO99A at 14 days after inoculation, but the growth curves of the mutants in rich medium were similar to those of the wild type. These newly reported RR genes will facilitate studies on the function of TCSs and of the integrated regulation of TCSs for Xoo pathogenesis.
Collapse
Affiliation(s)
- Sang-Wook Han
- Department of Integrative Plant Science, Chung-Ang University, Anseong 17546,
Korea
| | - Mi-Ae Lee
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104,
Korea
- Crop Biotech Institute, Kyung Hee University, Yongin 17104,
Korea
| | - Youngchul Yoo
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104,
Korea
- Crop Biotech Institute, Kyung Hee University, Yongin 17104,
Korea
| | - Man-Ho Cho
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104,
Korea
| | - Sang-Won Lee
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104,
Korea
- Crop Biotech Institute, Kyung Hee University, Yongin 17104,
Korea
| |
Collapse
|
31
|
Matilla MA, Krell T. The effect of bacterial chemotaxis on host infection and pathogenicity. FEMS Microbiol Rev 2018; 42:4563582. [PMID: 29069367 DOI: 10.1093/femsre/fux052] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/19/2017] [Indexed: 12/26/2022] Open
Abstract
Chemotaxis enables microorganisms to move according to chemical gradients. Although this process requires substantial cellular energy, it also affords key physiological benefits, including enhanced access to growth substrates. Another important implication of chemotaxis is that it also plays an important role in infection and disease, as chemotaxis signalling pathways are broadly distributed across a variety of pathogenic bacteria. Furthermore, current research indicates that chemotaxis is essential for the initial stages of infection in different human, animal and plant pathogens. This review focuses on recent findings that have identified specific bacterial chemoreceptors and corresponding chemoeffectors associated with pathogenicity. Pathogenicity-related chemoeffectors are either host and niche-specific signals or intermediates of the host general metabolism. Plant pathogens were found to contain an elevated number of chemotaxis signalling genes and functional studies demonstrate that these genes are critical for their ability to enter the host. The expanding body of knowledge of the mechanisms underlying chemotaxis in pathogens provides a foundation for the development of new therapeutic strategies capable of blocking infection and preventing disease by interfering with chemotactic signalling pathways.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| |
Collapse
|
32
|
Kumar Verma R, Samal B, Chatterjee S. Xanthomonas oryzae pv. oryzae chemotaxis components and chemoreceptor Mcp2 are involved in the sensing of constituents of xylem sap and contribute to the regulation of virulence-associated functions and entry into rice. MOLECULAR PLANT PATHOLOGY 2018; 19:2397-2415. [PMID: 30011125 PMCID: PMC6638100 DOI: 10.1111/mpp.12718] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/08/2018] [Accepted: 06/17/2018] [Indexed: 05/26/2023]
Abstract
The Xanthomonas group of phytopathogens causes several economically important diseases in crops. In the bacterial pathogen of rice, Xanthomonas oryzae pv. oryzae (Xoo), it has been proposed that chemotaxis may play a role in the entry and colonization of the pathogen inside the host. However, components of the chemotaxis system, including the chemoreceptors involved, and their role in entry and virulence, are not well defined. In this study, we show that Xoo displays a positive chemotaxis response to components of rice xylem sap-glutamine, xylose and methionine. In order to understand the role of chemotaxis components involved in the promotion of chemotaxis, entry and virulence, we performed detailed deletion mutant analysis. Analysis of mutants defective in chemotaxis components, flagellar biogenesis, expression analysis and assays of virulence-associated functions indicated that chemotaxis-mediated signalling in Xoo is involved in the regulation of several virulence-associated functions, such as motility, attachment and iron homeostasis. The ∆cheY1 mutant of Xoo exhibited a reduced expression of genes involved in motility, adhesins, and iron uptake and metabolism. We show that the expression of Xoo chemotaxis and motility components is induced under in planta conditions and is required for entry, colonization and virulence. Furthermore, deletion analysis of a putative chemoreceptor mcp2 gene revealed that chemoreceptor Mcp2 is involved in the sensing of xylem sap and constituents of xylem exudate, including methionine, serine and histidine, and plays an important role in epiphytic entry and virulence. This is the first report of the role of chemotaxis in the virulence of this important group of phytopathogens.
Collapse
Affiliation(s)
- Raj Kumar Verma
- Centre for DNA Fingerprinting and DiagnosticsUppal RoadHyderabad500039India
- Graduate StudiesManipal Academy of Higher EducationMangaluruKarnataka576104India
| | - Biswajit Samal
- Centre for DNA Fingerprinting and DiagnosticsUppal RoadHyderabad500039India
- Graduate StudiesManipal Academy of Higher EducationMangaluruKarnataka576104India
| | | |
Collapse
|
33
|
Pandey SS, Patnana PK, Padhi Y, Chatterjee S. Low-iron conditions induces the hypersensitive reaction and pathogenicity hrp genes expression in Xanthomonas and is involved in modulation of hypersensitive response and virulence. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:522-531. [PMID: 29687657 DOI: 10.1111/1758-2229.12650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
Expression of hrp (hypersensitive reaction and pathogenicity) genes inside the host is crucial for virulence of phytopathogenic bacteria. The hrp genes encode components of type3 secretion system (T3SS), HR elicitors and several regulators, which are involved in the co-ordinated expression of hrp genes in the host environment and in hrp inducing chemically defined medium. However, little is known about specific host or environmental factors which may play a role in the induction of hrp gene expression. In this study, we show that iron-limiting condition elicits induced expression of hrp genes, including type3 secretion system (T3SS) and effectors (T3E). Expression analysis using qRT-PCR and promoter probe strains suggest significant induction in the expression of Hrp and T3S-associated genes of Xanthomonas campestris pv. campestris (Xcc) under low-iron condition, and is suppressed by exogenous supplementation of iron. Furthermore, we show that with exogenous iron supplementation, wild type Xcc exhibited reduced disease symptoms in host-plant, and exhibited significant reduction in HR and callose deposition in the non-host plants. Xanthomonas oryzae and oryzicola pathovars also exhibited the iron affect, albeit to a lesser extend compared with the Xcc. Overall, our results suggest that low-iron condition inside the host may play a crucial role in pathogenicity.
Collapse
Affiliation(s)
- Sheo Shankar Pandey
- Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad 500001, India
- Graduate Studies, Manipal University, Manipal, India
| | | | - Yasobanta Padhi
- Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad 500001, India
- Graduate Studies, Manipal University, Manipal, India
| | - Subhadeep Chatterjee
- Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad 500001, India
| |
Collapse
|
34
|
Zhang ZC, Zhao M, Xu LD, Niu XN, Qin HP, Li YM, Li ML, Jiang ZW, Yang X, Huang GH, Jiang W, Tang JL, He YQ. Genome-Wide Screening for Novel Candidate Virulence Related Response Regulator Genes in Xanthomonas oryzae pv. oryzicola. Front Microbiol 2018; 9:1789. [PMID: 30131784 PMCID: PMC6090019 DOI: 10.3389/fmicb.2018.01789] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/17/2018] [Indexed: 11/13/2022] Open
Abstract
Two-component regulatory system (TCS), a major type of cellular signal transduction system, is widely used by bacteria to adapt to different conditions and to colonize certain ecological niches in response to environmental stimuli. TCSs are of distinct functional diversity, genetic diversity, and species specificity (pathovar specificity, even strain specificity) across bacterial groups. Although TCSs have been demonstrated to be crucial to the virulence of Xanthomonas, only a few researches have been reported about the studies of TCSs in Xanthomonas oryzae pathovar oryzicola (hereafter Xoc), the pathogen of rice bacterial streak disease. In the genome of Xoc strain GX01, it has been annotated 110 TCSs genes encoding 54 response regulators (RRs), 36 orthodox histidine kinase (HKs) and 20 hybrid histidine kinase (HyHKs). To evaluate the involvement of TCSs in the stress adaptation and virulence of Xoc, we mutated 50 annotated RR genes in Xoc GX01 by homologous vector integration mutagenesis and assessed their phenotypes in given conditions and tested their virulence on host rice. 17 RR genes were identified to be likely involved in virulence of Xoc, of which 10 RR genes are novel virulence genes in Xanthomonas, including three novel virulence genes for bacteria. Of the novel candidate virulence genes, some of which may be involved in the general stress adaptation, exopolysaccharide production, extracellular protease secretion and swarming motility of Xoc. Our results will facilitate further studies on revealing the biological functions of TCS genes in this phytopathogenic bacterium.
Collapse
Affiliation(s)
- Zheng-Chun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Min Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Li-Dan Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xiang-Na Niu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Hong-Ping Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yi-Ming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Mei-Lin Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Zhong-Wei Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xia Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Guang-Hui Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Wei Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Ji-Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yong-Qiang He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
35
|
Lisicka W, Fikowicz-Krosko J, Jafra S, Narajczyk M, Czaplewska P, Czajkowski R. Oxygen Availability Influences Expression of Dickeya solani Genes Associated With Virulence in Potato ( Solanum tuberosum L.) and Chicory ( Cichorium intybus L.). FRONTIERS IN PLANT SCIENCE 2018; 9:374. [PMID: 29619040 PMCID: PMC5872005 DOI: 10.3389/fpls.2018.00374] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/06/2018] [Indexed: 05/25/2023]
Abstract
Dickeya solani is a Gram-negative necrotrophic, plant pathogenic bacterium able to cause symptoms in a variety of plant species worldwide. As a facultative anaerobe, D. solani is able to infect hosts under a broad range of oxygen concentrations found in plant environments. However, little is known about oxygen-dependent gene expression in Dickeya spp. that might contribute to its success as a pathogen. Using a Tn5 transposon, harboring a promoterless gusA reporter gene, 146 mutants of D. solani IPO2222 were identified that exhibited oxygen-regulated expression of the gene into which the insertion had occurred. Of these mutants 114 exhibited higher expression under normal oxygen conditions than hypoxic conditions while 32 were more highly expressed under hypoxic conditions. The plant host colonization potential and pathogenicity as well as phenotypes likely to contribute to the ecological fitness of D. solani, including growth rate, carbon and nitrogen source utilization, production of pectinolytic enzymes, proteases, cellulases and siderophores, swimming and swarming motility and the ability to form biofilm were assessed for 37 strains exhibiting the greatest oxygen-dependent change in gene expression. Eight mutants expressed decreased ability to cause disease symptoms when inoculated into potato tubers or chicory leaves and three of these also exhibited delayed colonization of potato plants and exhibited tissue specific differences in gene expression in these various host tissues. The genes interrupted in these eight mutants encoded proteins involved in fundamental bacterial metabolism, virulence, bacteriocin and proline transport, while three encoded hypothetical or unknown proteins. The implications of environmental oxygen concentration on the ability of D. solani to cause disease symptoms in potato are discussed.
Collapse
Affiliation(s)
- Wioletta Lisicka
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdañsk and Medical University of Gdañsk, University of Gdañsk, Gdañsk, Poland
| | - Jakub Fikowicz-Krosko
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdañsk and Medical University of Gdañsk, University of Gdañsk, Gdañsk, Poland
| | - Sylwia Jafra
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdañsk and Medical University of Gdañsk, University of Gdañsk, Gdañsk, Poland
| | - Magdalena Narajczyk
- Laboratory of Electron Microscopy, Faculty of Biology, University of Gdañsk, Gdañsk, Poland
| | - Paulina Czaplewska
- Laboratory of Mass Spectrometry, Core Facility Laboratories, Intercollegiate Faculty of Biotechnology of University of Gdañsk and Medical University of Gdañsk, University of Gdañsk, Gdañsk, Poland
| | - Robert Czajkowski
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdañsk and Medical University of Gdañsk, University of Gdañsk, Gdañsk, Poland
| |
Collapse
|
36
|
Pan Y, Liang F, Li RJ, Qian W. MarR-Family Transcription Factor HpaR Controls Expression of the vgrR-vgrS Operon of Xanthomonas campestris pv. campestris. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:299-310. [PMID: 29077520 DOI: 10.1094/mpmi-07-17-0187-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
MarR (multiple antibiotic resistance regulator)-family transcription factors (TFs), which regulate the expression of virulence factors and other physiological pathways in pathogenic bacteria, are regarded as ideal molecular targets for the development of novel antimicrobial strategies. In the plant bacterial pathogen Xanthomonas campestris pv. campestris, HpaR, a typical MarR-family TF, is associated with bacterial virulence, but its mechanism of virulence regulation remains unclear. Here, we dissected the HpaR regulon using high-throughput RNA sequencing and chromatin immunoprecipitation sequencing. HpaR directly or indirectly controls the expression of approximately 448 genes; it acts both as a transcriptional activator and a repressor to control the expression of downstream genes by directly binding to their promoter regions. The consensus HpaR-binding DNA motifs contain imperfect palindromic sequences similar to [G/T]CAACAATT[C/T]TTG. In-depth analysis revealed that HpaR positively modulates transcription level of the vgrR-vgrS operon that encodes an important two-component signal transduction system to sense iron depletion and regulate bacterial virulence. Epistasis analysis demonstrated that vgrR-vgrS is a core downstream component of HpaR regulation, as overexpression of vgrR restored the phenotypic deficiencies caused by a hpaR mutation. This dissection of the HpaR regulon should facilitate future studies focused on the activating mechanism of HpaR during bacterial infection.
Collapse
Affiliation(s)
- Yue Pan
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- 2 School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; and
| | - Fang Liang
- 3 Beijing Institute of Genomics, Chinese Academy of Sciences
| | - Ru-Jiao Li
- 3 Beijing Institute of Genomics, Chinese Academy of Sciences
| | - Wei Qian
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
37
|
Javvadi S, Pandey SS, Mishra A, Pradhan BB, Chatterjee S. Bacterial cyclic β-(1,2)-glucans sequester iron to protect against iron-induced toxicity. EMBO Rep 2017; 19:172-186. [PMID: 29222343 DOI: 10.15252/embr.201744650] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/28/2017] [Accepted: 11/07/2017] [Indexed: 12/24/2022] Open
Abstract
Cellular iron homeostasis is critical for survival and growth. Bacteria employ a variety of strategies to sequester iron from the environment and to store intracellular iron surplus that can be utilized in iron-restricted conditions while also limiting the potential for the production of iron-induced reactive oxygen species (ROS). Here, we report that membrane-derived oligosaccharide (mdo) glucan, an intrinsic component of Gram-negative bacteria, sequesters the ferrous form of iron. Iron-binding, uptake, and localization experiments indicated that both secreted and periplasmic β-(1,2)-glucans bind iron specifically and promote growth under iron-restricted conditions. Xanthomonas campestris and Escherichia coli mutants blocked in the production of β-(1,2)-glucan accumulate low amounts of intracellular iron under iron-restricted conditions, whereas they exhibit elevated ROS production and sensitivity under iron-replete conditions. Our results reveal a critical role of glucan in intracellular iron homeostasis conserved in Gram-negative bacteria.
Collapse
Affiliation(s)
| | - Sheo Shankar Pandey
- Centre for DNA Fingerprinting and Diagnostics, Nampally Hyderabad, India.,Graduate Studies, Manipal University, Manipal, India
| | | | | | | |
Collapse
|
38
|
Pandey SS, Singh P, Samal B, Verma RK, Chatterjee S. Xanthoferrin Siderophore Estimation from the Cell-free Culture Supernatants of Different Xanthomonas Strains by HPLC. Bio Protoc 2017; 7:e2410. [PMID: 34541140 DOI: 10.21769/bioprotoc.2410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/25/2017] [Accepted: 06/27/2017] [Indexed: 11/02/2022] Open
Abstract
Xanthomonads can scavenge iron from the extracellular environment by secreting the siderophores, which are synthesized by the proteins encoded by xss (Xanthomonas siderophore synthesis) gene cluster. The siderophore production varies among xanthomonads in response to a limited supply of iron where Xanthomonas campestris pv. campestris (Xcc) produces less siderophores than Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc). Siderophore production can be measured by HPLC and with the CAS (Chrome azurol S)-agar plate assay, however HPLC is a more accurate method over CAS-agar plate assay for siderophore quantification in Xanthomonads. Here we describe how to quantify siderophores from xanthomonads using HPLC.
Collapse
Affiliation(s)
- Sheo Shankar Pandey
- Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad-500001, India.,Graduate studies, Manipal University, Manipal, India
| | - Prashantee Singh
- Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad-500001, India.,Graduate studies, Manipal University, Manipal, India
| | - Biswajit Samal
- Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad-500001, India.,Graduate studies, Manipal University, Manipal, India
| | - Raj Kumar Verma
- Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad-500001, India.,Graduate studies, Manipal University, Manipal, India
| | - Subhadeep Chatterjee
- Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad-500001, India
| |
Collapse
|