1
|
Udaondo Z, Schilder KA, Blesa ARM, Tena-Garitaonaindia M, Mangana JC, Daddaoua A. Transcriptional Regulatory Systems in Pseudomonas: A Comparative Analysis of Helix-Turn-Helix Domains and Two-Component Signal Transduction Networks. Int J Mol Sci 2025; 26:4677. [PMID: 40429820 PMCID: PMC12112638 DOI: 10.3390/ijms26104677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/07/2025] [Accepted: 05/10/2025] [Indexed: 05/29/2025] Open
Abstract
Bacterial communities in diverse environmental niches respond to various external stimuli for survival. A primary means of communication between bacterial cells involves one-component (OC) and two-component signal transduction systems (TCSs). These systems are key for sensing environmental changes and regulating bacterial physiology. TCSs, which are the more complex of the two, consist of a sensor histidine kinase for receiving an external input and a response regulator to convey changes in bacterial cell physiology. For numerous reasons, TCSs have emerged as significant targets for antibacterial drug design due to their role in regulating expression level, bacterial viability, growth, and virulence. Diverse studies have shown the molecular mechanisms by which TCSs regulate virulence and antibiotic resistance in pathogenic bacteria. In this study, we performed a thorough analysis of the data from multiple public databases to assemble a comprehensive catalog of the principal detection systems present in both the non-pathogenic Pseudomonas putida KT2440 and the pathogenic Pseudomonas aeruginosa PAO1 strains. Additionally, we conducted a sequence analysis of regulatory elements associated with transcriptional proteins. These were classified into regulatory families based on Helix-turn-Helix (HTH) protein domain information, a common structural motif for DNA-binding proteins. Moreover, we highlight the function of bacterial TCSs and their involvement in functions essential for bacterial survival and virulence. This comparison aims to identify novel targets that can be exploited for the development of advanced biotherapeutic strategies, potentially leading to new treatments for bacterial infections.
Collapse
Affiliation(s)
- Zulema Udaondo
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidin, 18008 Granada, Spain
| | - Kelsey Aguirre Schilder
- Department of Biochemistry and Molecular Biology II, Pharmacy School, University of Granada, 18071 Granada, Spain
| | - Ana Rosa Márquez Blesa
- Department of Biochemistry and Molecular Biology II, Pharmacy School, University of Granada, 18071 Granada, Spain
| | - Mireia Tena-Garitaonaindia
- Department of Biochemistry and Molecular Biology II, Pharmacy School, University of Granada, 18071 Granada, Spain
| | - José Canto Mangana
- Department of Biochemistry and Molecular Biology II, Pharmacy School, University of Granada, 18071 Granada, Spain
- Pharmacy Services, A.S. Hospital de Poniente de Almería, 04700 El Ejido, Spain
| | - Abdelali Daddaoua
- Department of Biochemistry and Molecular Biology II, Pharmacy School, University of Granada, 18071 Granada, Spain
- Biosanitary Research Institute of Granada (IBS), 18014 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. Armilla, 18016 Granada, Spain
| |
Collapse
|
2
|
Niu KM, Lee YJ, Jung HI, Kothari D, Singh D, Kim SK. Functional analysis of quorum sensing-mediated pathogenicity in Burkholderia contaminans SK875 using transposon mutagenesis. Microb Pathog 2025; 200:107332. [PMID: 39864765 DOI: 10.1016/j.micpath.2025.107332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/07/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Burkholderia contaminans SK875, a member of Burkholderia cepacia complex (Bcc), are known to cause lung infections in cystic fibrosis patients. To gain deeper insights into its quorum sensing (QS)-mediated pathogenicity, we employed a transposon (Tn) insertion-based random mutagenesis approach. A Tn mutant library comprising of 15,000 transconjugants was generated through conjugation between wild-type (WT) recipient B. contaminans SK875 and the donor E. coli BW20767 carrying pRL27 plasmid. From this library, 26 mutants were initially screened using the reporter strain Agrobacterium tumefaciens NT1, identified as blue-colored indicator colonies. These mutants were further analyzed for phenotypic variations related to autoinducer (AI) production, morphological changes, motility, biofilm formation, protease activity, and virulence in Caenorhabditis elegans. The Tn insertion sites in the mutants were sequenced and aligned with the reference genome of B. contaminans SK875 (PRJNA439184). Sequence analysis revealed the Tn5 insertion in genes encoding Ribonuclease P protein, a hypothetical protein, gamma-glutamyltranspeptidase 1, GCN5-related N-acetyltransferase (DUF1311), cytochrome C oxidase assembly protein, glutamyl-Q tRNA synthetase, AFG1-like ATPase, chorismate synthase, and aldehyde oxidase. Compared to wild-type (WT) strain B. contaminans SK875, the mutants (SK1917, SK1925, SK1926, SK1927, SK1935) exhibited attenuated AI production, impaired swimming and swarming motility, reduced biofilm formation and protease activity, and decreased virulence in C. elegans. We suggest that these genes are likely involved in the QS-dependent pathogenicity of B. contaminans. This study also introduces a visual color-screening method for identifying novel gene functions related to QS-dependent pathogenicity in Burkholderia species.
Collapse
Affiliation(s)
- Kai-Min Niu
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Yun Jung Lee
- Department of Animal Science and Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hae-In Jung
- Department of Animal Science and Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Damini Kothari
- Department of Animal Science and Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Digar Singh
- Department of Botany and Microbiology, Hemvati Nandan Bahuguna Garhwal University, (Garhwal), Srinagar, Uttarakhand, 246174, India.
| | - Soo-Ki Kim
- Department of Animal Science and Technology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
3
|
Carey CJ, Duggan N, Drabinska J, McClean S. Harnessing hypoxia: bacterial adaptation and chronic infection in cystic fibrosis. FEMS Microbiol Rev 2025; 49:fuaf018. [PMID: 40312783 PMCID: PMC12071387 DOI: 10.1093/femsre/fuaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 04/04/2025] [Accepted: 04/29/2025] [Indexed: 05/03/2025] Open
Abstract
The exquisite ability of bacteria to adapt to their environment is essential for their capacity to colonize hostile niches. In the cystic fibrosis (CF) lung, hypoxia is among several environmental stresses that opportunistic pathogens must overcome to persist and chronically colonize. Although the role of hypoxia in the host has been widely reviewed, the impact of hypoxia on bacterial pathogens has not yet been studied extensively. This review considers the bacterial oxygen-sensing mechanisms in three species that effectively colonize the lungs of people with CF, namely Pseudomonas aeruginosa, Burkholderia cepacia complex, and Mycobacterium abscessus and draws parallels between their three proposed oxygen-sensing two-component systems: BfiSR, FixLJ, and DosRS, respectively. Moreover, each species expresses regulons that respond to hypoxia: Anr, Lxa, and DosR, and encode multiple proteins that share similar homologies and function. Many adaptations that these pathogens undergo during chronic infection, including antibiotic resistance, protease expression, or changes in motility, have parallels in the responses of the respective species to hypoxia. It is likely that exposure to hypoxia in their environmental habitats predispose these pathogens to colonization of hypoxic niches, arming them with mechanisms than enable their evasion of the immune system and establish chronic infections. Overcoming hypoxia presents a new target for therapeutic options against chronic lung infections.
Collapse
Affiliation(s)
- Ciarán J Carey
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Niamh Duggan
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Joanna Drabinska
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Siobhán McClean
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
4
|
Yang C, Cui C, Deng F. The mntH gene of Burkholderia cenocepacia influences motility and quorum sensing to control virulence. Braz J Microbiol 2024; 55:3769-3780. [PMID: 39230636 PMCID: PMC11711592 DOI: 10.1007/s42770-024-01506-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/25/2024] [Indexed: 09/05/2024] Open
Abstract
Quorum sensing (QS) signals widely exist in bacteria to control biological functions in response to populations of cells. Burkholderia cenocepacia, an important opportunistic pathogen in patients with cystic fibrosis (CF), is commonly found in the environment and mostly utilizes the N-acylhomoserine lactone (AHL) and cis-2-dodecenoic acid (BDSF) QS systems to control biological functions. Our previous study illuminated the detailed mechanism by which B.cenocepacia integrates BDSF and cyclic diguanosine monophosphate (c-di-GMP) signals to control virulence. Here, we employed Tn5 transposon mutagenesis to identify genes related to the BDSF QS system. One of the most significantly attenuated mutants had an insertion in the mntH gene. Here, we showed that MntH (Bcam0836), a manganese transport protein, controls QS-regulated phenotypes, including motility, biofilm formation and virulence. We also found that. BDSF production was attenuated at both the gene and signaling levels in the Bcam0836 mutant, and that Bcam0836 influenced the expression of some genes regulated by the BDSF receptor RpfR and the downstream regulator GtrR. These results show that the manganese transport protein. MntH modulates a subset of genes and functions regulated by the QS system in B. cenocepacia.
Collapse
Affiliation(s)
- Chunxi Yang
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, China.
| | - Chaoyu Cui
- Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Fengyi Deng
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
5
|
Sanders BR, Miller JE, Ahmidouch N, Graves JL, Thomas MD. Genotype-by-environment interactions govern fitness changes associated with adaptive mutations in two-component response systems. Front Genet 2024; 15:1349507. [PMID: 38463171 PMCID: PMC10920338 DOI: 10.3389/fgene.2024.1349507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/02/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction: Two-component response systems (TCRS) are the main mechanism by which prokaryotes acclimate to changing environments. These systems are composed of a membrane bound histidine kinase (HK) that senses external signals and a response regulator (RR) that activates transcription of response genes. Despite their known role in acclimation, little is known about the role TCRS play in environmental adaptation. Several experimental evolution studies have shown the acquisition of mutations in TCRS during adaptation, therefore here we set out to characterize the adaptive mechanism resulting from these mutations and evaluate whether single nucleotide changes in one gene could induce variable genotype-by-environment (GxE) interactions. Methods: To do this, we assessed fitness changes and differential gene expression for four adaptive mutations in cusS, the gene that encodes the HK CusS, acquired by Escherichia coli during silver adaptation. Results: Fitness assays showed that as the environment changed, each mutant displayed a unique fitness profile with greatest fitness in the original selection environment. RNAseq then indicated that, in ± silver nitrate, each mutant induces a primary response that upregulates cusS, its RR cusR, and constitutively expresses the target response genes cusCFBA. This then induces a secondary response via differential expression of genes regulated by the CusR through TCRS crosstalk. Finally, each mutant undergoes fitness tuning through unique tertiary responses that result in gene expression patterns specific for the genotype, the environment and optimized for the original selection conditions. Discussion: This three-step response shows that different mutations in a single gene leads to individualized phenotypes governed by unique GxE interactions that not only contribute to transcriptional divergence but also to phenotypic plasticity.
Collapse
Affiliation(s)
| | | | | | | | - Misty D. Thomas
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| |
Collapse
|
6
|
Mansour KE, Qi Y, Yan M, Ramström O, Priebe GP, Schaefers MM. Small-molecule activators of a bacterial signaling pathway inhibit virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.02.569726. [PMID: 38076823 PMCID: PMC10705554 DOI: 10.1101/2023.12.02.569726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The Burkholderia genus encompasses multiple human pathogens, including potential bioterrorism agents, that are often extensively antibiotic resistant. The FixLJ pathway in Burkholderia is a two-component system that regulates virulence. Previous work showed that fixLJ mutations arising during chronic infection confer increased virulence while decreasing the activity of the FixLJ pathway. We hypothesized that small-molecule activators of the FixLJ pathway could serve as anti-virulence therapies. Here, we developed a high-throughput assay that screened over 28,000 compounds and identified 11 that could specifically active the FixLJ pathway. Eight of these compounds, denoted Burkholderia Fix Activator (BFA) 1-8, inhibited the intracellular survival of Burkholderia in THP-1-dervived macrophages in a fixLJ-dependent manner without significant toxicity. One of the compounds, BFA1, inhibited the intracellular survival in macrophages of multiple Burkholderia species. Predictive modeling of the interaction of BFA1 with Burkholderia FixL suggests that BFA1 binds to the putative ATP/ADP binding pocket in the kinase domain, indicating a potential mechanism for pathway activation. These results indicate that small-molecule FixLJ pathway activators are promising anti-virulence agents for Burkholderia and define a new paradigm for antibacterial therapeutic discovery.
Collapse
Affiliation(s)
- Kathryn E. Mansour
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital; Boston, MA, USA
| | - Yunchuan Qi
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA 01854
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA 01854
| | - Olof Ramström
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA 01854
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden
| | - Gregory P. Priebe
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital; Boston, MA, USA
- Department of Anaesthesia, Harvard Medical School; Boston, MA, USA
| | - Matthew M. Schaefers
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital; Boston, MA, USA
- Department of Anaesthesia, Harvard Medical School; Boston, MA, USA
| |
Collapse
|
7
|
Lieberman TD. Detecting bacterial adaptation within individual microbiomes. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210243. [PMID: 35989602 PMCID: PMC9393564 DOI: 10.1098/rstb.2021.0243] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/17/2022] [Indexed: 12/11/2022] Open
Abstract
The human microbiome harbours a large capacity for within-person adaptive mutations. Commensal bacterial strains can stably colonize a person for decades, and billions of mutations are generated daily within each person's microbiome. Adaptive mutations emerging during health might be driven by selective forces that vary across individuals, vary within an individual, or are completely novel to the human population. Mutations emerging within individual microbiomes might impact the immune system, the metabolism of nutrients or drugs, and the stability of the community to perturbations. Despite this potential, relatively little attention has been paid to the possibility of adaptive evolution within complex human-associated microbiomes. This review discusses the promise of studying within-microbiome adaptation, the conceptual and technical limitations that may have contributed to an underappreciation of adaptive de novo mutations occurring within microbiomes to date, and methods for detecting recent adaptive evolution. This article is part of a discussion meeting issue 'Genomic population structures of microbial pathogens'.
Collapse
Affiliation(s)
- Tami D. Lieberman
- Department of Civil and Environmental Engineering, Institute for Medical Engineering and Science,Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute, Cambridge, MA, USA
- Ragon Institute, Cambridge, MA, USA
| |
Collapse
|
8
|
Identification of Key Factors for Anoxic Survival of B. cenocepacia H111. Int J Mol Sci 2022; 23:ijms23094560. [PMID: 35562951 PMCID: PMC9104464 DOI: 10.3390/ijms23094560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 11/21/2022] Open
Abstract
Burkholderia cenocepacia is an opportunistic pathogen that can lead to severe infections in patients suffering from cystic fibrosis (CF) and chronic granulomatous disease. Being an obligate aerobe, B. cenocepacia is unable to grow in the absence of oxygen. In this study, we show that the CF isolate B. cenocepacia H111 can survive in the absence of oxygen. Using a transposon sequencing (Tn-seq) approach, we identified 71 fitness determinants involved in anoxic survival, including a Crp-Fnr family transcriptional regulatory gene (anr2), genes coding for the sensor kinase RoxS and its response regulator RoxR, the sigma factor for flagella biosynthesis (FliA) and subunits of a cytochrome bd oxidase (CydA, CydB and the potentially novel subunit CydP). Individual knockouts of these fitness determinants significantly reduced anoxic survival, and inactivation of both anr copies is shown to be lethal under anoxic conditions. We also show that the two-component system RoxS/RoxR and FliA are important for virulence and swarming/swimming, respectively.
Collapse
|
9
|
Bates KA, Sommer U, Hopkins KP, Shelton JMG, Wierzbicki C, Sergeant C, Tapley B, Michaels CJ, Schmeller DS, Loyau A, Bosch J, Viant MR, Harrison XA, Garner TWJ, Fisher MC. Microbiome function predicts amphibian chytridiomycosis disease dynamics. MICROBIOME 2022; 10:44. [PMID: 35272699 PMCID: PMC8908643 DOI: 10.1186/s40168-021-01215-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/10/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND The fungal pathogen Batrachochytrium dendrobatidis (Bd) threatens amphibian biodiversity and ecosystem stability worldwide. Amphibian skin microbial community structure has been linked to the clinical outcome of Bd infections, yet its overall functional importance is poorly understood. METHODS Microbiome taxonomic and functional profiles were assessed using high-throughput bacterial 16S rRNA and fungal ITS2 gene sequencing, bacterial shotgun metagenomics and skin mucosal metabolomics. We sampled 56 wild midwife toads (Alytes obstetricans) from montane populations exhibiting Bd epizootic or enzootic disease dynamics. In addition, to assess whether disease-specific microbiome profiles were linked to microbe-mediated protection or Bd-induced perturbation, we performed a laboratory Bd challenge experiment whereby 40 young adult A. obstetricans were exposed to Bd or a control sham infection. We measured temporal changes in the microbiome as well as functional profiles of Bd-exposed and control animals at peak infection. RESULTS Microbiome community structure and function differed in wild populations based on infection history and in experimental control versus Bd-exposed animals. Bd exposure in the laboratory resulted in dynamic changes in microbiome community structure and functional differences, with infection clearance in all but one infected animal. Sphingobacterium, Stenotrophomonas and an unclassified Commamonadaceae were associated with wild epizootic dynamics and also had reduced abundance in laboratory Bd-exposed animals that cleared infection, indicating a negative association with Bd resistance. This was further supported by microbe-metabolite integration which identified functionally relevant taxa driving disease outcome, of which Sphingobacterium and Bd were most influential in wild epizootic dynamics. The strong correlation between microbial taxonomic community composition and skin metabolome in the laboratory and field is inconsistent with microbial functional redundancy, indicating that differences in microbial taxonomy drive functional variation. Shotgun metagenomic analyses support these findings, with similar disease-associated patterns in beta diversity. Analysis of differentially abundant bacterial genes and pathways indicated that bacterial environmental sensing and Bd resource competition are likely to be important in driving infection outcomes. CONCLUSIONS Bd infection drives altered microbiome taxonomic and functional profiles across laboratory and field environments. Our application of multi-omics analyses in experimental and field settings robustly predicts Bd disease dynamics and identifies novel candidate biomarkers of infection. Video Abstract.
Collapse
Affiliation(s)
- Kieran A Bates
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
- MRC Centre for GlobaI Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, W2 1PG, UK.
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK.
| | - Ulf Sommer
- NERC Biomolecular Analysis Facility - Metabolomics Node (NBAF-B), School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Kevin P Hopkins
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Jennifer M G Shelton
- MRC Centre for GlobaI Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, W2 1PG, UK
| | - Claudia Wierzbicki
- MRC Centre for GlobaI Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, W2 1PG, UK
| | - Christopher Sergeant
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Benjamin Tapley
- ZSL London Zoo, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | | | - Dirk S Schmeller
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France
| | - Adeline Loyau
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhütte 2, 16775, Stechlin, Germany
| | - Jaime Bosch
- IMIB Biodiversity Research Institute (CSIC-University of Oviedo), 33600, Mieres, Spain
| | - Mark R Viant
- NERC Biomolecular Analysis Facility - Metabolomics Node (NBAF-B), School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Xavier A Harrison
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4DQ, UK
| | - Trenton W J Garner
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Matthew C Fisher
- MRC Centre for GlobaI Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, W2 1PG, UK
| |
Collapse
|
10
|
Proteomic Response of Deinococcus radiodurans to Short-Term Real Microgravity during Parabolic Flight Reveals Altered Abundance of Proteins Involved in Stress Response and Cell Envelope Functions. Life (Basel) 2021; 12:life12010023. [PMID: 35054415 PMCID: PMC8779699 DOI: 10.3390/life12010023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/22/2022] Open
Abstract
Rapidly evolving space exploration makes understanding the short- and long- term effects of microgravity on humans, plants, and microorganisms an important task. The ubiquitous presence of the gravitational force has had an influence on the development of all living entities on Earth, and short- and long-term changes in perceived gravitational force can induce notable changes within cells. Deinococcus radiodurans is the Gram-positive bacterium that is best known for its extreme resistance to UV-C and gamma radiation, oxidation stress, and desiccation. Thus increased interest has been placed on this species in the context of space research. The present study aims to elucidate the short-term proteomic response of this species to real microgravity during parabolic flight. Overnight cultures of D. radiodurans were subjected to microgravity during a single parabola, and metabolic activity was quenched using methanol. Proteins were extracted and subsequently measured using HPLC nESI MS/MS. The results, such as the enrichment of the peptidoglycan biosynthesis pathway with differentially abundant proteins and altered S-layer protein abundance, suggested molecular rearrangements in the cell envelope of D. radiodurans. Altered abundance of proteins involved in energy metabolism and DNA repair could be linked with increased endogenous ROS production that contributes to the stress response. Moreover, changes in protein abundance in response to microgravity show similarities with previously reported stress responses. Thus, the present results could be used to further investigate the complex regulation of the remarkable stress management of this bacterium.
Collapse
|
11
|
Abstract
Microbes are constantly evolving. Laboratory studies of bacterial evolution increase our understanding of evolutionary dynamics, identify adaptive changes, and answer important questions that impact human health. During bacterial infections in humans, however, the evolutionary parameters acting on infecting populations are likely to be much more complex than those that can be tested in the laboratory. Nonetheless, human infections can be thought of as naturally occurring in vivo bacterial evolution experiments, which can teach us about antibiotic resistance, pathogenesis, and transmission. Here, we review recent advances in the study of within-host bacterial evolution during human infection and discuss practical considerations for conducting such studies. We focus on 2 possible outcomes for de novo adaptive mutations, which we have termed "adapt-and-live" and "adapt-and-die." In the adapt-and-live scenario, a mutation is long lived, enabling its transmission on to other individuals, or the establishment of chronic infection. In the adapt-and-die scenario, a mutation is rapidly extinguished, either because it carries a substantial fitness cost, it arises within tissues that block transmission to new hosts, it is outcompeted by more fit clones, or the infection resolves. Adapt-and-die mutations can provide rich information about selection pressures in vivo, yet they can easily elude detection because they are short lived, may be more difficult to sample, or could be maladaptive in the long term. Understanding how bacteria adapt under each of these scenarios can reveal new insights about the basic biology of pathogenic microbes and could aid in the design of new translational approaches to combat bacterial infections.
Collapse
Affiliation(s)
- Matthew J. Culyba
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Daria Van Tyne
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
12
|
Abstract
Bacteria in the Burkholderia cepacia complex (BCC) are significant pathogens for people with cystic fibrosis (CF) and are often extensively antibiotic resistant. Here, we assess the impacts of clinically observed mutations in fixL, which encodes the sensor histidine kinase FixL. FixL along with FixJ compose a two-component system that regulates multiple phenotypes. Mutations in fixL across two species, B. dolosa and B. multivorans, have shown evidence of positive selection during chronic lung infection in CF. Herein, we find that BCC carrying the conserved, ancestral fixL sequence have lower survival in macrophages and in murine pneumonia models than mutants carrying evolved fixL sequences associated with clinical decline in CF patients. In vitro phosphotransfer experiments found that one evolved FixL protein, W439S, has a reduced ability to autophosphorylate and phosphorylate FixJ, while LacZ reporter experiments demonstrate that B. dolosa carrying evolved fixL alleles has reduced fix pathway activity. Interestingly, B. dolosa carrying evolved fixL alleles was less fit in a soil assay than those strains carrying the ancestral allele, demonstrating that increased survival of these variants in macrophages and the murine lung comes at a potential expense in their environmental reservoir. Thus, modulation of the two-component system encoded by fixLJ by point mutations is one mechanism that allows BCC to adapt to the host infection environment.
Collapse
|
13
|
Phenn J, Pané-Farré J, Meukow N, Klein A, Troitzsch A, Tan P, Fuchs S, Wagner GE, Lichtenegger S, Steinmetz I, Kohler C. RegAB Homolog of Burkholderia pseudomallei is the Master Regulator of Redox Control and involved in Virulence. PLoS Pathog 2021; 17:e1009604. [PMID: 34048488 PMCID: PMC8191878 DOI: 10.1371/journal.ppat.1009604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 06/10/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022] Open
Abstract
Burkholderia pseudomallei, the etiological agent of melioidosis in humans and animals, often occupies environmental niches and infection sites characterized by limited concentrations of oxygen. Versatile genomic features enable this pathogen to maintain its physiology and virulence under hypoxia, but the crucial regulatory networks employed to switch from oxygen dependent respiration to alternative terminal electron acceptors (TEA) like nitrate, remains poorly understood. Here, we combined a Tn5 transposon mutagenesis screen and an anaerobic growth screen to identify a two-component signal transduction system with homology to RegAB. We show that RegAB is not only essential for anaerobic growth, but also for full virulence in cell lines and a mouse infection model. Further investigations of the RegAB regulon, using a global transcriptomic approach, identified 20 additional regulators under transcriptional control of RegAB, indicating a superordinate role of RegAB in the B. pseudomallei anaerobiosis regulatory network. Of the 20 identified regulators, NarX/L and a FNR homolog were selected for further analyses and a role in adaptation to anaerobic conditions was demonstrated. Growth experiments identified nitrate and intermediates of the denitrification process as the likely signal activateing RegAB, NarX/L, and probably of the downstream regulators Dnr or NsrR homologs. While deletions of individual genes involved in the denitrification process demonstrated their important role in anaerobic fitness, they showed no effect on virulence. This further highlights the central role of RegAB as the master regulator of anaerobic metabolism in B. pseudomallei and that the complete RegAB-mediated response is required to achieve full virulence. In summary, our analysis of the RegAB-dependent modulon and its interconnected regulons revealed a key role for RegAB of B. pseudomallei in the coordination of the response to hypoxic conditions and virulence, in the environment and the host.
Collapse
Affiliation(s)
- Julia Phenn
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Jan Pané-Farré
- SYNMIKRO Research Center and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Nikolai Meukow
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Annelie Klein
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Anne Troitzsch
- Department for Microbial Physiology and Molecular Biology, University Greifswald, Greifswald, Germany
| | - Patrick Tan
- Genome Institute of Singapore, Singapore, Republic of Singapore
- Duke-NUS Medical School Singapore, Singapore, Republic of Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Republic of Singapore
| | - Stephan Fuchs
- FG13 Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany
| | - Gabriel E Wagner
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria
| | - Sabine Lichtenegger
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria
| | - Ivo Steinmetz
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria
| | - Christian Kohler
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
14
|
Pimenta AI, Bernardes N, Alves MM, Mil-Homens D, Fialho AM. Burkholderia cenocepacia transcriptome during the early contacts with giant plasma membrane vesicles derived from live bronchial epithelial cells. Sci Rep 2021; 11:5624. [PMID: 33707642 PMCID: PMC7970998 DOI: 10.1038/s41598-021-85222-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/22/2021] [Indexed: 01/31/2023] Open
Abstract
Burkholderia cenocepacia is known for its capacity of adherence and interaction with the host, causing severe opportunistic lung infections in cystic fibrosis patients. In this work we produced Giant Plasma Membrane Vesicles (GPMVs) from a bronchial epithelial cell line and validated their use as a cell-like alternative to investigate the steps involved in the adhesion process of B. cenocepacia. RNA-sequencing was performed and the analysis of the B. cenocepacia K56-2 transcriptome after the first contacts with the surface of host cells allowed the recognition of genes implicated in bacterial adaptation and virulence-associated functions. The sensing of host membranes led to a transcriptional shift that caused a cascade of metabolic and physiological adaptations to the host specific environment. Many of the differentially expressed genes encode proteins related with central metabolic pathways, transport systems, cellular processes, and virulence traits. The understanding of the changes in gene expression that occur in the early steps of infection can uncover new proteins implicated in B. cenocepacia-host cell adhesion, against which new blocking agents could be designed to control the progression of the infectious process.
Collapse
Affiliation(s)
- Andreia I. Pimenta
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Nuno Bernardes
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Marta M. Alves
- grid.9983.b0000 0001 2181 4263CQE Instituto Superior Técnico, Departamento de Engenharia Química, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Dalila Mil-Homens
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Arsenio M. Fialho
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal ,grid.9983.b0000 0001 2181 4263Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
15
|
Connolly JPR, Roe AJ, O'Boyle N. Prokaryotic life finds a way: insights from evolutionary experimentation in bacteria. Crit Rev Microbiol 2020; 47:126-140. [PMID: 33332206 DOI: 10.1080/1040841x.2020.1854172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
While evolution proceeds through the generation of random variant alleles, the application of selective pressures can select for subsets of mutations that confer fitness-improving physiological benefits. This, in essence, defines the process of adaptive evolution. The rapid replication rate of bacteria has allowed for the design of experiments to study these processes over a reasonable timeframe within a laboratory setting. This has been greatly assisted by advances in tractability of diverse microorganisms, next generation sequencing technologies and bioinformatic analysis pipelines. Examining the processes by which organisms adapt their genetic code to cope with sub-optimal growth conditions has yielded a wealth of molecular insight into diverse biological processes. Here we discuss how the study of adaptive evolutionary trajectories in bacteria has allowed for improved understanding of stress responses, revealed important insight into microbial physiology, allowed for the production of highly optimised strains for use in biotechnology and increased our knowledge of the role of genomic plasticity in chronic infections.
Collapse
Affiliation(s)
- James P R Connolly
- Newcastle University Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Andrew J Roe
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Nicky O'Boyle
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
16
|
Phenotypic characterization of trimeric autotransporter adhesin-defective bcaC mutant of Burkholderia cenocepacia: cross-talk towards the histidine kinase BCAM0218. Microbes Infect 2020; 22:457-466. [DOI: 10.1016/j.micinf.2020.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 11/22/2022]
|
17
|
In Silico and In Vitro Analyses of Glucosamine and Indole Acetaldehyde Inhibit Pathogenic Regulator Gene phcA of Ralstonia solanacearum, a Causative Agent of Bacterial Wilt of Tomato. Appl Biochem Biotechnol 2020; 192:230-242. [DOI: 10.1007/s12010-020-03328-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/23/2020] [Indexed: 10/24/2022]
|
18
|
Abstract
The regulation and timely expression of bacterial genes during infection is critical for a pathogen to cause an infection. Bacteria have multiple mechanisms to regulate gene expression in response to their environment, one of which is two-component systems (TCS). TCS have two components. One component is a sensory histidine kinase (HK) that autophosphorylates when activated by a signal. The activated sensory histidine kinase then transfers the phosphoryl group to the second component, the response regulator, which activates transcription of target genes. The genus Burkholderia contains members that cause human disease and are often extensively resistant to many antibiotics. The Burkholderia cepacia complex (BCC) can cause severe lung infections in patients with cystic fibrosis (CF) or chronic granulomatous disease (CGD). BCC members have also recently been associated with several outbreaks of bacteremia from contaminated pharmaceutical products. Separate from the BCC is Burkholderia pseudomallei, which is the causative agent of melioidosis, a serious disease that occurs in the tropics, and a potential bioterrorism weapon. Bioinformatic analysis of sequenced Burkholderia isolates predicts that most strains have at least 40 TCS. The vast majority of these TCS are uncharacterized both in terms of the signals that activate them and the genes that are regulated by them. This review will highlight TCS that have been described to play a role in virulence in either the BCC or B. pseudomallei Since many of these TCS are involved in virulence, TCS are potential novel therapeutic targets, and elucidating their function is critical for understanding Burkholderia pathogenesis.
Collapse
|
19
|
Ma Y, Li L, Awasthi MK, Tian H, Lu M, Megharaj M, Pan Y, He W. Time-course transcriptome analysis reveals the mechanisms of Burkholderia sp. adaptation to high phenol concentrations. Appl Microbiol Biotechnol 2020; 104:5873-5887. [PMID: 32415321 DOI: 10.1007/s00253-020-10672-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 01/02/2023]
Abstract
Microbial tolerance to phenolic pollutants is the key to their efficient biodegradation. However, the metabolic mechanisms that allow some microorganisms to adapt to high phenol concentrations remain unclear. In this study, to reveal the underlying mechanisms of how Burkholderia sp. adapt to high phenol concentrations, the strain's tolerance ability and time-course transcriptome in combination with cell phenotype were evaluated. Surprisingly, Burkholderia sp. still grew normally after a long adaptation to a relatively high phenol concentration (1500 mg/L) and exhibited some time-dependent changes compared to unstressed cells prior to the phenol addition. Time-course transcriptome analysis results revealed that the mechanism of adaptations to phenol was an evolutionary process that transitioned from tolerance to positive degradation through precise gene regulation at appropriate times. Specifically, basal stress gene expression was upregulated and contributed to phenol tolerance, which involved stress, DNA repair, membrane, efflux pump and antioxidant protein-coding genes, while a phenol degradation gene cluster was specifically induced. Interestingly, both the catechol and protocatechuate branches of the β-ketoadipate pathway contributed to the early stage of phenol degradation, but only the catechol branch was used in the late stage. In addition, pathways involving flagella, chemotaxis, ATP-binding cassette transporters and two-component systems were positively associated with strain survival under phenolic stress. This study provides the first insights into the specific response of Burkholderia sp. to high phenol stress and shows potential for application in remediation of polluted environments. KEY POINTS: • Shock, DNA repair and antioxidant-related genes contributed to phenol tolerance. • β-Ketoadipate pathway branches differed at different stages of phenol degradation. • Adaptation mechanisms transitioned from negative tolerance to positive degradation.
Collapse
Affiliation(s)
- Yinghui Ma
- Microbiology Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an, 710043, Shaanxi, PR China.,College of Natural Resources and Environment, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Lijun Li
- Microbiology Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an, 710043, Shaanxi, PR China.
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Haixia Tian
- College of Natural Resources and Environment, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Meihuan Lu
- Microbiology Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an, 710043, Shaanxi, PR China
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Yalei Pan
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China
| | - Wenxiang He
- College of Natural Resources and Environment, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
20
|
Burkholderia cepacia Complex Contact-Dependent Growth Inhibition Systems Mediate Interbacterial Competition. J Bacteriol 2019; 201:JB.00012-19. [PMID: 30962350 DOI: 10.1128/jb.00012-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022] Open
Abstract
Burkholderia species, including opportunistic pathogens in the Burkholderia cepacia complex (Bcc), have genes to produce contact-dependent growth inhibition (CDI) system proteins. CDI is a phenomenon in which Gram-negative bacteria use the toxic C terminus of a polymorphic surface-exposed exoprotein, BcpA, to inhibit the growth of susceptible bacteria upon direct cell-cell contact. Production of a small immunity protein, BcpI, prevents autoinhibition. Although CDI systems appear widespread in Gram-negative bacteria, their function has been primarily examined in several model species. Here we demonstrate that genes encoding predicted CDI systems in Bcc species exhibit considerable diversity. We also show that Burkholderia multivorans, which causes pulmonary infections in patients with cystic fibrosis, expresses genes that encode two CDI systems, both of which appear distinct from the typical Burkholderia-type CDI system. Each system can mediate intrastrain interbacterial competition and contributes to bacterial adherence. Surprisingly, the immunity-protein-encoding bcpI gene of CDI system 1 could be mutated without obvious deleterious effects. We also show that nonpathogenic Burkholderia thailandensis uses CDI to control B. multivorans growth during coculture, providing one of the first examples of interspecies CDI and suggesting that CDI systems could be manipulated to develop therapeutic strategies targeting Bcc pathogens.IMPORTANCE Competition among bacteria affects microbial colonization of environmental niches and host organisms, particularly during polymicrobial infections. The Bcc is a group of environmental bacteria that can cause life-threatening opportunistic infections in patients who have cystic fibrosis or are immunocompromised. Understanding the mechanisms used by these bacterial pathogens to compete with one another may lead to the development of more effective therapies. Findings presented here demonstrate that a Bcc species, Burkholderia multivorans, produces functional CDI system proteins and that growth of this pathogen can be controlled by CDI system proteins produced by neighboring Burkholderia cells.
Collapse
|
21
|
González-Flores YE, de Dios R, Reyes-Ramírez F, Santero E. The response of Sphingopyxis granuli strain TFA to the hostile anoxic condition. Sci Rep 2019; 9:6297. [PMID: 31000749 PMCID: PMC6472365 DOI: 10.1038/s41598-019-42768-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/05/2019] [Indexed: 01/02/2023] Open
Abstract
Sphingomonads comprises a group of interesting aerobic bacteria because of their ubiquity and metabolic capability of degrading many recalcitrant contaminants. The tetralin-degrader Sphingopyxis granuli strain TFA has been recently reported as able to anaerobically grow using nitrate as the alternative electron acceptor and so far is the only bacterium with this ability within the sphingomonads group. To understand how strain TFA thrives under anoxic conditions, a differential transcriptomic analysis while growing under aerobic or anoxic conditions was performed. This analysis has been validated and complemented with transcription kinetics of representative genes of different functional categories. Results show an extensive change of the expression pattern of this strain in the different conditions. Consistently, the most induced operon in anoxia codes for proteases, presumably required for extensive changes in the protein profile. Besides genes that respond to lack of oxygen in other bacteria, there are a number of genes that respond to stress or to damage of macromolecules, including genes of the SOS DNA-damage response, which suggest that anoxic conditions represent a hostile environment for this bacterium. Interestingly, growth under anoxic conditions also resulted in repression of all flagellar and type IV pilin genes, which suggested that this strain shaves its appendages off while growing in anaerobiosis.
Collapse
Affiliation(s)
- Yolanda Elisabet González-Flores
- Centro Andaluz de Biología del Desarrollo/CSIC/Universidad Pablo de Olavide/Junta de Andalucía. Departamento de Biología Molecular e Ingeniería Bioquímica, Seville, Spain
| | - Rubén de Dios
- Centro Andaluz de Biología del Desarrollo/CSIC/Universidad Pablo de Olavide/Junta de Andalucía. Departamento de Biología Molecular e Ingeniería Bioquímica, Seville, Spain
| | - Francisca Reyes-Ramírez
- Centro Andaluz de Biología del Desarrollo/CSIC/Universidad Pablo de Olavide/Junta de Andalucía. Departamento de Biología Molecular e Ingeniería Bioquímica, Seville, Spain.
| | - Eduardo Santero
- Centro Andaluz de Biología del Desarrollo/CSIC/Universidad Pablo de Olavide/Junta de Andalucía. Departamento de Biología Molecular e Ingeniería Bioquímica, Seville, Spain
| |
Collapse
|
22
|
De Silva PM, Kumar A. Signal Transduction Proteins in Acinetobacter baumannii: Role in Antibiotic Resistance, Virulence, and Potential as Drug Targets. Front Microbiol 2019; 10:49. [PMID: 30761101 PMCID: PMC6363711 DOI: 10.3389/fmicb.2019.00049] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Acinetobacter baumannii is a notorious pathogen in health care settings around the world, primarily due to high resistance to antibiotics. A. baumannii also shows an impressive capability to adapt to harsh conditions in clinical settings, which contributes to its persistence in such conditions. Following their traditional role, the Two Component Systems (TCSs) present in A. baumannii play a crucial role in sensing and adapting to the changing environmental conditions. This provides A. baumannii with a greater chance of survival even in unfavorable conditions. Since all the TCSs characterized to date in A. baumannii play a role in its antibiotic resistance and virulence, understanding the underlying molecular mechanisms behind TCSs can help with a better understanding of the pathways that regulate these phenotypes. This can also guide efforts to target TCSs as novel drug targets. In this review, we discuss the roles of TCSs in A. baumannii, their molecular mechanisms, and most importantly, the potential of using small molecule inhibitors of TCSs as potential novel drug targets.
Collapse
Affiliation(s)
- P Malaka De Silva
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada.,Manitoba Chemosensory Biology Group, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
23
|
Lobão JBDS, Gondim ACS, Guimarães WG, Gilles‐Gonzalez M, Lopes LGDF, Sousa EHS. Oxygen triggers signal transduction in the DevS (DosS) sensor of
Mycobacterium tuberculosis
by modulating the quaternary structure. FEBS J 2019; 286:479-494. [DOI: 10.1111/febs.14734] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/05/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Josiane Bezerra da Silva Lobão
- Laboratory of Bioinorganic Chemistry Department of Organic and Inorganic Chemistry Federal University of Ceara Center for Sciences Fortaleza Brazil
| | - Ana C. S. Gondim
- Laboratory of Bioinorganic Chemistry Department of Organic and Inorganic Chemistry Federal University of Ceara Center for Sciences Fortaleza Brazil
| | - Wellinson G. Guimarães
- Laboratory of Bioinorganic Chemistry Department of Organic and Inorganic Chemistry Federal University of Ceara Center for Sciences Fortaleza Brazil
| | | | - Luiz Gonzaga de França Lopes
- Laboratory of Bioinorganic Chemistry Department of Organic and Inorganic Chemistry Federal University of Ceara Center for Sciences Fortaleza Brazil
| | - Eduardo H. S. Sousa
- Laboratory of Bioinorganic Chemistry Department of Organic and Inorganic Chemistry Federal University of Ceara Center for Sciences Fortaleza Brazil
| |
Collapse
|
24
|
Diaz Caballero J, Clark ST, Wang PW, Donaldson SL, Coburn B, Tullis DE, Yau YCW, Waters VJ, Hwang DM, Guttman DS. A genome-wide association analysis reveals a potential role for recombination in the evolution of antimicrobial resistance in Burkholderia multivorans. PLoS Pathog 2018; 14:e1007453. [PMID: 30532201 PMCID: PMC6300292 DOI: 10.1371/journal.ppat.1007453] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/19/2018] [Accepted: 11/02/2018] [Indexed: 01/05/2023] Open
Abstract
Cystic fibrosis (CF) lung infections caused by members of the Burkholderia cepacia complex, such as Burkholderia multivorans, are associated with high rates of mortality and morbidity. We performed a population genomics study of 111 B. multivorans sputum isolates from one CF patient through three stages of infection including an early incident isolate, deep sampling of a one-year period of chronic infection occurring weeks before a lung transplant, and deep sampling of a post-transplant infection. We reconstructed the evolutionary history of the population and used a lineage-controlled genome-wide association study (GWAS) approach to identify genetic variants associated with antibiotic resistance. We found the incident isolate was basally related to the rest of the strains and more susceptible to antibiotics from three classes (β-lactams, aminoglycosides, quinolones). The chronic infection isolates diversified into multiple, distinct genetic lineages and showed reduced antimicrobial susceptibility to the same antibiotics. The post-transplant reinfection isolates derived from the same source as the incident isolate and were genetically distinct from the chronic isolates. They also had a level of susceptibility in between that of the incident and chronic isolates. We identified numerous examples of potential parallel pathoadaptation, in which multiple mutations were found in the same locus or even codon. The set of parallel pathoadaptive loci was enriched for functions associated with virulence and resistance. Our GWAS analysis identified statistical associations between a polymorphism in the ampD locus with resistance to β-lactams, and polymorphisms in an araC transcriptional regulator and an outer membrane porin with resistance to both aminoglycosides and quinolones. Additionally, these three loci were independently mutated four, three and two times, respectively, providing further support for parallel pathoadaptation. Finally, we identified a minimum of 14 recombination events, and observed that loci carrying putative parallel pathoadaptations and polymorphisms statistically associated with β-lactam resistance were over-represented in these recombinogenic regions. Cystic fibrosis (CF) is the most common lethal genetic disorder affecting individuals of European descent. Most CF patients die at a young age due to chronic lung infections. Among the organisms involved in these infections are bacteria from the Burkholderia cepacia complex (BCC), which are strongly associated with poor clinical prognosis. This study examines how the most prevalent BCC species among CF patients, B. multivorans, evolves within a single CF patient by studying the first B. multivorans isolate recovered from the patient, one hundred isolates recovered over a one year period during the chronic infection phase, and an additional ten isolates recovered after the reinfection of the transplanted lungs. We found that B. multivorans diversify phenotypically and genetically within the CF lung over the course of the infection, and evolves into a complex population during the chronic infection phase. We found that isolates collected from the post-transplant reinfection were more closely related to descendants of the original isolate rather than those recovered in the chronic infection. We identify genetic variants statistically associated with resistance to the antibiotics, and showed that some of these variants were found in regions that show patterns of recombination (genetic exchange) between strains. We also found that genes which were mutated multiple times during overall infection were more likely to be found in regions showing signals consistent with recombination. The presence of multiple independent mutations in a gene is a very strong signal that the gene helps bacteria adapt to their environment. Overall, this study provides insight into how pathogens adapt to the host during long-term infections, specific genes associated with antibiotic resistance, and the origin of new and recurrent infections.
Collapse
Affiliation(s)
- Julio Diaz Caballero
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Shawn T. Clark
- Latner Thoracic Surgery Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Pauline W. Wang
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Sylva L. Donaldson
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Bryan Coburn
- Division of Infectious Diseases, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - D. Elizabeth Tullis
- Adult Cystic Fibrosis Clinic, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Yvonne C. W. Yau
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatric Laboratory Medicine, Division of Microbiology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Valerie J. Waters
- Department of Pediatrics, Division of Infectious Diseases, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - David M. Hwang
- Latner Thoracic Surgery Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Pathology, University Health Network, Toronto, Ontario, Canada
| | - David S. Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
25
|
Cullen L, O'Connor A, McCormack S, Owens RA, Holt GS, Collins C, Callaghan M, Doyle S, Smith D, Schaffer K, Fitzpatrick DA, McClean S. The involvement of the low-oxygen-activated locus of Burkholderia cenocepacia in adaptation during cystic fibrosis infection. Sci Rep 2018; 8:13386. [PMID: 30190507 PMCID: PMC6127331 DOI: 10.1038/s41598-018-31556-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/20/2018] [Indexed: 12/30/2022] Open
Abstract
Chronic infection with opportunistic pathogens including Burkholderia cepacia complex (Bcc) is a hallmark of cystic fibrosis (CF). We investigated the adaptive mechanisms facilitating chronic lung infection in sequential Bcc isolates from two siblings with CF (P1 and P2), one of whom also experienced intermittent blood-stream infections (P2). We previously showed increased lung cell attachment with colonisation time in both P1 and P2. WGS analysis confirmed that the isolates are closely related. Twelve genes showed three or more mutations, suggesting these were genes under selection. Single nucleotide polymorphisms (SNVs) in 45 regulatory genes were also observed. Proteomic analysis showed that the abundance of 149 proteins increased over 61-months in sputum isolates, and both time- and source-related alterations in protein abundance between the second patient’s isolates. A consistent time-dependent increase in abundance of 19 proteins encoded by a low-oxygen-activated (lxa) locus was observed in both sets of isolates. Attachment was dramatically reduced in a B. cenocepacia K56-2Δlxa-locus deletion mutant, further indicating that it encodes protein(s) involved in host-cell attachment. Time-related changes in virulence in Galleria mellonella or motility were not observed. We conclude that the lxa-locus, associated with anoxic persistence in vitro, plays a role in host-cell attachment and adaptation to chronic colonization in the hypoxic niche of the CF lung.
Collapse
Affiliation(s)
- Louise Cullen
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin, 24, Ireland
| | - Andrew O'Connor
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin, 24, Ireland.,School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Sarah McCormack
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Rebecca A Owens
- Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - Giles S Holt
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, England
| | - Cassandra Collins
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin, 24, Ireland
| | - Máire Callaghan
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin, 24, Ireland
| | - Sean Doyle
- Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - Darren Smith
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, England
| | - Kirsten Schaffer
- Department of Microbiology, St. Vincent's University Hospital, Elm Park, Dublin, Ireland
| | | | - Siobhán McClean
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin, 24, Ireland. .,School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin, 4, Ireland.
| |
Collapse
|
26
|
Mechanisms of Bacterial Tolerance and Persistence in the Gastrointestinal and Respiratory Environments. Clin Microbiol Rev 2018; 31:31/4/e00023-18. [PMID: 30068737 DOI: 10.1128/cmr.00023-18] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pathogens that infect the gastrointestinal and respiratory tracts are subjected to intense pressure due to the environmental conditions of the surroundings. This pressure has led to the development of mechanisms of bacterial tolerance or persistence which enable microorganisms to survive in these locations. In this review, we analyze the general stress response (RpoS mediated), reactive oxygen species (ROS) tolerance, energy metabolism, drug efflux pumps, SOS response, quorum sensing (QS) bacterial communication, (p)ppGpp signaling, and toxin-antitoxin (TA) systems of pathogens, such as Escherichia coli, Salmonella spp., Vibrio spp., Helicobacter spp., Campylobacter jejuni, Enterococcus spp., Shigella spp., Yersinia spp., and Clostridium difficile, all of which inhabit the gastrointestinal tract. The following respiratory tract pathogens are also considered: Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, Burkholderia cenocepacia, and Mycobacterium tuberculosis Knowledge of the molecular mechanisms regulating the bacterial tolerance and persistence phenotypes is essential in the fight against multiresistant pathogens, as it will enable the identification of new targets for developing innovative anti-infective treatments.
Collapse
|
27
|
Seven Billion Microcosms: Evolution within Human Microbiomes. mSystems 2018; 3:mSystems00171-17. [PMID: 29629416 PMCID: PMC5881023 DOI: 10.1128/msystems.00171-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/11/2018] [Indexed: 12/27/2022] Open
Abstract
Rational microbiome-based therapies may one day treat a wide range of diseases and promote wellness. Yet, we are still limited in our abilities to employ such therapies and to predict which bacterial strains have the potential to stably colonize a person. The Lieberman laboratory is working to close this knowledge gap and to develop an understanding of how individual species and strains behave in the human microbiome, including with regard to their niche ranges, survival strategies, and the degree to which they adapt to individual people. We employ system-level approaches, with a particular emphasis on using de novo mutations and evolutionary inference to reconstruct the history of bacterial lineages within individuals.
Collapse
|
28
|
Cui C, Yang C, Song S, Fu S, Sun X, Yang L, He F, Zhang LH, Zhang Y, Deng Y. A novel two-component system modulates quorum sensing and pathogenicity in Burkholderia cenocepacia. Mol Microbiol 2018; 108:32-44. [PMID: 29363827 DOI: 10.1111/mmi.13915] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/11/2018] [Accepted: 01/21/2018] [Indexed: 01/01/2023]
Abstract
Quorum sensing (QS) is widely utilized by bacterial pathogens to regulate biological functions and pathogenicity. Recent evidence has shown that QS is subject to regulatory cascades, especially two-component systems that often respond to environmental stimulation. At least two different types of QS systems regulate pathogenesis in Burkholderia cenocepacia. However, it remains unclear how this bacterial pathogen controls these QS systems. Here, we demonstrate a novel two-component system RqpSR (Regulating Quorum sensing and Pathogenicity), which plays an important role in modulating QS and pathogenesis in B. cenocepacia. We demonstrate strong protein-protein binding affinity between RqpS and RqpR. Mutations in rqpS and rqpR exerted overlapping effects on B. cenocepacia transcriptomes and phenotypes, including motility, biofilm formation and virulence. In trans expression of rqpR rescued the defective phenotypes in the rqpS mutant. RqpR controls target gene expression by direct binding to DNA promoters, including the cis-2-dodecenoic acid (BDSF) and N-acylhomoserine lactone (AHL) signal synthase gene promoters. These findings suggest that the RqpSR system strongly modulates physiology by forming a complicated hierarchy with QS systems. This type of two-component system appears to be widely distributed and coexists with the BDSF QS system in various bacterial species.
Collapse
Affiliation(s)
- Chaoyu Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.,Guangdong Innovative Research Team of Sociomicrobiology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Chunxi Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.,Guangdong Innovative Research Team of Sociomicrobiology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shihao Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.,Guangdong Innovative Research Team of Sociomicrobiology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shuna Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.,Guangdong Innovative Research Team of Sociomicrobiology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xiuyun Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.,Guangdong Innovative Research Team of Sociomicrobiology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Liang Yang
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551, Singapore
| | - Fei He
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Lian-Hui Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yinyue Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.,Guangdong Innovative Research Team of Sociomicrobiology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
29
|
Roux D, Schaefers M, Clark BS, Weatherholt M, Renaud D, Scott D, LiPuma JJ, Priebe G, Gerard C, Yoder-Himes DR. A putative lateral flagella of the cystic fibrosis pathogen Burkholderia dolosa regulates swimming motility and host cytokine production. PLoS One 2018; 13:e0189810. [PMID: 29346379 PMCID: PMC5773237 DOI: 10.1371/journal.pone.0189810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 12/01/2017] [Indexed: 01/25/2023] Open
Abstract
Burkholderia dolosa caused an outbreak in the cystic fibrosis clinic at Boston Children's Hospital and was associated with high mortality in these patients. This species is part of a larger complex of opportunistic pathogens known as the Burkholderia cepacia complex (Bcc). Compared to other species in the Bcc, B. dolosa is highly transmissible; thus understanding its virulence mechanisms is important for preventing future outbreaks. The genome of one of the outbreak strains, AU0158, revealed a homolog of the lafA gene encoding a putative lateral flagellin, which, in other non-Bcc species, is used for movement on solid surfaces, attachment to host cells, or movement inside host cells. Here, we analyzed the conservation of the lafA gene and protein sequences, which are distinct from those of the polar flagella, and found lafA homologs to be present in numerous β-proteobacteria but notably absent from most other Bcc species. A lafA deletion mutant in B. dolosa showed a greater swimming motility than wild-type due to an increase in the number of polar flagella, but did not appear to contribute to biofilm formation, host cell invasion, or murine lung colonization or persistence over time. However, the lafA gene was important for cytokine production in human peripheral blood mononuclear cells, suggesting it may have a role in recognition by the human immune response.
Collapse
Affiliation(s)
- Damien Roux
- INSERM, IAME, UMR 1137, Paris, France
- Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
- AP-HP, Louis Mourier Hospital, Intensive Care Unit, Colombes, France
| | - Matthew Schaefers
- Division of Critical Care Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Anesthesia, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bradley S. Clark
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Molly Weatherholt
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Diane Renaud
- Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, United States of America
| | - David Scott
- Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, United States of America
| | - John J. LiPuma
- Division of Pediatrics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gregory Priebe
- Division of Critical Care Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Anesthesia, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Craig Gerard
- Division of Respiratory Diseases, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Deborah R. Yoder-Himes
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
30
|
Tiwari S, Jamal SB, Hassan SS, Carvalho PVSD, Almeida S, Barh D, Ghosh P, Silva A, Castro TLP, Azevedo V. Two-Component Signal Transduction Systems of Pathogenic Bacteria As Targets for Antimicrobial Therapy: An Overview. Front Microbiol 2017; 8:1878. [PMID: 29067003 PMCID: PMC5641358 DOI: 10.3389/fmicb.2017.01878] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022] Open
Abstract
The bacterial communities in a wide range of environmental niches sense and respond to numerous external stimuli for their survival. Primarily, a source they require to follow up this communication is the two-component signal transduction system (TCS), which typically comprises a sensor Histidine kinase for receiving external input signals and a response regulator that conveys a proper change in the bacterial cell physiology. For numerous reasons, TCSs have ascended as convincing targets for antibacterial drug design. Several studies have shown that TCSs are essential for the coordinated expression of virulence factors and, in some cases, for bacterial viability and growth. It has also been reported that the expression of antibiotic resistance determinants may be regulated by some TCSs. In addition, as a mode of signal transduction, phosphorylation of histidine in bacteria differs from normal serine/threonine and tyrosine phosphorylation in higher eukaryotes. Several studies have shown the molecular mechanisms by which TCSs regulate virulence and antibiotic resistance in pathogenic bacteria. In this review, we list some of the characteristics of the bacterial TCSs and their involvement in virulence and antibiotic resistance. Furthermore, this review lists and discusses inhibitors that have been reported to target TCSs in pathogenic bacteria.
Collapse
Affiliation(s)
- Sandeep Tiwari
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Syed B. Jamal
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Syed S. Hassan
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Biochemistry Group, Department of Chemistry, Islamia College University, Peshawar, Pakistan
| | - Paulo V. S. D. Carvalho
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sintia Almeida
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Debmalya Barh
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Purba Medinipur, India
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Artur Silva
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Thiago L. P. Castro
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
31
|
Burkholderia cepacia Complex Regulation of Virulence Gene Expression: A Review. Genes (Basel) 2017; 8:genes8010043. [PMID: 28106859 PMCID: PMC5295037 DOI: 10.3390/genes8010043] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 12/31/2022] Open
Abstract
Burkholderia cepacia complex (Bcc) bacteria emerged as opportunistic pathogens in cystic fibrosis and immunocompromised patients. Their eradication is very difficult due to the high level of intrinsic resistance to clinically relevant antibiotics. Bcc bacteria have large and complex genomes, composed of two to four replicons, with variable numbers of insertion sequences. The complexity of Bcc genomes confers a high genomic plasticity to these bacteria, allowing their adaptation and survival to diverse habitats, including the human host. In this work, we review results from recent studies using omics approaches to elucidate in vivo adaptive strategies and virulence gene regulation expression of Bcc bacteria when infecting the human host or subject to conditions mimicking the stressful environment of the cystic fibrosis lung.
Collapse
|