1
|
Rajawat J, Banerjee M. Poly(ADP-ribose) polymerase1 (PARP1) and PARP inhibitors: New frontiers in cervical cancer. Biochem Biophys Res Commun 2024; 738:150943. [PMID: 39504715 DOI: 10.1016/j.bbrc.2024.150943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Cervical cancer affects more than half a million women and treatment options for advanced disease and recurrence is limited. Poly (ADP-ribose) polymerase1 (PARP1) is a critical nuclear protein regulating several components and functions of cellular machinery, including cancer. PARP1 expression and activity plays a crucial dynamics in the tumor microenvironment. PARP inhibitors are being considered as a viable option for treating BRCA deficient ovarian and breast cancer patients. However, the role of PARP1 in cervical cancer tumorigenesis is less known. The aim of the present review is to provide a comprehensive insight about the role of PARP1 in cervical cancer pathogenesis in context to PARP1 expression as a molecular marker for identifying cancer and in predicting treatment response and prognosis. PARP1 expression is found to be elevated in cervical cancer tissues in comparison to that in the normal surrounding tissues. The cellular proteins linked with PARP1 have been described along with the association of SNPs in PARP1 gene with cervical cancer. Promising results of PARP inhibitors with immunotherapy and clinical trials with cisplatin have also been discussed. This review provides an up-to-date description of PARP1 expression, its role in cervical cancer pathogenesis and reported clinical trials of PARP inhibitors in adjuvant therapy.
Collapse
Affiliation(s)
- Jyotika Rajawat
- Institute of Advanced Molecular Genetics & Infectious Diseases, ONGC-CAS, University of Lucknow, Lucknow, 226007, U.P, India; Molecular & Human Genetics Lab, Department of Zoology, University of Lucknow, Lucknow, 226007, U.P, India.
| | - Monisha Banerjee
- Molecular & Human Genetics Lab, Department of Zoology, University of Lucknow, Lucknow, 226007, U.P, India; A Laboratory of Advanced Molecular Genetics & Infectious Diseases, ONGC-CAS, University of Lucknow, Lucknow, 226007, U.P, India.
| |
Collapse
|
2
|
Mlynarczyk-Bonikowska B, Rudnicka L. HPV Infections-Classification, Pathogenesis, and Potential New Therapies. Int J Mol Sci 2024; 25:7616. [PMID: 39062859 PMCID: PMC11277246 DOI: 10.3390/ijms25147616] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
To date, more than 400 types of human papillomavirus (HPV) have been identified. Despite the creation of effective prophylactic vaccines against the most common genital HPVs, the viruses remain among the most prevalent pathogens found in humans. According to WHO data, they are the cause of 5% of all cancers. Even more frequent are persistent and recurrent benign lesions such as genital and common warts. HPVs are resistant to many disinfectants and relatively unsusceptible to external conditions. There is still no drug available to inhibit viral replication, and treatment is based on removing lesions or stimulating the host immune system. This paper presents the systematics of HPV and the differences in HPV structure between different genetic types, lineages, and sublineages, based on the literature and GenBank data. We also present the pathogenesis of diseases caused by HPV, with a special focus on the role played by E6, E7, and other viral proteins in the development of benign and cancerous lesions. We discuss further prospects for the treatment of HPV infections, including, among others, substances that block the entry of HPV into cells, inhibitors of viral early proteins, and some substances of plant origin that inhibit viral replication, as well as new possibilities for therapeutic vaccines.
Collapse
|
3
|
Duncan CL, Gunosewoyo H, Mocerino M, Payne AD. Small Molecule Inhibitors of Human Papillomavirus: A Review of Research from 1997 to 2021. Curr Med Chem 2024; 31:5308-5350. [PMID: 37448363 DOI: 10.2174/0929867331666230713165407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/14/2023] [Accepted: 05/23/2023] [Indexed: 07/15/2023]
Abstract
Human papillomavirus (HPV) infections are the cause of warts, lesions and cancer, with different types of HPV causing different symptoms. HPV infections are the primary cause of cervical cancer. There are over 220 different types of HPV, and only nine of these can currently be vaccinated. There is a need to treat these viral infections without just treating the symptoms of the infection, as is currently the main method. There is a wide range of small molecules that have been used to inhibit various stages of the HPV infectious cycle. This review examined 132 small molecules from 121 studies that specifically target aspects of HPV infections. HPV DNA encodes for six early genes (E1 to E7, skipping E3) and two late genes (L1 and L2). According to the results, these targets for small molecule inhibitors fall into three categories: those targeting E1 and E2, targeting E6 and E7 and, finally, targeting L1 and L2. Inhibitors of E6 and E7 are the most widely studied targets, with the majority of HPV inhibition in this area. While compounds targeting both E1/E2 and E6/E7 have made it to clinical trials, there has been no significant advancement on the topic.
Collapse
Affiliation(s)
- Caitlin L Duncan
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Hendra Gunosewoyo
- Curtin Medical School, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Mauro Mocerino
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Alan D Payne
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| |
Collapse
|
4
|
Kanu GA, Parambath JBM, Abu Odeh RO, Mohamed AA. Gold Nanoparticle-Mediated Gene Therapy. Cancers (Basel) 2022; 14:5366. [PMID: 36358785 PMCID: PMC9653658 DOI: 10.3390/cancers14215366] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Gold nanoparticles (AuNPs) have gained increasing attention as novel drug-delivery nanostructures for the treatment of cancers, infections, inflammations, and other diseases and disorders. They are versatile in design, synthesis, modification, and functionalization. This has many advantages in terms of gene editing and gene silencing, and their application in genetic illnesses. The development of several techniques such as CRISPR/Cas9, TALEN, and ZFNs has raised hopes for the treatment of genetic abnormalities, although more focused experimentation is still needed. AuNPs, however, have been much more effective in trending research on this subject. In this review, we highlight recently well-developed advancements that are relevant to cutting-edge gene therapies, namely gene editing and gene silencing in diseases caused by a single gene in humans by taking an edge of the unique properties of the AuNPs, which will be an important outlook for future research.
Collapse
Affiliation(s)
- Gayathri A. Kanu
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Javad B. M. Parambath
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Raed O. Abu Odeh
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ahmed A. Mohamed
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
5
|
Schrank TP, Prince AC, Sathe T, Wang X, Liu X, Alzhanov DT, Burtness B, Baldwin AS, Yarbrough WG, Issaeva N. NF-κB over-activation portends improved outcomes in HPV-associated head and neck cancer. Oncotarget 2022; 13:707-722. [PMID: 35634245 PMCID: PMC9131933 DOI: 10.18632/oncotarget.28232] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022] Open
Abstract
Evolving understanding of head and neck squamous cell carcinoma (HNSCC) is leading to more specific diagnostic disease classifications. Among HNSCC caused by the human papilloma virus (HPV), tumors harboring defects in TRAF3 or CYLD are associated with improved clinical outcomes and maintenance of episomal HPV. TRAF3 and CYLD are negative regulators of NF-κB and inactivating mutations of either leads to NF-κB overactivity. Here, we developed and validated a gene expression classifier separating HPV+ HNSCCs based on NF-κB activity. As expected, the novel classifier is strongly enriched in NF-κB targets leading us to name it the NF-κB Activity Classifier (NAC). High NF-κB activity correlated with improved survival in two independent cohorts. Using NAC, tumors with high NF-κB activity but lacking defects in TRAF3 or CYLD were identified; thus, while TRAF3 or CYLD gene defects identify the majority of tumors with NF-κB activation, unknown mechanisms leading to NF-kB activity also exist. The NAC correctly classified the functional consequences of two novel CYLD missense mutations. Using a reporter assay, we tested these CYLD mutations revealing that their activity to inhibit NF-kB was equivalent to the wild-type protein. Future applications of the NF-κB Activity Classifier may be to identify HPV+ HNSCC patients with better or worse survival with implications for treatment strategies.
Collapse
Affiliation(s)
- Travis P. Schrank
- Department of Otolaryngology/Head and Neck Surgery, UNC, Chapel Hill, NC 27599, USA
- These authors contributed equally to this work
| | - Andrew C. Prince
- Department of Otolaryngology/Head and Neck Surgery, UNC, Chapel Hill, NC 27599, USA
- These authors contributed equally to this work
| | - Tejas Sathe
- Department of Surgery, Otolaryngology, Yale, New Haven, CT 06519, USA
- Current address: Department of Surgery, Columbia University, New York, NY 10032, USA
| | - Xiaowei Wang
- Department of Pharmacology and Bioengineering, University of Illinois at Chicago, Chicago, IL 60612, USA
- Bioinformatics Core, University of Illinois Cancer Center, Chicago, IL 60612, USA
| | - Xinyi Liu
- Department of Pharmacology and Bioengineering, University of Illinois at Chicago, Chicago, IL 60612, USA
- Bioinformatics Core, University of Illinois Cancer Center, Chicago, IL 60612, USA
| | - Damir T. Alzhanov
- Department of Otolaryngology/Head and Neck Surgery, UNC, Chapel Hill, NC 27599, USA
| | - Barbara Burtness
- Department of Medicine, Yale School of Medicine, New Haven, CT 06510, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Albert S. Baldwin
- Department of Medicine, Yale School of Medicine, New Haven, CT 06510, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Wendell G. Yarbrough
- Department of Otolaryngology/Head and Neck Surgery, UNC, Chapel Hill, NC 27599, USA
- Lineberger Cancer Center, UNC, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, UNC, Chapel Hill, NC 27599, USA
- Senior authors
| | - Natalia Issaeva
- Department of Otolaryngology/Head and Neck Surgery, UNC, Chapel Hill, NC 27599, USA
- Lineberger Cancer Center, UNC, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, UNC, Chapel Hill, NC 27599, USA
- Senior authors
| |
Collapse
|
6
|
Zheng K, Egawa N, Shiraz A, Katakuse M, Okamura M, Griffin HM, Doorbar J. The Reservoir of Persistent Human Papillomavirus Infection; Strategies for Elimination Using Anti-Viral Therapies. Viruses 2022; 14:214. [PMID: 35215808 PMCID: PMC8876702 DOI: 10.3390/v14020214] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Human Papillomaviruses have co-evolved with their human host, with each of the over 200 known HPV types infecting distinct epithelial niches to cause diverse disease pathologies. Despite the success of prophylactic vaccines in preventing high-risk HPV infection, the development of HPV anti-viral therapies has been hampered by the lack of enzymatic viral functions, and by difficulties in translating the results of in vitro experiments into clinically useful treatment regimes. In this review, we discuss recent advances in anti-HPV drug development, and highlight the importance of understanding persistent HPV infections for future anti-viral design. In the infected epithelial basal layer, HPV genomes are maintained at a very low copy number, with only limited viral gene expression; factors which allow them to hide from the host immune system. However, HPV gene expression confers an elevated proliferative potential, a delayed commitment to differentiation, and preferential persistence of the infected cell in the epithelial basal layer, when compared to their uninfected neighbours. To a large extent, this is driven by the viral E6 protein, which functions in the HPV life cycle as a modulator of epithelial homeostasis. By targeting HPV gene products involved in the maintenance of the viral reservoir, there appears to be new opportunities for the control or elimination of chronic HPV infections.
Collapse
Affiliation(s)
- Ke Zheng
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; (K.Z.); (N.E.); (A.S.); (H.M.G.)
| | - Nagayasu Egawa
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; (K.Z.); (N.E.); (A.S.); (H.M.G.)
| | - Aslam Shiraz
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; (K.Z.); (N.E.); (A.S.); (H.M.G.)
| | - Mayako Katakuse
- Kyoto R&D Centre, Maruho Co., Ltd., Kyoto 600-8813, Japan; (M.K.); (M.O.)
| | - Maki Okamura
- Kyoto R&D Centre, Maruho Co., Ltd., Kyoto 600-8813, Japan; (M.K.); (M.O.)
| | - Heather M. Griffin
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; (K.Z.); (N.E.); (A.S.); (H.M.G.)
| | - John Doorbar
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; (K.Z.); (N.E.); (A.S.); (H.M.G.)
| |
Collapse
|
7
|
New Hybrid Compounds Combining Fragments of Usnic Acid and Thioether Are Inhibitors of Human Enzymes TDP1, TDP2 and PARP1. Int J Mol Sci 2021; 22:ijms222111336. [PMID: 34768766 PMCID: PMC8583042 DOI: 10.3390/ijms222111336] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/16/2021] [Accepted: 10/17/2021] [Indexed: 01/27/2023] Open
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) catalyzes the cleavage of the phosphodiester bond between the tyrosine residue of topoisomerase 1 (TOP1) and the 3' phosphate of DNA in the single-strand break generated by TOP1. TDP1 promotes the cleavage of the stable DNA-TOP1 complexes with the TOP1 inhibitor topotecan, which is a clinically used anticancer drug. This article reports the synthesis and study of usnic acid thioether and sulfoxide derivatives that efficiently suppress TDP1 activity, with IC50 values in the 1.4-25.2 μM range. The structure of the heterocyclic substituent introduced into the dibenzofuran core affects the TDP1 inhibitory efficiency of the compounds. A five-membered heterocyclic fragment was shown to be most pharmacophoric among the others. Sulfoxide derivatives were less cytotoxic than their thioester analogs. We observed an uncompetitive type of inhibition for the four most effective inhibitors of TDP1. The anticancer effect of TOP1 inhibitors can be enhanced by the simultaneous inhibition of PARP1, TDP1, and TDP2. Some of the compounds inhibited not only TDP1 but also TDP2 and/or PARP1, but at significantly higher concentration ranges than TDP1. Leader compound 10a showed promising synergy on HeLa cells in conjunction with the TOP1 inhibitor topotecan.
Collapse
|
8
|
Coursey TL, McBride AA. Development of Keratinocyte Cell Lines Containing Extrachromosomal Human Papillomavirus Genomes. Curr Protoc 2021; 1:e235. [PMID: 34496149 DOI: 10.1002/cpz1.235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human papillomaviruses (HPVs) cause persistent infections in stratified cutaneous and mucosal epithelia. In these infections, the viral DNA replicates as low-copy-number, extrachromosomal, double-stranded-DNA circular plasmids in the nucleus of the dividing basal cells. When the infected cells begin the process of differentiation, the viral DNA amplifies to a high copy number and virions are assembled in the superficial cells. To study HPV DNA replication, our laboratory generates primary keratinocyte cell lines that contain replicating extrachromosomal HPV genomes. Here, we describe protocols to culture human keratinocytes, to transfect viral DNA into cells using electroporation, to determine the efficiency of genome establishment in cells with a colony-forming assay, and to measure the copy number and extrachromosomal status of viral genomes using Southern blotting. These methods can be used to study DNA replication of different oncogenic Alphapapillomavirus HPV types. Published 2021. This article is a U.S. Government work and is in the public domain in the USA. Basic Protocol 1: Electroporation to transfect keratinocytes with recircularized HPV genomes Alternate Protocol: Use of HPV replicon containing selection marker in keratinocyte transfection Support Protocol 1: Rheinwald-Green method of co-culture of irradiated J2 3T3 feeders and human keratinocytes Support Protocol 2: Recircularization of HPV genomes Basic Protocol 2: Quantitative colony formation assay to measure the efficiency of HPV genome establishment Basic Protocol 3: Southern blot analysis of extrachromosomal viral DNA Support Protocol 3: Hirt extraction of low-molecular-weight DNA Support Protocol 4: Qiagen DNeasy Blood & Tissue DNA extraction Support Protocol 5: Generation of a 32 P-labeled HPV DNA probe.
Collapse
Affiliation(s)
- Tami L Coursey
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Alison A McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
9
|
Tu Q, Feng W, Chen Z, Li Q, Zhao Y, Chen J, Jiang P, Xue X, Zhang L, Zhao KN. Characterization of Episomal Replication of Bovine Papillomavirus Type 1 DNA in Long-Term Virion-Infected Saccharomyces Cerevisiae Culture. Virol Sin 2021; 36:1492-1502. [PMID: 34460066 PMCID: PMC8692549 DOI: 10.1007/s12250-021-00439-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/21/2021] [Indexed: 11/29/2022] Open
Abstract
We have previously reported that bovine papillomavirus type 1 (BPV-1) DNA can replicate its genome and produce infectious virus-like particles in short term virion-infected S. cerevisiae (budding yeast) cultures (Zhao and Frazer 2002, Journal of Virology, 76:3359–64 and 76:12265–73). Here, we report the episomal replications of BPV-1 DNA in long term virion-infected S. cerevisiae culture up to 108 days. Episomal replications of the BPV-1 DNA could be divided into three patterns at three stages, early active replication (day 3–16), middle weak replication (day 23–34/45) and late stable replication (day 45–82). Two-dimensional gel electrophoresis analysis and Southern blot hybridization have revealed further that multiple replication intermediates of BPV-1 DNA including linear form, stranded DNA, monomers and higher oligomers were detected in the virion-infected yeast cells over the time course. Higher oligomers shown as covalently closed circular DNAs (cccDNAs) are the most important replication intermediates that serve as the main nuclear transcription template for producing all viral RNAs in the viral life cycle. In this study, the cccDNAs were generated at the early active replication stage with the highest frequencies and then at late stable replication, but they appeared to be suppressed at the middle weak replication. Our data provided a novel insight that BPV-1 genomic DNA could replicate episomally for the long period and produce the key replication intermediates cccDNAs in S. cerevisiae system.
Collapse
Affiliation(s)
- Quanmei Tu
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuyin Children Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Weixu Feng
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhuo Chen
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qijia Li
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuyin Children Hospital of Wenzhou Medical University, Wenzhou, 325035, China.,Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yu Zhao
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuyin Children Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Jun Chen
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Pengfei Jiang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiangyang Xue
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lifang Zhang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Kong-Nan Zhao
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuyin Children Hospital of Wenzhou Medical University, Wenzhou, 325035, China. .,Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China. .,Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, 4067, Australia.
| |
Collapse
|
10
|
A Dual-Sensor-Based Screening System for In Vitro Selection of TDP1 Inhibitors. SENSORS 2021; 21:s21144832. [PMID: 34300575 PMCID: PMC8309759 DOI: 10.3390/s21144832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/22/2022]
Abstract
DNA sensors can be used as robust tools for high-throughput drug screening of small molecules with the potential to inhibit specific enzymes. As enzymes work in complex biological pathways, it is important to screen for both desired and undesired inhibitory effects. We here report a screening system utilizing specific sensors for tyrosyl-DNA phosphodiesterase 1 (TDP1) and topoisomerase 1 (TOP1) activity to screen in vitro for drugs inhibiting TDP1 without affecting TOP1. As the main function of TDP1 is repair of TOP1 cleavage-induced DNA damage, inhibition of TOP1 cleavage could thus reduce the biological effect of the TDP1 drugs. We identified three new drug candidates of the 1,5-naphthyridine and 1,2,3,4-tetrahydroquinolinylphosphine sulfide families. All three TDP1 inhibitors had no effect on TOP1 activity and acted synergistically with the TOP1 poison SN-38 to increase the amount of TOP1 cleavage-induced DNA damage. Further, they promoted cell death even with low dose SN-38, thereby establishing two new classes of TDP1 inhibitors with clinical potential. Thus, we here report a dual-sensor screening approach for in vitro selection of TDP1 drugs and three new TDP1 drug candidates that act synergistically with TOP1 poisons.
Collapse
|
11
|
Naorungroj S, Teengam P, Vilaivan T, Chailapakul O. Paper-based DNA sensor enabling colorimetric assay integrated with smartphone for human papillomavirus detection. NEW J CHEM 2021. [DOI: 10.1039/d1nj00417d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A colorimetric paper-based DNA sensor that relies on the inhibition of PNA-induced AuNPs aggregation was combined with a simple smartphone readout for the point-of-care detection of HPV type 16 DNA.
Collapse
Affiliation(s)
- Sarida Naorungroj
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE)
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
| | - Prinjaporn Teengam
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE)
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE)
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
| |
Collapse
|
12
|
Uncovering the Role of the E1 Protein in Different Stages of Human Papillomavirus 18 Genome Replication. J Virol 2020; 94:JVI.00674-20. [PMID: 32759324 DOI: 10.1128/jvi.00674-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/22/2020] [Indexed: 12/20/2022] Open
Abstract
The life cycle of human papillomaviruses (HPVs) comprises three distinct phases of DNA replication: initial amplification, maintenance of the genome copy number at a constant level, and vegetative amplification. The viral helicase E1 is one of the factors required for the initiation of HPV genome replication. However, the functions of the E1 protein during other phases of the viral life cycle are largely uncharacterized. Here, we studied the role of the HPV18 E1 helicase in three phases of viral genome replication by downregulating E1 expression using RNA interference or inducing degradation of the E1 protein via inhibition of casein kinase 2α expression or catalytic activity. We generated a novel modified HPV18 genome expressing Nanoluc and tagged E1 and E2 proteins and created several stable HPV18-positive cell lines. We showed that, in contrast to initial amplification of the HPV18 genome, other phases of viral genome replication involve also an E1-independent mechanism. We characterize two distinct populations of HPV18 replicons existing during the maintenance and vegetative amplification phases. We show that a subset of these replicons, including viral genome monomers, replicate in an E1-dependent manner, while some oligomeric forms of the HPV18 genome replicate independently of E1 function.IMPORTANCE Human papillomavirus (HPV) infections pose serious medical problem. To date, there are no HPV-specific antivirals available due to poor understanding of the molecular mechanisms of virus infection cycle. The infection cycle of HPV involves initial amplification of the viral genomes and maintenance of the viral genomes with a constant copy number, followed by another round of viral genome amplification and new viral particle formation. The viral protein E1 is critical for the initial amplification of the viral genome. However, E1 involvement in other phases of the viral life cycle has remained controversial. In the present study, we show that at least two different replication modes of the HPV18 genome are undertaken simultaneously during the maintenance and vegetative amplification phases, i.e., replication of the majority of the HPV18 genome proceeds under the control of the host cell replication machinery without E1 function, whereas a minority of the genome replicates in an E1-dependent manner.
Collapse
|
13
|
Abbehausen C. Zinc finger domains as therapeutic targets for metal-based compounds - an update. Metallomics 2020; 11:15-28. [PMID: 30303505 DOI: 10.1039/c8mt00262b] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Zinc finger proteins are one of the most abundant families of proteins and present a wide range of structures and functions. The structural zinc ion provides the correct conformation to specifically recognize DNA, RNA and protein sequences. Zinc fingers have essential functions in transcription, protein degradation, DNA repair, cell migration, and others. Recently, reports on the extensive participation of zinc fingers in disease have been published. On the other hand, much information remains to be unravelled as many genomes and proteomes are being reported. A variety of zinc fingers have been identified; however, their functions are still under investigation. Because zinc fingers have identified functions in several diseases, they are being increasingly recognized as drug targets. The replacement of Zn(ii) by another metal ion in zinc fingers is one of the most prominent methods of inhibition. From one side, zinc fingers play roles in the toxicity mechanisms of Ni(ii), Hg(ii), Cd(ii) and others. From the other side, gold, platinum, cobalt, and selenium complexes are amongst the compounds being developed as zinc finger inhibitors for therapy. The main challenge in the design of therapeutic zinc finger inhibitors is to achieve selectivity. Recently, the design of novel compounds and elucidation of the mechanisms of zinc substitution have renewed the possibilities of selective zinc finger inhibition by metal complexes. This review aims to update the status of novel strategies to selectively target zinc finger domains by metal complexes.
Collapse
Affiliation(s)
- C Abbehausen
- Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, CEP 13083-970, Campinas, São Paulo, Brazil.
| |
Collapse
|
14
|
Walhart T, Isaacson-Wechsler E, Ang KH, Arkin M, Tugizov S, Palefsky JM. A Cell-Based Renilla Luminescence Reporter Plasmid Assay for High-Throughput Screening to Identify Novel FDA-Approved Drug Inhibitors of HPV-16 Infection. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2020; 25:79-86. [PMID: 31361520 PMCID: PMC6925341 DOI: 10.1177/2472555219860771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Like cervical cancer, anal cancer is caused by human papillomavirus (HPV). HPV is the most common sexually transmitted agent and is found in the anal canal of almost all HIV-positive men who have sex with men (MSM). Rates of HPV anal cancer are disproportionately higher in this population. Although the nanovalent HPV vaccine is efficacious in protecting against oncogenic HPV types, a substantial proportion of MSM remains unvaccinated and anal HPV infection continues to be an important public health burden. Therefore, it is important to identify strategies to prevent HPV infection. We report on two promising and interlinked strategies: (1) the development of a cell-based Renilla luminescence reporter assay using HPV-16 pseudovirions that encapsidate SV40-driven Renilla luminescence reporter expression plasmid and (2) use of this assay for high-throughput screening (HTS) of FDA- and internationally approved drugs to identify those that could be repurposed to prevent HPV infection. We conducted a screen of 1906 drugs. The assay was valid with a Z' of 0.67 ± 0.04, percent coefficient of variance of 10.0, and signal-to-background noise window of 424.0 ± 8.0. Five drugs were chosen for further analyses based on selection parameters of ≥77.0% infection of HPV-16 pseudovirion-driven Renilla expression with <20.0% cytotoxicity. Of these, the antifungal pentamidine and a gamma-amino butyric acid receptor agonist securinine exhibited ≥90.0% infection with <10.0% cytotoxicity. This luminescent cell-based reporter expression plasmid assay for HTS is a valid method to identify FDA- and internationally approved drugs with the potential to be repurposed into prevention modalities for HPV infection.
Collapse
Affiliation(s)
- Tara Walhart
- Department of Community Health Systems, School of Nursing, University of California, San Francisco, CA, USA
- Department of Infectious Disease, Palefsky Laboratory, School of Medicine, University of California, San Francisco, CA, USA
| | - Erin Isaacson-Wechsler
- Department of Infectious Disease, Palefsky Laboratory, School of Medicine, University of California, San Francisco, CA, USA
| | - Kean-Hooi Ang
- Department of Pharmaceutical Chemistry, Small Molecule Discovery Center, University of California, San Francisco, CA, USA
| | - Michelle Arkin
- Department of Pharmaceutical Chemistry, Small Molecule Discovery Center, University of California, San Francisco, CA, USA
| | - Sharof Tugizov
- Department of Infectious Disease, Palefsky Laboratory, School of Medicine, University of California, San Francisco, CA, USA
| | - Joel M. Palefsky
- Department of Infectious Disease, Palefsky Laboratory, School of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
15
|
Hodaei MH, Anduhjerdi RB, Fallah Mehrabadi J, Esmaeili D. Cloning and expression of the L1 immunogenic protein of human papillomavirus genotype 16 by using Lactobacillus expression system. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Piirsoo A, Pink A, Kasak L, Kala M, Kasvandik S, Ustav M, Piirsoo M. Differential phosphorylation determines the repressor and activator potencies of GLI1 proteins and their efficiency in modulating the HPV life cycle. PLoS One 2019; 14:e0225775. [PMID: 31770404 PMCID: PMC6879148 DOI: 10.1371/journal.pone.0225775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/12/2019] [Indexed: 11/19/2022] Open
Abstract
The Sonic Hedgehog (Shh) signalling pathway plays multiple roles during embryonic development and under pathological conditions. Although the core components of the Shh pathway are conserved, the regulation of signal transduction varies significantly among species and cell types. Protein kinases Ulk3 and Pka are involved in the Shh pathway as modulators of the activities of Gli transcription factors, which are the nuclear mediators of the signal. Here, we investigate the regulation and activities of two GLI1 isoforms, full-length GLI1 (GLI1FL) and GLI1ΔN. The latter protein lacks the first 128 amino acids including the conserved phosphorylation cluster and the binding motif for SUFU, the key regulator of GLI activity. Both GLI1 isoforms are co-expressed in all human cell lines analysed and possess similar DNA binding activity. ULK3 potentiates the transcriptional activity of both GLI1 proteins, whereas PKA inhibits the activity of GLI1ΔN, but not GLI1FL. In addition to its well-established role as a transcriptional activator, GLI1FL acts as a repressor by inhibiting transcription from the early promoters of human papillomavirus type 18 (HPV18). Additionally, compared to GLI1ΔN, GLI1FL is a more potent suppressor of replication of several HPV types. Altogether, our data show that the N-terminal part of GLI1FL is crucial for the realization of its full potential as a transcriptional regulator.
Collapse
Affiliation(s)
- Alla Piirsoo
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Anne Pink
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Lagle Kasak
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Martin Kala
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Sergo Kasvandik
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mart Ustav
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Marko Piirsoo
- Institute of Technology, University of Tartu, Tartu, Estonia
- * E-mail:
| |
Collapse
|
17
|
Benzothiazole derivative bearing amide moiety induces p53-mediated apoptosis in HPV16 positive cervical cancer cells. Invest New Drugs 2019; 38:934-945. [PMID: 31432292 DOI: 10.1007/s10637-019-00848-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/12/2019] [Indexed: 12/23/2022]
Abstract
In our previous study, we screened the anti-cancer properties of 10 benzothiazole derivatives in cervical cancer cell lines. In the present study, we aimed to delineate the mechanism of the apoptotic pathway (whether intrinsic or extrinsic) following the treatment of N-(4-(benzo[d]thiazol-2-yl)phenyl)-5-chloro-2-methoxybenzamide (named as A-07) on cervical cancer cell lines. Cellular stress by reactive oxygen species was measured using DCFDA dye by flowcytometry. Protein expression and localization was checked by immunofluorescence for γH2A.X, TP53, and CASP-3. Expression profiles of BAX and BCL-2 was done by semi-quantitative RT-PCR and PARP-1 (Poly(ADP-ribose) polymerase-1) by Western blot analysis. Bioinformatic studies were done using PDB websites, metaPocket 2.0 server, YASARA software and Discovery Studio 3.5 Visualizer. We demonstrate that the compound A-07 leads to ROS generation and double strand breaks in SiHa and C-33A cells. The induction of apoptosis in SiHa cells is associated with increased nuclear expression of the tumor suppressor protein, TP53. The shift in BAX/BCL-2 ratio, increased expression of Caspase-3 and cleaved Poly(ADP-ribose) polymerase-1 favour apoptotic signal in SiHa. In silico studies revealed that A-07 has inhibiting capabilities to the E6/E6AP/P53 complex. Our data suggest that treatment of A-07 causes p53 and caspase dependent apoptosis in HPV 16 infected SiHa cells.
Collapse
|
18
|
Piirsoo A, Piirsoo M, Kala M, Sankovski E, Lototskaja E, Levin V, Salvi M, Ustav M. Activity of CK2α protein kinase is required for efficient replication of some HPV types. PLoS Pathog 2019; 15:e1007788. [PMID: 31091289 PMCID: PMC6538197 DOI: 10.1371/journal.ppat.1007788] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 05/28/2019] [Accepted: 04/24/2019] [Indexed: 12/14/2022] Open
Abstract
Inhibition of human papillomavirus (HPV) replication is a promising therapeutic approach for intervening with HPV-related pathologies. Primary targets for interference are two viral proteins, E1 and E2, which are required for HPV replication. Both E1 and E2 are phosphoproteins; thus, the protein kinases that phosphorylate them might represent secondary targets to achieve inhibition of HPV replication. In the present study, we show that CX4945, an ATP-competitive small molecule inhibitor of casein kinase 2 (CK2) catalytic activity, suppresses replication of different HPV types, including novel HPV5NLuc, HPV11NLuc and HPV18NLuc marker genomes, but enhances the replication of HPV16 and HPV31. We further corroborate our findings using short interfering RNA (siRNA)-mediated knockdown of CK2 α and α' subunits in U2OS and CIN612 cells; we show that while both subunits are expressed in these cell lines, CK2α is required for HPV replication, but CK2α' is not. Furthermore, we demonstrate that CK2α acts in a kinase activity-dependent manner and regulates the stability and nuclear retention of endogenous E1 proteins of HPV11 and HPV18. This unique feature of CK2α makes it an attractive target for developing antiviral agents.
Collapse
Affiliation(s)
- Alla Piirsoo
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Marko Piirsoo
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Martin Kala
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Eve Sankovski
- Institute of Technology, University of Tartu, Tartu, Estonia
| | | | - Viktor Levin
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mauro Salvi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Mart Ustav
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
19
|
Characterization of an HPV33 natural variant with enhanced transcriptional activity suggests a role for C/EBPβ in the regulation of the viral early promoter. Sci Rep 2019; 9:5113. [PMID: 30911096 PMCID: PMC6433916 DOI: 10.1038/s41598-019-41102-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/28/2019] [Indexed: 02/07/2023] Open
Abstract
The Long Control Region (LCR) of the human papillomavirus (HPV) genome encompasses the early promoter (EP) that drives expression of the viral oncogenes in infected cells and HPV-associated cancers. Here, we report on a natural variant of HPV33 that displays higher EP activity than the prototype in transfected C33A and HeLa cervical carcinoma cells, and in the osteosarcoma U2OS cell line which supports replication of HPV episomes. This increased promoter activity was ascribed to a single nucleotide variation in the LCR, T7791C, in a putative binding site for the transcription factor C/EBPβ. T7791C abrogated binding of recombinant C/EBPβ to this site in vitro and stimulated the EP in vivo, suggesting that it abrogates a negatively-acting regulatory element. A second C/EBPβ binding site was identified in vitro that activated the EP in vivo and whose function and location in the epithelial-specific enhancer is shown to be conserved in the highly prevalent HPV18. These results suggest that C/EBPβ is both an activator and a repressor of the HPV33 EP, acting via two distinct binding sites. Prediction of C/EBPβ sites in the LCR of 186 HPV types suggests that C/EBPβ regulation of the EP is common among high‐risk viruses from the α genus.
Collapse
|
20
|
Tombak EM, Männik A, Burk RD, Le Grand R, Ustav E, Ustav M. The molecular biology and HPV drug responsiveness of cynomolgus macaque papillomaviruses support their use in the development of a relevant in vivo model for antiviral drug testing. PLoS One 2019; 14:e0211235. [PMID: 30682126 PMCID: PMC6347367 DOI: 10.1371/journal.pone.0211235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/09/2019] [Indexed: 01/29/2023] Open
Abstract
Due to the extreme tissue and species restriction of the papillomaviruses (PVs), there is a great need for animal models that accurately mimic PV infection in humans for testing therapeutic strategies against human papillomaviruses (HPVs). In this study, we present data that demonstrate that in terms of gene expression during initial viral DNA amplification, Macaca fascicularis PV (MfPV) types 5 and 8 appear to be similar to mucosal oncogenic HPVs, while MfPV1 (isolated from skin) resembles most high-risk cutaneous beta HPVs (HPV5). Similarities were also observed in replication properties during the initial amplification phase of the MfPV genomes. We demonstrate that high-risk mucosal HPV-specific inhibitors target the transient replication of the MfPV8 genomes, which indicates that similar pathways are used by the high-risk HPVs and MfPVs during their genome replication. Taking all into account, we propose that Macaca fascicularis may serve as a highly relevant model for preclinical tests designed to evaluate therapeutic strategies against HPV-associated lesions.
Collapse
Affiliation(s)
- Eva-Maria Tombak
- University of Tartu, Institute of Technology, Tartu, Estonia
- Icosagen Cell Factory Ltd., Eerika tee 1, Õssu, Kambja, Tartumaa, Estonia
| | - Andres Männik
- University of Tartu, Institute of Technology, Tartu, Estonia
- Icosagen Cell Factory Ltd., Eerika tee 1, Õssu, Kambja, Tartumaa, Estonia
| | - Robert D. Burk
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
- Department of Pediatrics (Genetics), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
- Department of Microbiology & Immunology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
- Department of Obstetrics, Gynecology & Women's Health, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Roger Le Grand
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department / IBFJ, Fontenay-aux-Roses, France
| | - Ene Ustav
- University of Tartu, Institute of Technology, Tartu, Estonia
| | - Mart Ustav
- University of Tartu, Institute of Technology, Tartu, Estonia
- Icosagen Cell Factory Ltd., Eerika tee 1, Õssu, Kambja, Tartumaa, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
- * E-mail:
| |
Collapse
|