1
|
Samir NM, Locke-Gotel J, Urayama SI, El-Morsi AA, El-Sherbeny GA, Huang Y, Fitt BDL, Moriyama H, Coutts RHA, Kotta-Loizou I. Molecular characterization of a polymycovirus in Leptosphaeria biglobosa. Arch Virol 2025; 170:66. [PMID: 40050447 PMCID: PMC11885375 DOI: 10.1007/s00705-025-06253-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/10/2025] [Indexed: 03/09/2025]
Abstract
Leptosphaeria biglobosa is a phytopathogenic ascomycete of Brassica napus that causes phoma stem canker/blackleg. A new double-stranded RNA (dsRNA) mycovirus from this fungus has been fully characterized. The virus genome has five dsRNA segments, ranging in length from 1,180 bp to 2,402 bp. Each dsRNA has a single open reading frame flanked by 5' and 3' untranslated regions. The proteins encoded by dsRNAs 1 and 3, an RNA-dependent RNA polymerase (RdRP) and a methyltransferase, respectively, have significant similarity to those of Plasmopara viticola lesion associated polymycovirus 1. The proline-alanine-serine-rich protein encoded by dsRNA 5 is similar to that of Erysiphe necator associated polymycovirus 1. The proteins encoded by dsRNAs 2 and 4 have significant similarity to those of a mycovirus identified in Alternaria sp. FA0703. Phylogenetic analysis based on RdRP sequences showed that this virus clusters with members of the family Polymycoviridae. Based on these observations, this virus, which we have named "Leptosphaeria biglobosa polymycovirus 1", should be classified as a member of the family Polymycoviridae. This is the first report of a polymycovirus in L. biglobosa.
Collapse
Affiliation(s)
- Nesma M Samir
- Laboratory of Molecular and Cellular Biology, Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8, Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
- Department of Botany, Faculty of science, Mansoura University, Mansoura, 35516, Egypt
| | - Jacob Locke-Gotel
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Syun-Ichi Urayama
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Adel A El-Morsi
- Department of Botany, Faculty of science, Mansoura University, Mansoura, 35516, Egypt
| | - Ghada A El-Sherbeny
- Department of Botany, Faculty of science, Mansoura University, Mansoura, 35516, Egypt
| | - Yongju Huang
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Bruce D L Fitt
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Hiromitsu Moriyama
- Laboratory of Molecular and Cellular Biology, Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8, Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Robert H A Coutts
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Ioly Kotta-Loizou
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK.
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
2
|
Rueda-Maíllo F, Garrido-Jurado I, Kotta-Loizou I, Quesada-Moraga E. A mycoviral infection drives virulence and ecological fitness of the entomopathogenic fungus Beauveria bassiana. J Invertebr Pathol 2025; 209:108251. [PMID: 39644991 DOI: 10.1016/j.jip.2024.108251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Entomopathogenic ascomycetes are important natural regulators of insect pest populations and an increasingly adopted microbial control option. Fungal virulence in entomopathogenic ascomycetes can be modified by mycoviruses, viruses that infect fungi, whereas the possible role of these viruses on the physical and biochemical properties of the virus-containing fungal strains and on their ecological fitness has remained largely unexplored. Here, utilizing a Beauveria bassiana strain naturally infected with two mycoviruses, Beauveria bassiana partitivirus 2 (BbPV-2) and Beauveria bassiana polymycovirus 1 (BbPmV-1), we found that the mycovirus-containing strain is hypervirulent towards the experimental insect Galleria mellonella and shows major physical and biochemical changes in spore size, isoelectric point, and Pr1 activity, but even more impactful, the mycoviral infection confers a significant environmental- abiotic and biotic stress tolerance to the fungus. Hence, mycovirus infection expanded the temperature range for fungal growth and germination, and improved tolerance to osmotic stress, water stress, and UV-B radiation. Similarly, the antagonistic activity of the mycovirus-containing strain against Trichoderma harzianum was increased as compared to the mycovirus-free one. Taken together, these data suggest for the first time a mycovirus related adaptation of key traits indicators of environmental competence of a beneficial fungus, rendering these mycoviruses as potent tools for entomopathogenic fungal strain selection and development as mycoinsecticides.
Collapse
Affiliation(s)
- F Rueda-Maíllo
- Department of Agronomy, Maria de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Campus Universitario Rabanales 14071, Cordoba, Spain
| | - I Garrido-Jurado
- Department of Agronomy, Maria de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Campus Universitario Rabanales 14071, Cordoba, Spain
| | - I Kotta-Loizou
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, AL10 9AB, Hatfield, United Kingdom; Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, SW7 2AZ, London, United Kingdom
| | - E Quesada-Moraga
- Department of Agronomy, Maria de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Campus Universitario Rabanales 14071, Cordoba, Spain.
| |
Collapse
|
3
|
Oliveira CN, de Sousa Santos Y, de Rezende RR, Alfenas-Zerbini P. Identification of a novel polymycovirus infecting the entomopathogenic fungus Metarhizium robertsii. Arch Virol 2025; 170:58. [PMID: 39954041 DOI: 10.1007/s00705-025-06240-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/25/2025] [Indexed: 02/17/2025]
Abstract
Mycoviruses studies have been increasing in the last few years. Most of them are focused on the ability of the virus to positively or negatively affect the virulence of their host. Hypervirulence-associated mycoviruses infecting important entomopathogenic fungi such as Metarhizium anisopliae or Beauveria bassiana increase their pathogenicity against lepidopteran pests, and with it, their potential as biocontrol agents. In this work, we characterized a novel four-segmented dsRNA mycovirus isolate from Metarhizium robertsii. The mycovirus is a member of the family Polymycoviridae that we have named "Metarhizium robertsii polymycovirus 1" (MrPmV1). Polymycoviridae is an orphan family within the realm Riboviria without any order-to-kingdom taxa assigned. The polymycoviruses are closely related to members of the Hadakaviridae, a family of (+)ssRNA mycoviruses. Because of this, we suggest that both families should be assigned to the same phylum, class, and order.
Collapse
Affiliation(s)
- Cauê Neves Oliveira
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brasil
| | - Yam de Sousa Santos
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brasil
| | - Rafael Reis de Rezende
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brasil
| | - Poliane Alfenas-Zerbini
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brasil.
| |
Collapse
|
4
|
Edwards S, Naundrup A, Becher PG, De Fine Licht HH. Patterns of genotype-specific interactions in an obligate host-specific insect pathogenic fungus. J Evol Biol 2025; 38:225-239. [PMID: 39671697 DOI: 10.1093/jeb/voae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/06/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
Host-pathogen infections and possible effects on co-evolutionary patterns depend on the genotypes of both host and pathogen. Obligate fungal pathogens of plants are often characterized by host-pathogen genotype-by-genotype (GxG) interactions, but whether these patterns exist in obligate insect fungal pathogens is unclear. We take advantage of the obligate insect pathogenic fungus Entomophthora muscae, where individual isolates are specific to different dipteran host species in nature but can cross-infect multiple fly species in the laboratory. We collected three new isolates of E. muscae from Drosophila species. Phylogenetic analysis showed that Drosophila-isolated E. muscae represents a distinct geographically widespread Drosophila lineage compared to the house fly (Musca domestica) or Delia species-isolated E. muscae. We used the three new E. muscae isolates from Drosophila spp. together with a genetically distinct E. muscae isolate from house flies and assessed their virulence in a cross-infection experiment using one house fly, three Drosophila suzukii, and two D. melanogaster genotypes as hosts. All fungal isolates successfully infected hosts, induced behavioural manipulation, sporulated in all fly hosts, and differed in virulence between host genotypes, revealing GxG interactions. While house flies were most susceptible to fungal infection with 99% mortality, we found a lower virulence of 49% and 25% mortality in D. melanogaster and D. suzukii genotypes, respectively. Furthermore, all isolates harboured a specific mycovirus (family Iflaviridae), but co-phylogenetic branching patterns did not support fungus-virus co-speciation. We show that the genetic makeup of both fungal pathogen and fly host influence E. muscae infectivity, confirming GxG interactions in obligate fly fungal pathogens.
Collapse
Affiliation(s)
- Sam Edwards
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C. 1871, Denmark
- Department of Biosciences, Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Andreas Naundrup
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C. 1871, Denmark
| | - Paul G Becher
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, Alnarp 23053, Sweden
| | - Henrik H De Fine Licht
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C. 1871, Denmark
| |
Collapse
|
5
|
Han Z, Jiang J, Xu W. Novel polymycoviruses are encapsidated in filamentous virions. J Virol 2025; 99:e0151524. [PMID: 39655956 PMCID: PMC11784019 DOI: 10.1128/jvi.01515-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/18/2024] [Indexed: 02/01/2025] Open
Abstract
Polymycoviridae is a relatively new viral family that was established nearly 5 years ago, but their viral morphologies (naked or encapsidated) remain controversial since only one member namely, Colletotrichum camelliae filamentous virus 1 (CcFV1), was identified as being encapsidated in filamentous virions. Here, three novel double-stranded RNA (dsRNA) viruses belonging to the family Polymycoviridae were identified in three phytopathogenic fungal strains and tentatively named Pseudopestalotiopsis camelliae-sinensis polymycovirus 1 (PcsPmV1), and Phyllosticta capitalensis polymycovirus 1 and 2 (PhcPmV1 and 2), respectively. PcsPmV1 and PhcPmVs have five or six genomic dsRNAs, ranging from 1,055 to 2,405 bp, encoding five or seven putative open reading frames (ORFs), of which ORF1 encodes an RNA-dependent RNA polymerase, ORF5 encodes a prolein-alanine-serine-rich (P-A-S-rich) protein behaving as coat protein (CP); and dsRNAs 4 and 6 encode putative proteins with unknown functions and share no detectable identities with known viral sequences. Upon examination under transmission electron microscopy after purification from fungal mycelia, PcsPmV1 and PhcPmVs were found to be encapsidated in filamentous particles, as was a known polymycovirus, Botryosphaeria dothidea RNA virus 1 (BdRV1), which was previously assumed to likely have no conventional virions. The morphology of PcsPmV1 was further supported by the observation that its particles could be decorated by polyclonal antibodies against its CP and bound by immuno-gold particles conjugated to the specific CP antibody. Together with CcFV1, BdRV1, PcsPmV1, and PhcPmVs, these provide strong evidence to support the notion that polymycoviruses are encapsidated in filamentous virions constituted by P-A-S-rich CPs. Moreover, their biological effects on their fungal hosts were assessed, suggesting that PcsPmV1 infection could enhance growth and virulence.IMPORTANCEPolymycoviridae, a recently established viral family, has raised questions about encapsidation. Here, we identify and characterize three novel polymycoviral double-stranded RNA (dsRNA) viruses in phytopathogenic fungal strains, tentatively named Pseudopestalotiopsis camelliae-sinensis polymycovirus 1, and Phyllosticta capitalensis polymycovirus 1 and 2, respectively. These polymycoviruses possess five or six genomic dsRNAs, ranging from 1,055 to 2,405 bp, with two encoding putative proteins of unknown functions and sharing no detectable identities with known viral sequences. Their morphologies indicate filamentous virions constituted by proline-alanine-serine-rich coat proteins, observed using immunosorbent electron microscopy combined with immune-gold labeling techniques. Additionally, Botryosphaeria dothidea RNA virus 1, previously assumed to lack conventional virions, is also shown to be encapsidated in filamentous particles. This study provides new evidence supporting the encapsidation of polymycoviruses into elongated and flexuous virions, significantly contributing to our understanding of the evolutionary particle architecture within the virosphere and expanding our knowledge of viral diversity and evolution. Moreover, this is the first report of a polymycovirus enhancing the virulence and growth of a phytopathogenic fungus.
Collapse
Affiliation(s)
- Zhenhao Han
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Jingjing Jiang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
- Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Wenxing Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| |
Collapse
|
6
|
Filippou C, Coutts RHA, Kotta-Loizou I, El-Kamand S, Papanicolaou A. Transcriptomic Analysis Reveals Molecular Mechanisms Underpinning Mycovirus-Mediated Hypervirulence in Beauveria bassiana Infecting Tenebrio molitor. J Fungi (Basel) 2025; 11:63. [PMID: 39852482 PMCID: PMC11766762 DOI: 10.3390/jof11010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 12/23/2024] [Accepted: 01/04/2025] [Indexed: 01/26/2025] Open
Abstract
Mycoviral infection can either be asymptomatic or have marked effects on fungal hosts, influencing them either positively or negatively. To fully understand the effects of mycovirus infection on the fungal host, transcriptomic profiling of four Beauveria bassiana isolates, including EABb 92/11-Dm that harbors mycoviruses, was performed 48 h following infection of Tenebrio molitor via topical application or injection. Genes that participate in carbohydrate assimilation and transportation, and those essential for fungal survival and oxidative stress tolerance, calcium uptake, and iron uptake, were found to be overexpressed in the virus-infected isolate during the mid-infection stage. Mycotoxin genes encoding bassianolide and oosporein were switched off in all isolates. However, beauvericin, a mycotoxin capable of inducing oxidative stress at the molecular level, was expressed in all four isolates, indicating an important contribution to virulence against T. molitor. These observations suggest that detoxification of immune-related (oxidative) defenses and nutrient scouting, as mediated by these genes, occurs in mid-infection during the internal growth phase. Consequently, we observe a symbiotic relationship between mycovirus and fungus that does not afflict the host; on the contrary, it enhances the expression of key genes leading to a mycovirus-mediated hypervirulence effect.
Collapse
Affiliation(s)
- Charalampos Filippou
- Department of Medicine, School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; (R.H.A.C.); (I.K.-L.)
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia;
| | - Robert H. A. Coutts
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; (R.H.A.C.); (I.K.-L.)
| | - Ioly Kotta-Loizou
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; (R.H.A.C.); (I.K.-L.)
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Sam El-Kamand
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia;
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia;
| |
Collapse
|
7
|
Sui L, Lu Y, Xu M, Liu J, Zhao Y, Li Q, Zhang Z. Insect hypovirulence-associated mycovirus confers entomopathogenic fungi with enhanced resistance against phytopathogens. Virulence 2024; 15:2401978. [PMID: 39263889 PMCID: PMC11404608 DOI: 10.1080/21505594.2024.2401978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/12/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024] Open
Abstract
Mycoviruses can alter the biological characteristics of host fungi, including change virulence or pathogenicity of phytopathogens and entomopathogenic fungi (EPF). However, most studies on the mycoviruses found in EPF have focused on the effects of the viruses on the virulence of host fungi towards insect pests, with relatively few reports on the effects to the host fungi with regard to plant disease resistance in hosts. The present study investigated the effects of the mycovirus Beauveria bassiana chrysovirus 2 (BbCV2) virus infection on host biological characteristics, evaluated antagonistic activity of BbCV2 against two phytopathogenic fungi (Sclerotinia sclerotiorum and Botrytis cinerea), and transcriptome analysis was used to reveal the interactions between viruses and hosts. Our results showed that BbCV2 virus infection increased B. bassiana's growth rate, spore production, and biomass, it also enhanced the capacity of host fungi and their metabolic products to inhibit phytopathogenic fungi. BbCV2 virus infection reduced the contents of the two pathogens in tomato plants significantly, and transcriptome analysis revealed that the genes related to competition for ecological niches and nutrition, mycoparasitism and secondary metabolites in B. bassiana were significantly up-regulated after viral infection. These findings indicated that the mycovirus infection is an important factor to enhance the ability of B. bassiana against plant disease after endophytic colonization. We suggest that mycovirus infection causes a positive effect on B. bassiana against phytopathogens, which should be considered as a potential strategy to promote the plant disease resistance of EPF.
Collapse
Affiliation(s)
- Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
| | - Yang Lu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
| | - Mengnan Xu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
- College of Life Sciences, Jilin Normal University, Siping, China
| | - Jianfeng Liu
- College of Life Sciences, Jilin Normal University, Siping, China
| | - Yu Zhao
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
| | - Qiyun Li
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
- College of Life Sciences, Jilin Normal University, Siping, China
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin, China
| | - Zhengkun Zhang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
- College of Life Sciences, Jilin Normal University, Siping, China
| |
Collapse
|
8
|
Buma S, Urayama SI, Suo R, Itoi S, Okada S, Ninomiya A. Mycoviruses from Aspergillus fungi involved in fermentation of dried bonito. Virus Res 2024; 350:199470. [PMID: 39321926 PMCID: PMC11736405 DOI: 10.1016/j.virusres.2024.199470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Fungi are exploited for fermentation of foods such as cheese, Japanese sake, and soy sauce. However, the diversity of viruses that infect fungi involved in food fermentation is poorly understood. Fermented dried bonito ("katsuobushi") is one of the most important processed marine products in Japan. Fungi involved in katsuobushi fermentation are called katsuobushi molds, and Aspergillus spp. have been reported to be dominant on the surface of katsuobushi during fermentation. Because various mycoviruses have been found in members of the genus Aspergillus, we hypothesized that katsuobushi molds are also infected with mycoviruses. Here, we describe seven novel mycoviruses belonging to six families (Chrysoviridae, Fusariviridae, Mitoviridae, Partitiviridae, Polymycoviridae, and Pseudototiviridae) from isolated katsuobushi molds (Aspergillus chevalieri and A. sulphureus) detected by fragmented and primer-ligated double-stranded RNA sequencing. Aspergillus chevalieri fusarivirus 1 has a unique bi-segmented genome, whereas other known fusariviruses have a single genomic segment. Phenotypic comparison between the parental A. chevalieri strain infected with Aspergillus chevalieri polymycovirus 1 (AchPmV1) and isogenic AchPmV1-free isolates indicated that AchPmV1 inhibits the early growth of the host. This study reveals the diversity of mycoviruses that infect katsuobushi molds, and provides insight into the effect of mycoviruses on fungi involved in fermentation.
Collapse
Affiliation(s)
- Seiji Buma
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan; College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Syun-Ichi Urayama
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan; Microbiology Research Center for Sustainability, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Rei Suo
- College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Shiro Itoi
- College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Shigeru Okada
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Akihiro Ninomiya
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
9
|
Kang Q, Zhang J, Chen F, Dong C, Qin Q, Li X, Wang H, Zhang H, Meng Q. Unveiling mycoviral diversity in Ophiocordyceps sinensis through transcriptome analyses. Front Microbiol 2024; 15:1493365. [PMID: 39654673 PMCID: PMC11625762 DOI: 10.3389/fmicb.2024.1493365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
Ophiocordyceps sinensis, an entomopathogenic fungus, infects larvae from the Lepidoptera: Hepialidae family, forming the valuable Chinese cordyceps. Mycoviruses are widespread across major lineages of filamentous fungi, oomycetes, and yeasts and have the potential to influence fungal biology and ecology. This study aimed to detect mycovirus within O. sinensis by isolating double-stranded RNA from six stains for transcriptomic sequencing and analyzing publicly available transcriptome data from 13 O. sinensis representative samples. Our analysis revealed 13 mycoviruses, with nine reported for the first time in O. sinensis. These mycoviruses are distributed across five families-Partitiviridae, Mitoviridae, Narnaviridae, Botourmiaviridae, Deltaflexiviridae-and two unclassified lineages, Ormycovirus and Vivivirus. This study also revealed frequent coinfections within individual O. sinensis strains and dynamic shifts in viral composition during fungal development. These findings enhance our knowledge of mycovirus diversity within O. sinensis and provide new insights into their taxonomy.
Collapse
Affiliation(s)
- Qin Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jihong Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Yun’an Bio-tech Co. Ltd., Beijing, China
| | - Fangzhou Chen
- China Pharmaceutical University, School of Pharmacy, Nanjing, China
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qilian Qin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Yun’an Bio-tech Co. Ltd., Beijing, China
| | - Xuan Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Yun’an Bio-tech Co. Ltd., Beijing, China
| | - Hongtuo Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Yun’an Bio-tech Co. Ltd., Beijing, China
| | - Huan Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Yun’an Bio-tech Co. Ltd., Beijing, China
| | - Qian Meng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Yun’an Bio-tech Co. Ltd., Beijing, China
| |
Collapse
|
10
|
Romon-Ochoa P, Samal P, Kranjec Orlović J, Lewis A, Gorton C, Pérez-Sierra A, Biddle M, Ward L. Transmission of Cryphonectria Hypovirus 1 (CHV1) to Cryphonectria radicalis and In Vitro and In Vivo Testing of Its Potential for Use as Biocontrol Against C. parasitica. Int J Mol Sci 2024; 25:12023. [PMID: 39596093 PMCID: PMC11593397 DOI: 10.3390/ijms252212023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Cryphonectria hypovirus 1 (CHV1) is successful in controlling Cryphonectria parasitica, the causal agent of chestnut blight, but little is known regarding its transmission to other fungi, for example the European Cryphonectria radicalis. In this study, CHV1 was transmitted (circa 200,000-800,000 copies/microliter) to seven C. radicalis isolates from infected C. parasitica. Reverse transmission to virus-free C. parasitica (European 74 testers collection) was achieved, although it was less successful (250-55,000 copies/µL) and was dependent on the vegetative compatibility (VC) group. In C. radicalis, the virus infection led to colony colour change from pink to white and smaller colonies, dependent on the virus concentration. The virus was concentrated in the colony edges, and vertically transmitted to 77% of conidia. However, several in vitro experiments demonstrated that C. radicalis was always outcompeted by the blight fungus, only suppressing the pathogen between its 25-50% inoculum level. It presented good secondary capture only when acting as a pioneer. Two types of in planta assays (individual and challenge inoculations) were undertaken. Cryphonectria radicalis behaved as a saprotroph, while chestnut blight fungus behaved as an aggressive pathogen, and lesions after treatment with C. radicalis were no smaller in general, only when using cut branches. Overall, the results showed that infected C. radicalis was unable to control cankers.
Collapse
Affiliation(s)
- Pedro Romon-Ochoa
- Forest Research, Plant Pathology Department, Alice Holt Lodge, Wrecclesham GU104LH, Surrey, UK; (P.S.); (M.B.); (L.W.)
| | - Pankajini Samal
- Forest Research, Plant Pathology Department, Alice Holt Lodge, Wrecclesham GU104LH, Surrey, UK; (P.S.); (M.B.); (L.W.)
| | - Jelena Kranjec Orlović
- Institute of Forest Protection and Wildlife Management, University of Zagreb Faculty of Forestry and Wood Technology, Svetošimunska Cesta 23, 10000 Zagreb, Croatia;
| | - Alex Lewis
- Forest Research, Tree Health Diagnostics and Advisory Service (THDAS), Alice Holt Lodge, Wrecclesham GU104LH, Surrey, UK; (A.L.); (C.G.); (A.P.-S.)
| | - Caroline Gorton
- Forest Research, Tree Health Diagnostics and Advisory Service (THDAS), Alice Holt Lodge, Wrecclesham GU104LH, Surrey, UK; (A.L.); (C.G.); (A.P.-S.)
| | - Ana Pérez-Sierra
- Forest Research, Tree Health Diagnostics and Advisory Service (THDAS), Alice Holt Lodge, Wrecclesham GU104LH, Surrey, UK; (A.L.); (C.G.); (A.P.-S.)
| | - Mick Biddle
- Forest Research, Plant Pathology Department, Alice Holt Lodge, Wrecclesham GU104LH, Surrey, UK; (P.S.); (M.B.); (L.W.)
| | - Lisa Ward
- Forest Research, Plant Pathology Department, Alice Holt Lodge, Wrecclesham GU104LH, Surrey, UK; (P.S.); (M.B.); (L.W.)
| |
Collapse
|
11
|
Xie J, Jiang D. Understanding the Diversity, Evolution, Ecology, and Applications of Mycoviruses. Annu Rev Microbiol 2024; 78:595-620. [PMID: 39348839 DOI: 10.1146/annurev-micro-041522-105358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Mycoviruses are widely distributed among various kinds of fungi. Over the past 10 years, more novel mycoviruses have been discovered with the use of high-throughput sequencing techniques, and research on mycoviruses has made fantastic progress, promoting our understanding of the diversity, classification, evolution, and ecology of the entire virosphere. Mycoviruses affect the biological and ecological functions of their hosts, for example, by suppressing or improving hosts' virulence and reproduction ability, and subsequently affect the microbiological community where their hosts live; hence, we may develop mycoviruses to regulate the health of environments, plants, animals, and human beings. In this review, we introduce recently discovered mycoviruses from fungi of humans, animals, plants, and environments, and their diversity, evolution, and ecological characteristics. We also present the potential application of mycoviruses by describing the latest progress on using mycoviruses to control plant diseases. Finally, we discuss the main issues facing mycovirus research in the future.
Collapse
Affiliation(s)
- Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Hubei Hongshan Laboratory, Wuhan, China; ,
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Hubei Hongshan Laboratory, Wuhan, China; ,
| |
Collapse
|
12
|
Wang YR, Su JE, Yang ZJ, Zhong J, Li XG, Chen Y, Zhu JZ. A pooled mycoviral resource in a strain of Rhizoctonia solani are regulators of fungal virulence. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106042. [PMID: 39277369 DOI: 10.1016/j.pestbp.2024.106042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/08/2024] [Accepted: 07/21/2024] [Indexed: 09/17/2024]
Abstract
Rhizoctonia solani is a widespread and devastating soil-borne plant fungal pathogen that causes diseases, including rice sheath blight, which are difficult to control. Some mycoviruses are potential biocontrol agents for the control of fungal diseases. In order to investigate the factors that influence the virulence of R. solani and search for mycoviruses with the potential for biocontrol of R. solani, a rice-infecting R. solani strain, ZJXD1-1, was isolated and confirmed to contain eight mycoviruses via dsRNA extraction and high-throughput sequencing. The identified mycoviruses belong to families of Endornaviridae (RsEV11 and RsEV12) and Mitoviridae (RsMV125 to RsMV129), and an unclassified Toti-like clade (RsTLV1). The C39 domain in RsEV12, which shares a close evolutionary relationship with bacteria, is observed for the first time in a mycovirus. Strains with different virus combinations were obtained through viral horizontal transfer, and pathogenicity test deduced that the Endornaviruses RsEV11 and RsEV12, and Mitovirus RsMV129 might potentially enhance the pathogenicity of R. solani, while RsMV125 might reduce the virulence or interfere with the function of other Mitoviruses. Furthermore, virus curing via protoplast regeneration and viral horizontal transfer demonstrated that RsMV129 is the causal agent of R. solani hypervirulence. Overall, our study provided the resource pool of viruses that may contribute to the discovery of new biocontrol agents against R. solani and enhance our understanding of the pathogenesis of R. solani regulated by mycoviruses.
Collapse
Affiliation(s)
- Ya Rong Wang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province 410128, PR China; Key Laboratory of Grassland Ecosystem of Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazingland Ecosystem Sustainability, College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jia En Su
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan Province 650021, PR China
| | - Zhi Juan Yang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan Province 650021, PR China
| | - Jie Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province 410128, PR China
| | - Xiao Gang Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province 410128, PR China
| | - Yi Chen
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan Province 650021, PR China.
| | - Jun Zi Zhu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province 410128, PR China.
| |
Collapse
|
13
|
Cao W, Yu C, Zhao Y, Lin Q, Deng C, Li C. Biological Characteristics, Artificial Domestication Conditions Optimization, and Bioactive Components of Beauveria caledonica. Microorganisms 2024; 12:1554. [PMID: 39203396 PMCID: PMC11356643 DOI: 10.3390/microorganisms12081554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
In this study, one strain of Beauveria caledonica was isolated from wild fruiting bodies collected from Guizhou Province, China, and its species identification, biological characteristics, domestication, and cultivation methods were studied along with polysaccharide and adenosine content analysis. The mycelia were identified by ITS sequencing, and the fruiting bodies of B. caledonica were domestically cultivated for the first time using wheat and rice as basic cultivation media. The carbon sources, nitrogen sources, cultivation temperatures, and pH for mycelial growth were optimized through single-factor experiments and response surface methodology (RSM) experiments. The polysaccharide content was detected by the phenol-sulfuric acid method, and the adenosine content was measured by high-performance liquid chromatography (HPLC). The results confirmed that the identified mycelia were B. caledonica. The optimum medium for solid culture was 25.8 g/L glycerol, 10.9 g/L yeast extract, 1 g/L MgSO4·7H2O, 1 g/L KH2PO4, 10 mg/L vitamin B1, and 20 g/L agar; the optimum pH was 6.5, and the optimum culture temperature was 25 °C. The optimal liquid culture medium was 26.2 g/L glycerol, 11.1 g/L yeast extract, 1 g/L MgSO4·7H2O, 1 g/L KH2PO4, and 10 mg/L vitamin B1; the mycelia grew well at pH 6.6 and 25 °C. The average biological efficiencies of fruiting bodies on wheat and rice as culture media were 1.880% and 2.115%, respectively; the polysaccharide contents of fruiting bodies on the two media were 6.635% and 9.264%, respectively, while the adenosine contents were 0.145% and 0.150%, respectively. This study provides a valuable reference for further artificial cultivation and utilization of B. caledonica by investigating its biological characteristics, cultivation conditions for artificial domestication, and polysaccharide and adenosine contents in cultivated fruiting bodies.
Collapse
Affiliation(s)
- Wang Cao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.C.); (C.Y.)
| | - Changxia Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.C.); (C.Y.)
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.C.); (C.Y.)
| | - Qunying Lin
- Nanjing Institute for Comprehensive Utilization of Wild Plants, China Co-ops, Nanjing 210110, China;
| | - Chunying Deng
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang 550001, China;
| | - Chuanhua Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.C.); (C.Y.)
| |
Collapse
|
14
|
Cao X, Liu B, Wang Z, Pang T, Sun L, Kondo H, Li J, Andika IB, Chi S. Identification of a novel member of the genus Laulavirus (family Phenuiviridae) from the entomopathogenic ascomycete fungus Cordyceps javanica. Arch Virol 2024; 169:166. [PMID: 38995418 DOI: 10.1007/s00705-024-06069-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/15/2024] [Indexed: 07/13/2024]
Abstract
The virus family Phenuiviridae (order Hareavirales, comprising segmented negative-sense single stranded RNA viruses) has highly diverse members that are known to infect animals, plants, protozoans, and fungi. In this study, we identified a novel phenuivirus infecting a strain of the entomopathogenic fungus Cordyceps javanica isolated from a small brown plant hopper (Laodelphax striatellus), and this virus was tentatively named "Cordyceps javanica negative-strand RNA virus 1" (CjNRSV1). The CjNRSV1 genome consists of three negative-sense single stranded RNA segments (RNA1-3) with lengths of 7252, 2401, and 1117 nt, respectively. The 3'- and 5'-terminal regions of the RNA1, 2, and 3 segments have identical sequences, and the termini of the RNA segments are complementary to each other, reflecting a common characteristic of viruses in the order Hareavirales. RNA1 encodes a large protein (∼274 kDa) containing a conserved domain for the bunyavirus RNA-dependent RNA polymerase (RdRP) superfamily, with 57-80% identity to the RdRP encoded by phenuiviruses in the genus Laulavirus. RNA2 encodes a protein (∼79 kDa) showing sequence similarity (47-63% identity) to the movement protein (MP, a plant viral cell-to-cell movement protein)-like protein (MP-L) encoded by RNA2 of laulaviruses. RNA3 encodes a protein (∼28 kDa) with a conserved domain of the phenuivirid nucleocapsid protein superfamily. Phylogenetic analysis using the RdRPs of various phenuiviruses and other unclassified phenuiviruses showed CjNRSV1 to be grouped with established members of the genus Laulavirus. Our results suggest that CjNRSV1 is a novel fungus-infecting member of the genus Laulavirus in the family Phenuiviridae.
Collapse
Affiliation(s)
- Xinran Cao
- College of Plant Health and Medicine, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Qingdao Agricultural University, Qingdao, 266109, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
- Shouguang International Vegetable Sci-Tech Fair Management Service Center, Shouguang, 262700, China
| | - Bo Liu
- College of Plant Health and Medicine, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ziqi Wang
- College of Plant Health and Medicine, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tianxing Pang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Xianyang, 712100, China
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Xianyang, 712100, China
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Junmin Li
- Key Laboratory of Biotechnology in Plant Protection of MARA, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Ida Bagus Andika
- College of Plant Health and Medicine, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Qingdao Agricultural University, Qingdao, 266109, China.
- Key Laboratory of Biotechnology in Plant Protection of MARA, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Shengqi Chi
- College of Plant Health and Medicine, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
15
|
Guo J, Zhang P, Wu N, Liu W, Liu Y, Jin H, Francis F, Wang X. Transfection of entomopathogenic Metarhizium species with a mycovirus confers hypervirulence against two lepidopteran pests. Proc Natl Acad Sci U S A 2024; 121:e2320572121. [PMID: 38885380 PMCID: PMC11214047 DOI: 10.1073/pnas.2320572121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/25/2024] [Indexed: 06/20/2024] Open
Abstract
Although most known viruses infecting fungi pathogenic to higher eukaryotes are asymptomatic or reduce the virulence of their host fungi, those that confer hypervirulence to entomopathogenic fungus still need to be explored. Here, we identified and studied a novel mycovirus in Metarhizium flavoviride, isolated from small brown planthopper (Laodelphax striatellus). Based on molecular analysis, we tentatively designated the mycovirus as Metarhizium flavoviride partitivirus 1 (MfPV1), a species in genus Gammapartitivirus, family Partitiviridae. MfPV1 has two double-stranded RNAs as its genome, 1,775 and 1,575 bp in size respectively, encapsidated in isometric particles. When we transfected commercial strains of Metarhizium anisopliae and Metarhizium pingshaense with MfPV1, conidiation was significantly enhanced (t test; P-value < 0. 01), and the significantly higher mortality rates of the larvae of diamondback moth (Plutella xylostella) and fall armyworm (Spodoptera frugiperda), two important lepidopteran pests were found in virus-transfected strains (ANOVA; P-value < 0.05). Transcriptomic analysis showed that transcript levels of pathogenesis-related genes in MfPV1-infected M. anisopliae were obviously altered, suggesting increased production of metarhizium adhesin-like protein, hydrolyzed protein, and destruxin synthetase. Further studies are required to elucidate the mechanism whereby MfPV1 enhances the expression of pathogenesis-related genes and virulence of Metarhizium to lepidopteran pests. This study presents experimental evidence that the transfection of other entomopathogenic fungal species with a mycovirus can confer significant hypervirulence and provides a good example that mycoviruses could be used as a synergistic agent to enhance the biocontrol activity of entomopathogenic fungi.
Collapse
Affiliation(s)
- Jiashu Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
- Functional & Evolutionary Entomology, University of Liège, Gembloux Agro-BioTech, 5030Gembloux, Belgium
| | - Peipei Zhang
- College of Life Sciences, Langfang Normal University, Langfang065000, China
| | - Nan Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Wenwen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Yan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Huaibing Jin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Frederic Francis
- Functional & Evolutionary Entomology, University of Liège, Gembloux Agro-BioTech, 5030Gembloux, Belgium
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences,Changji831100, China
| |
Collapse
|
16
|
Jia J, Nan L, Song Z, Chen X, Xia J, Cheng L, Zhang B, Mu F. Cross-species transmission of a novel bisegmented orfanplasmovirus in the phytopathogenic fungus Exserohilum rostratum. Front Microbiol 2024; 15:1409677. [PMID: 38846572 PMCID: PMC11153860 DOI: 10.3389/fmicb.2024.1409677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
Mycoviruses have been found in various fungal species across different taxonomic groups, while no viruses have been reported yet in the fungus Exserohilum rostratum. In this study, a novel orfanplasmovirus, namely Exserohilum rostratum orfanplasmovirus 1 (ErOrfV1), was identified in the Exserohilum rostratum strain JZ1 from maize leaf. The complete genome of ErOrfV1 consists of two positive single-stranded RNA segments, encoding an RNA-dependent RNA polymerase and a hypothetical protein with unknown function, respectively. Phylogenetic analysis revealed that ErOrfV1 clusters with other orfanplasmoviruses, forming a distinct phyletic clade. A new family, Orfanplasmoviridae, is proposed to encompass this newly discovered ErOrfV1 and its associated orfanplasmoviruses. ErOrfV1 exhibits effective vertical transmission through conidia, as evidenced by its 100% presence in over 200 single conidium isolates. Moreover, it can be horizontally transmitted to Exserohilum turcicum. Additionally, the infection of ErOrfV1 is cryptic in E. turcicum because there were no significant differences in mycelial growth rate and colony morphology between ErOrfV1-infected and ErOrfV1-free strains. This study represents the inaugural report of a mycovirus in E. rostratum, as well as the first documentation of the biological and transmission characteristics of orfanplasmovirus. These discoveries significantly contribute to our understanding of orfanplasmovirus.
Collapse
Affiliation(s)
- Jichun Jia
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| | - Linjie Nan
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| | - Zehao Song
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| | - Xu Chen
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| | - Jinsheng Xia
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| | - Lihong Cheng
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| | - Baojun Zhang
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| | - Fan Mu
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| |
Collapse
|
17
|
Shi N, Zhu Q, Yang G, Wang P, Huang B. Prevalence and species diversity of dsRNA mycoviruses from Beauveria bassiana strains in the China's Guniujiang nature. Heliyon 2024; 10:e30186. [PMID: 38694113 PMCID: PMC11061733 DOI: 10.1016/j.heliyon.2024.e30186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
We investigated the prevalence and species diversity of dsRNA mycoviruses in Beauveria bassiana isolates from the China's Guniujiang Nature Preserve. Among the 28 isolates analyzed, electropherotyping revealed viral infections in 28.6 % (8 out of 28) of the isolates. Metatranscriptomic identification and RT-PCR confirmed the presence of six putative virus species, including two novel species: Beauveria bassiana victorivirus 2 (BbV-2) and Beauveria bassiana bipartite mycovirus 2 (BbBV-2). Four previously characterized mycoviruses were also identified: Beauveria bassiana polymycovirus 4 (BbPmV4), Beauveria bassiana partitivirus 1 (BbPV-1), Beauveria bassiana bipartite mycovirus 1 (BbBV-1), and Beauveria bassiana chrysovirus 2 (BbCV-2). BbPmV4 was found to be the prevailing mycovirus among the infected isolates, and three isolates showed co-infection with both BbPmV4 and BbBV-2. This study enhances our understanding of fungal viral taxonomy and diversity, providing insights into mycovirus infections in B. bassiana populations in China's Guniujiang Nature Preserve. Furthermore, the study on the diversity of B. bassiana viruses lays the foundation for recognizing fungal viruses as potential enhancers of biocontrol agents.
Collapse
Affiliation(s)
- Najie Shi
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Qiuyan Zhu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Guogen Yang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Ping Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
18
|
Hua H, Zhang X, Xia J, Wu X. A Novel Strain of Fusarium oxysporum Virus 1 Isolated from Fusarium oxysporum f. sp. niveum Strain X-GS16 Influences Phenotypes of F. oxysporum Strain HB-TS-YT-1 hyg. J Fungi (Basel) 2024; 10:252. [PMID: 38667923 PMCID: PMC11050907 DOI: 10.3390/jof10040252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
A novel strain of Fusarium oxysporum virus 1 (FoV1) was identified from the Fusarium oxysporum f. sp. niveum strain X-GS16 and designated as Fusarium oxysporum virus 1-FON (FoV1-FON). The full genome of FoV1-FON is 2902 bp in length and contains two non-overlapping open reading frames (ORFs), ORF1 and ORF2, encoding a protein with an unknown function (containing a typical -1 slippery motif G_GAU_UUU at the 3'-end) and a putative RNA-dependent RNA polymerase (RdRp), respectively. BLASTx search against the National Center for the Biotechnology Information (NCBI) non-redundant database showed that FoV1-FON had the highest identity (97.46%) with FoV1. Phylogenetic analysis further confirmed that FoV1-FON clustered with FoV1 in the proposed genus Unirnavirus. FoV1-FON could vertically transmit via spores. Moreover, FoV1-FON was transmitted horizontally from the F. oxysporum f. sp. niveum strain X-GS16 to the F. oxysporum strain HB-TS-YT-1hyg. This resulted in the acquisition of the F. oxysporum strain HB-TS-YT-1hyg-V carrying FoV1-FON. No significant differences were observed in the sporulation and dry weight of mycelial biomass between HB-TS-YT-1hyg and HB-TS-YT-1hyg-V. FoV1-FON infection significantly increased the mycelial growth of HB-TS-YT-1hyg, but decreased its virulence to potato tubers and sensitivity to difenoconazole, prochloraz, and pydiflumetofen. To our knowledge, this is the first report of hypovirulence and reduced sensitivity to difenoconazole, prochloraz, and pydiflumetofen in F. oxysporum due to FoV1-FON infection.
Collapse
Affiliation(s)
| | | | | | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, China; (H.H.); (X.Z.); (J.X.)
| |
Collapse
|
19
|
Xu X, Li J, Hai D, Wang Y, Li J, Zha Y. Complete genome sequence of a novel alternavirus isolated from the phytopathogenic fungus Colletotrichum fioriniae. Arch Virol 2024; 169:79. [PMID: 38519762 DOI: 10.1007/s00705-024-06010-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/04/2024] [Indexed: 03/25/2024]
Abstract
A novel double-strand RNA (dsRNA) mycovirus, named "Colletotrichum fioriniae alternavirus1" (CfAV1), was isolated from the strain CX7 of Colletotrichum fioriniae, the causal agent of walnut anthracnose. The complete genome of CfAV1 is composed of three dsRNA segments: dsRNA1 (3528 bp), dsRNA2 (2485 bp), and dsRNA3 (2481 bp). The RNA-dependent RNA polymerase (RdRp) is encoded by dsRNA1, while both dsRNA2 and dsRNA3 encode hypothetical proteins. Based on multiple sequence alignments and phylogenetic analysis, CfAV1 is identified as a new member of the family Alternaviridae. This is the first report of an alternavirus that infects the phytopathogenic fungus C. fioriniae.
Collapse
Affiliation(s)
- Xiaowen Xu
- Hubei Academy of Forestry, Wuhan, 430074, Hubei Province, People's Republic of China.
| | - Jincang Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Du Hai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Yixun Wang
- Hubei Academy of Forestry, Wuhan, 430074, Hubei Province, People's Republic of China
| | - Jinying Li
- Hubei Academy of Forestry, Wuhan, 430074, Hubei Province, People's Republic of China
| | - Yuping Zha
- Hubei Academy of Forestry, Wuhan, 430074, Hubei Province, People's Republic of China.
| |
Collapse
|
20
|
Schiwek S, Slonka M, Alhussein M, Knierim D, Margaria P, Rose H, Richert-Pöggeler KR, Rostás M, Karlovsky P. Mycoviruses Increase the Attractiveness of Fusarium graminearum for Fungivores and Suppress Production of the Mycotoxin Deoxynivalenol. Toxins (Basel) 2024; 16:131. [PMID: 38535797 PMCID: PMC10975473 DOI: 10.3390/toxins16030131] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 04/25/2025] Open
Abstract
RNA viruses of the genera Ambivirus, Mitovirus, Sclerotimonavirus, and Partitivirus were found in a single isolate of Fusarium graminearum. The genomes of the mitovirus, sclerotimonavirus, and partitivirus were assigned to previously described viruses, whereas the ambivirus genome putatively represents a new species, named Fusarium graminearum ambivirus 1 (FgAV1). To investigate the effect of mycoviruses on the fungal phenotype, the spontaneous loss of mycoviruses during meiosis and the transmission of mycoviruses into a new strain via anastomosis were used to obtain isogenic F. graminearum strains both with and without mycoviruses. Notable effects observed in mycovirus-harboring strains were (i) the suppression of the synthesis of trichothecene mycotoxins and their precursor trichodiene, (ii) the suppression of the synthesis of the defense compound aurofusarin, (iii) the stimulation of the emission of 2-methyl-1-butanol and 3-methyl-1-butanol, and (iv) the increased attractiveness of fungal mycelia for fungivorous collembolans. The increased attractiveness of mycovirus-infected filamentous fungi to animal predators opens new perspectives on the ecological implications of the infection of fungi with viruses.
Collapse
Affiliation(s)
- Simon Schiwek
- Institute for Plant Protection in Field Crops and Grassland, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, 37077 Göttingen, Germany
| | - Matthäus Slonka
- Agricultural Entomology, University of Göttingen, 37077 Göttingen, Germany; (M.S.)
| | - Mohammad Alhussein
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, 37077 Göttingen, Germany
- Agricultural Entomology, University of Göttingen, 37077 Göttingen, Germany; (M.S.)
| | - Dennis Knierim
- Leibniz Institute DSMZ-German Culture Collection for Microorganisms and Cell Cultures, 38124 Brunswick, Germany; (D.K.); (P.M.)
| | - Paolo Margaria
- Leibniz Institute DSMZ-German Culture Collection for Microorganisms and Cell Cultures, 38124 Brunswick, Germany; (D.K.); (P.M.)
| | - Hanna Rose
- Institute of Horticultural Production Systems, University of Hannover, 30419 Hannover, Germany
| | - Katja R. Richert-Pöggeler
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
| | - Michael Rostás
- Agricultural Entomology, University of Göttingen, 37077 Göttingen, Germany; (M.S.)
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
21
|
Zhu JZ, Qiu ZL, Gao BD, Li XG, Zhong J. A novel partitivirus conferring hypovirulence by affecting vesicle transport in the fungus Colletotrichum. mBio 2024; 15:e0253023. [PMID: 38193704 PMCID: PMC10865989 DOI: 10.1128/mbio.02530-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024] Open
Abstract
Colletotrichum spp. are economically important phytopathogenic fungi that cause anthracnose in a variety of plant species worldwide. Hypovirulence-associated mycoviruses provide new options for the biological control of plant fungal diseases. Here, we found a novel partitivirus from Colletotrichum alienum and named it Colletotrichum alienum partitivirus 1 (CaPV1). CaPV1 contained two dsRNA segments encoding an RNA-dependent RNA polymerase and a capsid protein and was classified under the genus Gammapartitivirus of the family Partitiviridae. CaPV1 significantly decreased host virulence, mycelial growth, appressorial development, and appressorium turgor but increased conidial production with abnormal morphology. In addition, CaPV1 could be successfully transfected into other Colletotrichum species, including C. fructicola, C. spaethianum, and C. gloeosporioides, and caused hypovirulence, indicating the broad application potential of this virus. CaPV1 caused significant transcriptional rewiring of the host fungus C. alienum. Notably, some genes related to vesicle transport in the CaPV1-infected strain were downregulated, consistent with the impaired endocytosis pathway in this fungus. When the Rab gene CaRab7, which is associated with endocytosis in vesicle transport, was knocked out, the virulence of the mutants was reduced. Overall, our findings demonstrated that CaPV1 has the potential to control anthracnose caused by Colletotrichum, and the mechanism by which Colletotrichum induces hypovirulence is caused by affecting vesicle transport.IMPORTANCEColletotrichum is a kind of economically important phytopathogenic fungi that cause anthracnose disease in a variety of plant species worldwide. We found a novel mycovirus of the Gammapartitivirus genus and Partitiviridae family from the phytopathogenic fungus Colletotrichum alienum and named it CaPV1. This study revealed that CaPV1 infection significantly decreased host virulence and fitness by affecting mycelial growth, appressorial development, and appressorium turgor. In addition, CaPV1 could also infect other Colletotrichum species, including C. fructicola, C. spaethianum, and C. gloeosporioides, by viral particle transfection and resulting in hypovirulence of these Colletotrichum species. Transcriptomic analysis showed that CaPV1 caused significant transcriptional rewiring of the host fungus C. alienum, especially the genes involved in vesicle transport. Moreover, endocytosis and gene knockout assays demonstrated that the mechanism underlying CaPV1-induced hypovirulence is, at least in part, caused by affecting the vesicle transport of the host fungus. This study provided insights into the mechanisms underlying the pathogenesis of Colletotrichum species and mycovirus-fungus interactions, linking the role of mycovirus and fungus vesicle transport systems in shaping fungal pathogenicity.
Collapse
Affiliation(s)
- Jun Zi Zhu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, China
| | - Ze Lan Qiu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, China
| | - Bi Da Gao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiao Gang Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, China
| | - Jie Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
22
|
Xu M, Liu H, Jia X, Zou X, Lu Y, Sui L, Li Q, Zhang Z, Liu J. The complete genome sequences of a negative single-stranded RNA virus and a double-stranded RNA virus coinfecting the entomopathogenic fungus Beauveria bassiana Vuillemin. Arch Virol 2024; 169:42. [PMID: 38332318 DOI: 10.1007/s00705-024-05985-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024]
Abstract
Beauveria bassiana Vuillemin is an entomopathogenic fungus that has been developed as a biological insecticide. B. bassiana can be infected by single or multiple mycoviruses, most of which are double-stranded RNA (dsRNA) viruses, while infections with single-stranded RNA (ssRNA) viruses, especially negative single-stranded RNA (-ssRNA) viruses, have been observed less frequently. In the present study, we sequenced and analyzed the complete genomes of two new different mycoviruses coinfecting a single B. bassiana strain: a -ssRNA virus which we have named "Beauveria bassiana negative-strand RNA virus 1" (BbNSRV1), and a dsRNA virus, which we have named "Beauveria bassiana orthocurvulavirus 1" (BbOCuV1). The genome of BbNSRV1 consists of a single segment of negative-sense, single-stranded RNA with a length of 6169 nt, containing a single open reading frame (ORF) encoding a putative RNA-dependent RNA polymerase (RdRp) with 1949 aa (220.1 kDa). BLASTx analysis showed that the RdRp had the highest sequence similarity (59.79%) to that of Plasmopara viticola lesion associated mononegaambi virus 2, a member of the family Mymonaviridae. This is the first report of a -ssRNA mycovirus infecting B. bassiana. The genome of BbOCuV1 consists of two dsRNA segments, 2164 bp and 1765 bp in length, respectively, with dsRNA1 encoding a protein with conserved RdRp motifs and 70.75% sequence identity to the putative RdRp of the taxonomically unassigned mycovirus Fusarium graminearum virus 5 (FgV5), and the dsRNA2 encoding a putative coat protein with sequence identity 64.26% to the corresponding protein of the FgV5. Phylogenetic analysis indicated that BbOCuV1 belongs to a taxonomically unassigned group of dsRNA mycoviruses related to members of the families Curvulaviridae and Partitiviridae. Hence, it might be the member of a new family that remains to be named and formally recognized.
Collapse
Affiliation(s)
- Mengnan Xu
- Jilin Normal University, Siping, 136000, China
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of agriculture and rural affairs, Changchun, 130033, China
| | - Hongyu Liu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of agriculture and rural affairs, Changchun, 130033, China
- Jilin Agricultural University, Changchun, 130118, China
| | - Xue Jia
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of agriculture and rural affairs, Changchun, 130033, China
- Jilin Agricultural University, Changchun, 130118, China
| | - Xiaowei Zou
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of agriculture and rural affairs, Changchun, 130033, China
| | - Yizhuo Lu
- Jilin Normal University, Siping, 136000, China
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of agriculture and rural affairs, Changchun, 130033, China
| | - Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of agriculture and rural affairs, Changchun, 130033, China
| | - Qiyun Li
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of agriculture and rural affairs, Changchun, 130033, China
- Jilin Agricultural University, Changchun, 130118, China
- Jilin Agricultural Science and Technology University, Jilin, 132101, China
| | - Zhengkun Zhang
- Jilin Normal University, Siping, 136000, China.
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of agriculture and rural affairs, Changchun, 130033, China.
- Jilin Agricultural University, Changchun, 130118, China.
| | | |
Collapse
|
23
|
Song X, Zhang J, Ma Q, Wang Y, Guo Y, Guo L, Wu H, Zhang M. Molecular characterization of a novel narnavirus infecting the phytopathogenic fungus Botryosphaeria dothidea. Arch Virol 2024; 169:38. [PMID: 38300296 DOI: 10.1007/s00705-024-05964-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/03/2023] [Indexed: 02/02/2024]
Abstract
Here, a novel mycovirus, Botryosphaeria dothidea narnavirus 5 (BdNV5), was discovered in the plant-pathogenic fungus Botryosphaeria dothidea strain ZM210167-1. The BdNV5 genome sequence is 2,397 nucleotides (nt) in length and contains a putative open reading frame (ORF) encoding an RNA-dependent RNA polymerase (RdRp) with a molecular mass of 72.77 kDa. A BLASTp search using the RdRp amino acid (aa) sequence showed that it was most similar to the RdRp of Botryosphaeria dothidea narnavirus 4 (42.35%). In a phylogenetic tree based on RdRp aa sequences, BdNV5 clustered with members of the family Narnaviridae. BdNV5 is thus a novel member of the family Narnaviridae infecting the phytopathogenic fungus B. dothidea.
Collapse
Affiliation(s)
- Xinzheng Song
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Jianing Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Qingzhou Ma
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Yanfen Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Yashuang Guo
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Lihua Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, 100193, China
| | - Haiyan Wu
- Analytical Instrument Center, Henan Agricultural University, Zhengzhou, Henan, 450002, China.
| | - Meng Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, 450002, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, 100193, China.
| |
Collapse
|
24
|
Ruiz-Padilla A, Rodríguez-Romero JL, Pacifico D, Chiapello M, Ayllón MA. Determination of the Mycovirome of a Necrotrophic Fungus. Methods Mol Biol 2024; 2732:83-101. [PMID: 38060119 DOI: 10.1007/978-1-0716-3515-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Next-generation sequencing (NGS) of total RNA has allowed the detection of novel viruses infecting different hosts, such as fungi, increasing our knowledge on virus horizontal transfer events among different hosts, virus diversity, and virus evolution. Here, we describe the detailed protocols for the isolation of the plant pathogenic fungus Botrytis cinerea, from grapevine plants showing symptoms of the mold gray disease, the culture and maintenance of the isolated B. cinerea strains, the extraction of total RNA from B. cinerea strains for NGS, the bioinformatics pipeline designed and followed to detect mycoviruses in the sequenced samples, and the validation of the in silico detected mycoviruses by different approaches.
Collapse
Affiliation(s)
- Ana Ruiz-Padilla
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Julio L Rodríguez-Romero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Davide Pacifico
- Institute of Bioscience and Bioresources, National Research Council of Italy, Palermo, Italy
| | - Marco Chiapello
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain.
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain.
| |
Collapse
|
25
|
Zhang Z, Guo W, Lu Y, Kang Q, Sui L, Liu H, Zhao Y, Zou X, Li Q. Hypovirulence-associated mycovirus epidemics cause pathogenicity degeneration of Beauveria bassiana in the field. Virol J 2023; 20:255. [PMID: 37924080 PMCID: PMC10623766 DOI: 10.1186/s12985-023-02217-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND The entomogenous fungus Beauveria bassiana is used as a biological insecticide worldwide, wild B. bassiana strains with high pathogenicity in the field play an important role in controlling insect pests via not only screening of highly virulent strains but also natural infection, but the pathogenicity degeneration of wild strains severely affected aforementioned effects. Previous studies have showed that multiple factors contributed to this phenomenon. It has been extensively proved that the mycovirus infection caused hypovirulence of phytopathogenic fungi, which has been used for plant disease biocontrol. However, it remains unknown whether the mycovirus epidemics is a key factor causing hypovirulence of B. bassiana naturally in the field. METHODS Wild strains of B. bassiana were collected from different geographic locations in Jilin Province, China, to clarify the epidemic and diversity of the mycoviruses. A mycovirus Beauveria bassiana chrysovirus 2 (BbCV2) we have previously identified was employed to clarify its impact on the pathogenicity of host fungi B. bassiana against the larvae of insect pest Ostrinia furnacalis. The serological analysis was conducted by preparing polyclonal antibody against a BbCV2 coat protein, to determine whether it can dissociate outside the host fungal cells and subsequently infect new hosts. Transcriptome analysis was used to reveal the interactions between viruses and hosts. RESULTS We surprisingly found that the mycovirus BbCV2 was prevalent in the field as a core virus in wild B. bassiana strains, without obvious genetic differentiation, this virus possessed efficient and stable horizontal and vertical transmission capabilities. The serological results showed that the virus could not only replicate within but also dissociate outside the host cells, and the purified virions could infect B. bassiana by co-incubation. The virus infection causes B. bassiana hypovirulence. Transcriptome analysis revealed decreased expression of genes related to insect epidermis penetration, hypha growth and toxin metabolism in B. bassiana caused by mycovirus infection. CONCLUSION Beauveria bassiana infected by hypovirulence-associated mycovirus can spread the virus to new host strains after infecting insects, and cause the virus epidemics in the field. The findings confirmed that mycovirus infection may be an important factor affecting the pathogenicity degradation of B. bassiana in the field.
Collapse
Affiliation(s)
- Zhengkun Zhang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
| | - Wenbo Guo
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Yang Lu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Qin Kang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 101408, People's Republic of China
| | - Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
| | - Hongyu Liu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
| | - Yu Zhao
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
| | - Xiaowei Zou
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
| | - Qiyun Li
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China.
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, People's Republic of China.
- Jilin Agricultural Science and Technology University, Jilin, 132109, People's Republic of China.
| |
Collapse
|
26
|
Andika IB, Cao X, Kondo H, Sun L. The intriguing phenomenon of cross-kingdom infections of plant and insect viruses to fungi: Can other animal viruses also cross-infect fungi? PLoS Pathog 2023; 19:e1011726. [PMID: 37883353 PMCID: PMC10602238 DOI: 10.1371/journal.ppat.1011726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
Fungi are highly widespread and commonly colonize multicellular organisms that live in natural environments. Notably, studies on viruses infecting plant-associated fungi have revealed the interesting phenomenon of the cross-kingdom transmission of viruses and viroids from plants to fungi. This implies that fungi, in addition to absorbing water, nutrients, and other molecules from the host, can acquire intracellular parasites that reside in the host. These findings further suggest that fungi can serve as suitable alternative hosts for certain plant viruses and viroids. Given the frequent coinfection of fungi and viruses in humans/animals, the question of whether fungi can also acquire animal viruses and serve as their hosts is very intriguing. In fact, the transmission of viruses from insects to fungi has been observed. Furthermore, the common release of animal viruses into the extracellular space (viral shedding) could potentially facilitate their acquisition by fungi. Investigations of the cross-infection of animal viruses in fungi may provide new insights into the epidemiology of viral diseases in humans and animals.
Collapse
Affiliation(s)
- Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xinran Cao
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- Shandong Agricultural University, Tai’an, China
- Shouguang International Vegetable Sci-tech Fair Management Service Center, Shouguang, China
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Xianyang, China
| |
Collapse
|
27
|
Khan HA, Nerva L, Bhatti MF. The good, the bad and the cryptic: The multifaceted roles of mycoviruses and their potential applications for a sustainable agriculture. Virology 2023; 585:259-269. [PMID: 37453341 DOI: 10.1016/j.virol.2023.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Mycoviruses are natural inhabitants of fungi and have been identified in almost all fungal taxonomic groups. Mycoviruses that infect phytopathogenic fungi are now becoming a hot research area due to their potential for the biocontrol of important plant pathogens. But, before considering a mycovirus for biocontrol, we should be fully aware of the effects it induces in a fungal host and its interactions with other viruses, fungal strains and even the host plants. Mycoviral infections are generally associated with different effects, ranging from hypovirulence to hypervirulence, but they can often be cryptic (latent infections). The cryptic lifestyle has been associated to many mycoviruses, but thanks to growing knowledge we are now aware that it is often associated to axenic conditions while the real effects can be observed only in nature. Other mycoviruses either promote (hypervirulence) or (hypovirulence) fungal pathogenicity by a strong impact on the fungal physiology or by blocking the production of toxins or effectors. Finally, indirect effects of mycoviral infections can also be provided to the plant that hosts the fungal isolate, highlighting not only their potential as direct biocontrol agents but also as priming agents for plant resilience to biotic and abiotic stresses. This review provides a broad overview of mycoviral interactions both with their hosts and with other mycoviruses, highlighting the most interesting examples. In contrast to what has been observed to date, we believe that the collective availability of these data will not only improve our understanding of mycoviruses, but also increase our confidence in considering them as alternative measures against fungal diseases to improve the sustainable production of food and feed commodities.
Collapse
Affiliation(s)
- Haris Ahmed Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, 44000, Islamabad, Pakistan; Department of Biotechnology, University of Mianwali, Punjab, 42200, Pakistan
| | - Luca Nerva
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile, 31015, Conegliano, (TV), Italy.
| | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, 44000, Islamabad, Pakistan
| |
Collapse
|
28
|
Wang P, Yang G, Lu H, Huang B. Infection with a novel polymycovirus enhances growth, conidiation and sensitivity to UV-B irradiation of the entomopathogenic fungus Metarhizium anisopliae. Front Microbiol 2023; 14:1214133. [PMID: 37469432 PMCID: PMC10352681 DOI: 10.3389/fmicb.2023.1214133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/14/2023] [Indexed: 07/21/2023] Open
Abstract
Metarhizium anisopliae is a well-studied entomopathogenic fungus that is widely used in biological control programs. The presence of polymycoviruses in this fungus is common, but their effects on fungal development and stress tolerance are not well understood. In this study, we report the discovery of a novel double-stranded RNA virus, named Metarhizium anisopliae polymycovirus 1 (MaPmV1), which comprises four dsRNAs ranging from 2.4 to 1.4 kbp in length. Phylogenetic analysis revealed that MaPmV1 belongs to the Polymycoviridae family. Biological comparison between MaPmV1-infected (Vi) and -free (Vf) isogenic lines showed that MaPmV1 remarkably enhances the growth rate and conidiation of the host fungus. The upregulation of growth- and conidiation-related genes in Vi strains supports this finding. In addition, MaPmV1 increases the sensitivity of the host to UV-B irradiation, which is evidenced by the downregulation of DNA damage repair genes in Vi strains. However, MaPmV1 does not appear to have any significant impact on the virulence of M. anisopliae. Furthermore, overexpression of individual viral proteins in M. anisopliae did not result in any significant phenotypic alterations, indicating that MaPmV1-mediated changes are not related to a single viral protein. Overall, our findings suggest that mycoviruses can be exploited to enhance fungal development in entomopathogenic fungi, which may lead to improved conidium production on a large scale.
Collapse
Affiliation(s)
- Ping Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Guogen Yang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Hanwen Lu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| |
Collapse
|
29
|
Zheng Y, Chen M, Li X, Dai F, Gao Z, Deng Q, Fang S, Zhang S, Pan S. Four distinct isolates of a novel polymycovirus identified in Setosphaeria turcica. Arch Virol 2023; 168:189. [PMID: 37351692 DOI: 10.1007/s00705-023-05819-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023]
Abstract
Isolation and analysis of double-stranded RNA (dsRNA) from the phytopathogenic fungus Setosphaeria turcica f. sp. zeae revealed the presence of a new double-stranded RNA (dsRNA) virus, tentatively named "Setosphaeria turcica polymycovirus 2" (StPmV2). The genome of StPmV2 consists of five segments (dsRNA1-5), ranging in size from 965 bp to 2462 bp. Each dsRNA contains one open reading frame (ORF) flanked by 5' and 3' untranslated regions (UTRs) with conserved terminal sequences. The putative protein encoded by dsRNA1 shows 64.52% amino acid sequence identity to the RNA-dependent RNA polymerase (RdRp) of the most closely related virus, Cladosporium cladosporioides virus 1, which belongs to the family Polymycoviridae. dsRNAs 2-4 encode the putative coat protein, methyltransferase (MTR), and proline-alanine-serine-rich protein (PASrp), respectively, and dsRNA5 encodes a protein of unknown function. Phylogenetic analysis based on the RdRp protein indicated that StPmV2 clustered with members of the family Polymycoviridae and is therefore a new mycovirus belonging to the genus Polymycovirus in the family Polymycoviridae. In addition, three other distinct isolates of StPmV2 were identified: one isolated from S. turcica f. sp. zeae and two from S. turcica f. sp. sorghi. To our knowledge, this is the first report of a polymycovirus infecting both S. turcica f. sp. zeae and S. turcica f. sp. sorghi.
Collapse
Affiliation(s)
- Yun Zheng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, China
| | - Miaomiao Chen
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, China
| | - Xiquan Li
- Anshun Branch of Guizhou Tobacco Company, Anshun, 561000, China
| | - Fei Dai
- Anshun Branch of Guizhou Tobacco Company, Anshun, 561000, China
| | - Zhongnan Gao
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, China
| | - Qingchao Deng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, China
| | - Shouguo Fang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, China
| | - Songbai Zhang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, China.
| | - Shouhui Pan
- Anshun Branch of Guizhou Tobacco Company, Anshun, 561000, China.
| |
Collapse
|
30
|
Wang P, Yang G, Shi N, Zhao C, Hu F, Coutts RHA, Kotta-Loizou I, Huang B. A novel partitivirus orchestrates conidiation, stress response, pathogenicity, and secondary metabolism of the entomopathogenic fungus Metarhizium majus. PLoS Pathog 2023; 19:e1011397. [PMID: 37216409 DOI: 10.1371/journal.ppat.1011397] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/01/2023] [Indexed: 05/24/2023] Open
Abstract
Mycoviruses are widely present in all major groups of fungi but those in entomopathogenic Metarhizium spp. remain understudied. In this investigation, a novel double-stranded (ds) RNA virus is isolated from Metarhizium majus and named Metarhizium majus partitivirus 1 (MmPV1). The complete genome sequence of MmPV1 comprises two monocistronic dsRNA segments (dsRNA 1 and dsRNA 2), which encode an RNA-dependent RNA polymerase (RdRp) and a capsid protein (CP), respectively. MmPV1 is classified as a new member of the genus Gammapartitivirus in the family Partitiviridae based on phylogenetic analysis. As compared to an MmPV1-free strain, two isogenic MmPV1-infected single-spore isolates were compromised in terms of conidiation, and tolerance to heat shock and UV-B irradiation, while these phenotypes were accompanied by transcriptional suppression of multiple genes involved in conidiation, heat shock response and DNA damage repair. MmPV1 attenuated fungal virulence since infection resulted in reduced conidiation, hydrophobicity, adhesion, and cuticular penetration. Additionally, secondary metabolites were significantly altered by MmPV1 infection, including reduced production of triterpenoids, and metarhizins A and B, and increased production of nitrogen and phosphorus compounds. However, expression of individual MmPV1 proteins in M. majus had no impact on the host phenotype, suggesting insubstantive links between defective phenotypes and a single viral protein. These findings indicate that MmPV1 infection decreases M. majus fitness to its environment and its insect-pathogenic lifestyle and environment through the orchestration of the host conidiation, stress tolerance, pathogenicity, and secondary metabolism.
Collapse
Affiliation(s)
- Ping Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Guogen Yang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Najie Shi
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Cheng Zhao
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Fenglin Hu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Robert H A Coutts
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| |
Collapse
|
31
|
Hough B, Steenkamp E, Wingfield B, Read D. Fungal Viruses Unveiled: A Comprehensive Review of Mycoviruses. Viruses 2023; 15:1202. [PMID: 37243288 PMCID: PMC10224137 DOI: 10.3390/v15051202] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Mycoviruses (viruses of fungi) are ubiquitous throughout the fungal kingdom and are currently classified into 23 viral families and the genus botybirnavirus by the International Committee on the Taxonomy of Viruses (ICTV). The primary focus of mycoviral research has been on mycoviruses that infect plant pathogenic fungi, due to the ability of some to reduce the virulence of their host and thus act as potential biocontrol against these fungi. However, mycoviruses lack extracellular transmission mechanisms and rely on intercellular transmission through the hyphal anastomosis, which impedes successful transmission between different fungal strains. This review provides a comprehensive overview of mycoviruses, including their origins, host range, taxonomic classification into families, effects on their fungal counterparts, and the techniques employed in their discovery. The application of mycoviruses as biocontrol agents of plant pathogenic fungi is also discussed.
Collapse
Affiliation(s)
| | | | - Brenda Wingfield
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria 0002, South Africa; (B.H.); (E.S.); (D.R.)
| | | |
Collapse
|
32
|
Hwang DY, Kim S, Woo SD, Shin TY, Coutts RHA, Kotta-Loizou I. Incidence of putative RNA mycoviruses in entomopathogenic fungi in Korea. Arch Virol 2023; 168:145. [PMID: 37076649 DOI: 10.1007/s00705-023-05765-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/21/2023] [Indexed: 04/21/2023]
Abstract
Entomopathogenic fungi have potential as biocontrol agents against insect pests, and mycovirus-mediated hypervirulence may enhance their efficacy. Before initiating research on hypervirulence, the presence or absence of double-stranded (ds) RNA elements was determined in 94 Korean entomopathogenic fungi. dsRNA elements varying in size from ca. 0.8 to 7 kbp were found in 14.9% (14/94) of the strains examined, including Beauveria bassiana, Metarhizium pemphigi, M. pinghaense, M. rileyi, and Cordyceps fumosorosea. This study provides information on the incidence and electrophoretic banding patterns of dsRNA elements and is the first report of mycoviruses entomopathogenic fungi in Korea.
Collapse
Affiliation(s)
- Dong Young Hwang
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, 54896, Jeonju, Korea
| | - Seulki Kim
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, 54896, Jeonju, Korea
| | - Soo Dong Woo
- Department of Agricultural Biology, College of Agriculture, Life & Environment Science, Chungbuk National University, 28644, Cheongju, Korea
| | - Tae Young Shin
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, 54896, Jeonju, Korea.
| | - Robert H A Coutts
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, AL10 9AB, Hatfield, UK
| | - Ioly Kotta-Loizou
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, AL10 9AB, Hatfield, UK
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, SW7 2AZ, London, UK
| |
Collapse
|
33
|
Shah UA, Daudu JO, Filippou C, Tubby KV, Coutts RHA, Kotta-Loizou I. Identification and sequence determination of a new chrysovirus infecting the phytopathogenic fungus Dothistroma septosporum. Arch Virol 2023; 168:144. [PMID: 37071213 PMCID: PMC10113357 DOI: 10.1007/s00705-023-05768-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/07/2023] [Indexed: 04/19/2023]
Abstract
A new double-stranded (ds) RNA mycovirus has been identified in isolate Ds752-1 of the phytopathogenic fungus Dothistroma septosporum, the causal agent of Dothistroma needle blight, also known as red band needle blight or pine needle blight. Dothistroma septosporum chrysovirus 1 (DsCV-1) is a new member of the genus Alphachrysovirus in the family Chrysoviridae. The DsCV-1 genome comprises four dsRNA elements designated 1, 2, 3, and 4 from largest to smallest. dsRNA1 encodes an RNA-dependent RNA polymerase (RdRP) that is most similar to the RdRP of Erysiphe necator associated chrysovirus 3. dsRNA2 potentially encodes two hypothetical proteins, one of which is small and has no homology to known proteins, and one of which is large with significant sequence similarity to the alphachryso-P3 of other alphachrysoviruses. dsRNA3 and dsRNA4 encode a coat protein (CP) and a putative cysteine protease, respectively. This is the first report of a mycovirus infecting the fungus D. septosporum, and DsCV-1 is one of three Chrysoviridae family members found to possess genomic dsRNAs potentially encoding more than one protein.
Collapse
Affiliation(s)
- Unnati A Shah
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - John O Daudu
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Charalampos Filippou
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Katherine V Tubby
- Forest Research, Alice Holt Lodge, Wrecclesham, Farnham, GU10 4LH, UK
| | - Robert H A Coutts
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Ioly Kotta-Loizou
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK.
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Imperial College Road, London, SW7 2AZ, UK.
| |
Collapse
|
34
|
Kang Q, Ning S, Sui L, Lu Y, Zhao Y, Shi W, Li Q, Zhang Z. Transcriptomic analysis of entomopathogenic fungus Beauveria bassiana infected by a hypervirulent polymycovirus BbPmV-4. Fungal Biol 2023; 127:958-967. [PMID: 36906386 DOI: 10.1016/j.funbio.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 12/30/2022] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
Polymycoviridae is a recently established family of mycoviruses. Beauveria bassiana polymycovirus 4 (BbPmV-4) was previously reported. However, the effect of the virus on host fungus B. bassiana was not clarified. Here, a comparison between virus-free and virus-infected isogenic lines of B. bassiana revealed that BbPmV-4 infection of B. bassiana changes morphology and could lead to decreases in conidiation and increases in virulence against Ostrinia furnacalis larvae. The differential expression of genes between virus-free and virus-infected strains was compared by RNA-Seq and was consistent with the phenotype of B. bassiana. The enhanced pathogenicity may be related to the significant up-regulation of genes encoding mitogen activated protein kinase, cytochrome P450, and polyketide synthase. The results enable studies of the mechanism of interaction between BbPmV-4 and B. bassiana.
Collapse
Affiliation(s)
- Qin Kang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, Jilin Province, PR China; Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, PR China
| | - Siyu Ning
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, Jilin Province, PR China; Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, PR China
| | - Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, Jilin Province, PR China
| | - Yang Lu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, Jilin Province, PR China
| | - Yu Zhao
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, Jilin Province, PR China
| | - Wangpeng Shi
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, PR China.
| | - Qiyun Li
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, Jilin Province, PR China; Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, PR China.
| | - Zhengkun Zhang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, Jilin Province, PR China.
| |
Collapse
|
35
|
da Silva Camargo M, Geremia F, Sbaraini N, Staats CC, Filho MS, Schrank A. Molecular characterization of a novel victorivirus (order Ghabrivirales, family Totiviridae) infecting Metarhizium anisopliae. Arch Virol 2023; 168:83. [PMID: 36757570 DOI: 10.1007/s00705-023-05716-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/08/2023] [Indexed: 02/10/2023]
Abstract
Here, we report the occurrence and complete genome sequence of a novel victorivirus infecting Metarhizium anisopliae, named "Metarhizium anisopliae victorivirus 1" (MaVV1). The genome is 5353 bp in length and contains two open reading frames (ORFs), encoding a coat protein and an RNA-dependent RNA polymerase (RdRp), that overlap at the octanucleotide sequence AUGAGUAA. These ORFs showed sequence similarity to the corresponding ORFs of Ustilaginoidea virens RNA virus L (68.23%) and Ustilaginoidea virens RNA virus 13 (58.11%), respectively, both of which belong to the family Totiviridae. Phylogenetic analysis based on RdRp sequences revealed that MaVV1 clustered with members of the genus Victorivirus. This is the first genome sequence reported for a virus belonging to the genus Victorivirus infecting the entomopathogenic fungus M. anisopliae.
Collapse
Affiliation(s)
- Matheus da Silva Camargo
- Biotechnology Center, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Deparment of Molecular Biology and Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Felipe Geremia
- Biotechnology Center, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Deparment of Molecular Biology and Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Nicolau Sbaraini
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Charley Christian Staats
- Biotechnology Center, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Deparment of Molecular Biology and Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcio Silva Filho
- Department of Genetics, ESALQ, Universidade de São Paulo, Piracicaba, Brazil
| | - Augusto Schrank
- Biotechnology Center, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,Deparment of Molecular Biology and Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,Cellular and Molecular Biology of Filamentous Fungi Laboratory, Biotechnology Center, Universidade Federal do Rio Grande do Sul, 9500 Bento Gonçalves AveLab 217, Campus Box 43421, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil.
| |
Collapse
|
36
|
Sass G, Kotta-Loizou I, Martinez M, Larwood DJ, Stevens DA. Polymycovirus Infection Sensitizes Aspergillus fumigatus for Antifungal Effects of Nikkomycin Z. Viruses 2023; 15:197. [PMID: 36680240 PMCID: PMC9864188 DOI: 10.3390/v15010197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Infection with Aspergillus fumigatus polymycovirus 1 (AfuPmV-1) weakens resistance of Aspergillus fumigatus common reference strain Af293 biofilms in intermicrobial competition with Pseudomonas aeruginosa. We compared the sensitivity of two infected and one virus-free Af293 strains to antifungal drugs. All three were comparably sensitive to drugs affecting fungal membranes (voriconazole, amphotericin) or cell wall glucan synthesis (micafungin, caspofungin). In contrast, forming biofilms of virus-free Af293 were much more resistant than AfuPmV-1-infected Af293 to nikkomycin Z (NikZ), a drug inhibiting chitin synthase. The IC50 for NikZ on biofilms was between 3.8 and 7.5 µg/mL for virus-free Af293 and 0.94-1.88 µg/mL for infected strains. The IC50 for the virus-free A. fumigatus strain 10AF was ~2 µg/mL in most experiments. NikZ also modestly affected the planktonic growth of infected Af293 more than the virus-free strain (MIC 50%, 2 and 4 µg/mL, respectively). Virus-free Af293 biofilm showed increased metabolism, and fungus growing as biofilm or planktonically showed increased growth compared to infected; these differences do not explain the resistance of the virus-free fungus to NikZ. In summary, AfuPmV-1 infection sensitized A. fumigatus to NikZ, but did not affect response to drugs commonly used against A. fumigatus infection. Virus infection had a greater effect on NikZ inhibition of biofilm than planktonic growth.
Collapse
Affiliation(s)
- Gabriele Sass
- California Institute for Medical Research, San Jose, CA 95128, USA
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield AL10 9AB, UK
| | - Marife Martinez
- California Institute for Medical Research, San Jose, CA 95128, USA
| | | | - David A. Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
37
|
Zhang X, Wu C, Hua H, Cai Q, Wu X. Characterization of the First Alternavirus Identified in Fusarium avenaceum, the Causal Agent of Potato Dry Rot. Viruses 2023; 15:145. [PMID: 36680185 PMCID: PMC9864086 DOI: 10.3390/v15010145] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
A novel virus with a double-stranded RNA (dsRNA) genome was isolated from Fusarium avenaceum strain GS-WW-224, the causal agent of potato dry rot. The virus has been designated as Fusarium avenaceum alternavirus 1 (FaAV1). Its genome consists of two dsRNA segments, 3538 bp (dsRNA1) and 2477 bp (dsRNA2) in length, encoding RNA-dependent RNA polymerase (RdRp) and a hypothetical protein (HP), respectively. The virions of FaAV1 are isometric spherical and approximately 30 nm in diameter. Multiple sequence alignments and phylogenetic analyses based on the amino acid sequences of RdRp and HP indicated that FaAV1 appears to be a new member of the proposed family Alternaviridae. No significant differences in colony morphology and spore production were observed between strains GS-WW-224 and GS-WW-224-VF, the latter strain being one in which FaAV1 was eliminated from strain GS-WW-224. Notably, however, the dry weight of mycelial biomass of GS-WW-224 was higher than that of mycelial biomass of GS-WW-224-VF. The depth and the width of lesions on potato tubers caused by GS-WW-224 were significantly greater, relative to GS-WW-224-VF, suggesting that FaAV1 confers hypervirulence to its host, F. avenaceum. Moreover, FaAV1 was successfully transmitted horizontally from GS-WW-224 to ten other species of Fusarium, and purified virions of FaAV1 were capable of transfecting wounded hyphae of the ten species of Fusarium. This is the first report of an alternavirus infecting F. avenaceum and conferring hypervirulence.
Collapse
Affiliation(s)
| | | | | | | | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, China
| |
Collapse
|
38
|
Ayllón MA, Vainio EJ. Mycoviruses as a part of the global virome: Diversity, evolutionary links and lifestyle. Adv Virus Res 2023; 115:1-86. [PMID: 37173063 DOI: 10.1016/bs.aivir.2023.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Knowledge of mycovirus diversity, evolution, horizontal gene transfer and shared ancestry with viruses infecting distantly related hosts, such as plants and arthropods, has increased vastly during the last few years due to advances in the high throughput sequencing methodologies. This also has enabled the discovery of novel mycoviruses with previously unknown genome types, mainly new positive and negative single-stranded RNA mycoviruses ((+) ssRNA and (-) ssRNA) and single-stranded DNA mycoviruses (ssDNA), and has increased our knowledge of double-stranded RNA mycoviruses (dsRNA), which in the past were thought to be the most common viruses infecting fungi. Fungi and oomycetes (Stramenopila) share similar lifestyles and also have similar viromes. Hypothesis about the origin and cross-kingdom transmission events of viruses have been raised and are supported by phylogenetic analysis and by the discovery of natural exchange of viruses between different hosts during virus-fungus coinfection in planta. In this review we make a compilation of the current information on the genome organization, diversity and taxonomy of mycoviruses, discussing their possible origins. Our focus is in recent findings suggesting the expansion of the host range of many viral taxa previously considered to be exclusively fungal, but we also address factors affecting virus transmissibility and coexistence in single fungal or oomycete isolates, as well as the development of synthetic mycoviruses and their use in investigating mycovirus replication cycles and pathogenicity.
Collapse
Affiliation(s)
- María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain; Departamento Biotecnología-Biología Vegetal, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain.
| | - Eeva J Vainio
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Helsinki, Finland
| |
Collapse
|
39
|
He L, Wang P, Yang G, Chen X, Huang B. A novel polymycovirus infecting the entomopathogenic fungus Metarhizium brunneum. Arch Virol 2023; 168:6. [DOI: 10.1007/s00705-022-05684-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/07/2022] [Indexed: 12/24/2022]
|
40
|
Molecular characterization of a novel polymycovirus identified in the phytopathogenic fungus Colletotrichum gloeosporioides. Arch Virol 2022; 167:2805-2810. [PMID: 36308546 DOI: 10.1007/s00705-022-05591-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/27/2022] [Indexed: 12/14/2022]
Abstract
A novel polymycovirus isolated from the plant-pathogenic fungus Colletotrichum gloeosporioides was identified. The viral genome is composed of nine double-stranded RNA segments, ranging in size from 699 bp to 2,444 bp. With the exception of dsRNA5, which contains two open reading frames (ORF5-1 and ORF5-2), the other dsRNA segments each contain one ORF. The proteins encoded by ORFs 1-8 are homologous to the proteins encoded by ORFs 1-8 of Colletotrichum camelliae filamentous virus 1 (CcFV-1). The amino acid sequences of the RNA-dependent RNA polymerase (RdRp) encoded by ORF1 and the viral methyltransferase encoded by ORF3 share 87.6% and 83.3% identity with CcFV-1. The proline-alanine-serine-rich protein (PASrp) encoded by ORF4 shares 86.6% sequence identity with that of CcFV-1. The proteins encoded by ORFs 2, 5 - 1, 6, 7, and 8 share 86.6%, 82.5%, 89.0%, 45.7%, and 95.5% sequence identity, respectively, with the corresponding proteins of CcFV-1. dsRNA9 is a defective copy of dsRNA2 that lacks a stretch of 1556 bp (nt 519 to nt 2074). Phylogenetic analysis based on the RdRp protein indicated that the novel virus clustered with members of the family Polymycoviridae, and based on the above results, we have tentatively named it "Colletotrichum gloeosporioides polymycovirus virus 1" (CgPmV1). To our knowledge, this is the first report of a polymycovirus with a defective dsRNA genome in C. gloeosporioides.
Collapse
|
41
|
Viral cross-class transmission results in disease of a phytopathogenic fungus. THE ISME JOURNAL 2022; 16:2763-2774. [PMID: 36045287 PMCID: PMC9428384 DOI: 10.1038/s41396-022-01310-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 12/15/2022]
Abstract
Interspecies transmission of viruses is a well-known phenomenon in animals and plants whether via contacts or vectors. In fungi, interspecies transmission between distantly related fungi is often suspected but rarely experimentally documented and may have practical implications. A newly described double-strand RNA (dsRNA) virus found asymptomatic in the phytopathogenic fungus Leptosphaeria biglobosa of cruciferous crops was successfully transmitted to an evolutionarily distant, broad-host range pathogen Botrytis cinerea. Leptosphaeria biglobosa botybirnavirus 1 (LbBV1) was characterized in L. biglobosa strain GZJS-19. Its infection in L. biglobosa was asymptomatic, as no significant differences in radial mycelial growth and pathogenicity were observed between LbBV1-infected and LbBV1-free strains. However, cross-species transmission of LbBV1 from L. biglobosa to infection in B. cinerea resulted in the hypovirulence of the recipient B. cinerea strain t-459-V. The cross-species transmission was succeeded only by inoculation of mixed spores of L. biglobosa and B. cinerea on PDA or on stems of oilseed rape with the efficiency of 4.6% and 18.8%, respectively. To investigate viral cross-species transmission between L. biglobosa and B. cinerea in nature, RNA sequencing was carried out on L. biglobosa and B. cinerea isolates obtained from Brassica samples co-infected by these two pathogens and showed that at least two mycoviruses were detected in both fungal groups. These results indicate that cross-species transmission of mycoviruses may occur frequently in nature and result in the phenotypical changes of newly invaded phytopathogenic fungi. This study also provides new insights for using asymptomatic mycoviruses as biocontrol agent.
Collapse
|
42
|
Interspecific spread of dsRNA mycoviruses in entomogenous fungi Beauveria spp. Virus Res 2022; 322:198933. [PMID: 36165923 DOI: 10.1016/j.virusres.2022.198933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 12/24/2022]
Abstract
Mycoviruses can spread interspecifically and intraspecifically in plant pathogenic fungi, as well as spreading intraspecifically in entomogenous fungi, especially Beauveria bassiana. However, whether mycoviruses are common in Beauveria spp. and can spread interspecifically between Beauveria species are unclear. Herein, four Beauveria species, but not B. bassiana, were randomly selected for double stranded RNA (dsRNA) detection. Furthermore, two previously reported dsRNA mycoviruses from B. bassiana, BbCV-2 and BbPmV-4, were used to study the interspecific transmission among B. bassiana, B. amorpha, and B. aranearum, using hyphal anastomosis and a novel insect coinfection transmission method. The results showed that dsRNA mycoviruses exist universally in Beauveria spp. and could spread interspecifically between different Beauveria species. The transmission efficiency from B. bassiana to the other two Beauveria species was significantly higher than that of the reverse transmission. Both viruses could stably and vertically spread in B. amorpha and B. aranearum, which affected their growth rate and colony morphology.
Collapse
|
43
|
Xie FL, Zhou XY, Xiao R, Zhang CJ, Zhong J, Zhou Q, Liu F, Zhu HJ. Discovery and exploration of widespread infection of mycoviruses in Phomopsis vexans, the causal agent of phomopsis blight of eggplant in China. FRONTIERS IN PLANT SCIENCE 2022; 13:996862. [PMID: 36438156 PMCID: PMC9685175 DOI: 10.3389/fpls.2022.996862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/11/2022] [Indexed: 06/01/2023]
Abstract
Phomopsis vexans, which causes Phomopsis blight of eggplant, has been reported worldwide. To study the biocontrol of this disease, 162 leaf and fruit samples of eggplant Phomopsis blight were collected from Hunan, Hubei, Jiangxi, Sichuan, Zhejiang, Fujian, Guangdong and Anhui Provinces from 2017 to 2019. Eighty-seven pathogenic fungus isolates were identified as P. vexans. The following studies were conducted: screening of sporulation medium, spore morphology analysis, mycovirus detection and identification of novel mycoviruses in these isolates. The results showed that eggplant tissue medium was the most suitable medium for rapid sporulation, and all isolates had mycoviruses consisting of mainly mixed infections. The genome of these mycoviruses varied from 1-15 kb. Five novel mycoviruses infecting P. vexans were obtained, including "Phomopsis vexans fusarivirus 1" (PvFV1), "Phomopsis vexans ourmia-like virus 1" (PvOLV1), "Phomopsis vexans endornavirus 2" (PvEV2), "Phomopsis vexans partitivirus 1" (PvPV1) and "Phomopsis vexans victorivirus L1" (PvVVL1). Thus, PvVVL1 displays a unique genome structure, and this is the first report of a victorivirus consisting of two segments and of a deltapartitivirus infecting the fungus host.
Collapse
Affiliation(s)
- Fang Ling Xie
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Xin Yu Zhou
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Rong Xiao
- Hunan Institute of Microbiology, Changsha, China
| | - Chao Jun Zhang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Jie Zhong
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Qian Zhou
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Feng Liu
- College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Hong Jian Zhu
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| |
Collapse
|
44
|
Teng L, Chen S, Hu Z, Chen J, Liu H, Zhang T. Molecular characterization and transcriptomic analysis of a novel polymycovirus in the fungus Talaromyces amestolkiae. Front Microbiol 2022; 13:1008409. [PMID: 36386701 PMCID: PMC9645161 DOI: 10.3389/fmicb.2022.1008409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022] Open
Abstract
Talaromyces amestolkiae is an important fungal species owing to its ubiquity in soils, plants, air, and food. In this study, we identified a novel six-segmented polymycovirus, Talaromyces amestolkiae polymycovirus 1 (TaPmV-1). Each of the double-stranded (ds) RNA segments of TaPmV-1 contained a single open reading frame, and the proteins encoded by dsRNA1, dsRNA2, dsRNA3, and dsRNA 5 shared significant amino acid identities of 56, 40, 47, and 43%, respectively, with the corresponding proteins of Aspergillus fumigatus polymycovirus-1(AfuPmV-1). DsRNA1, dsRNA3, and dsRNA5 of TaPmV-1 encoded an RNA-dependent RNA polymerase (RdRp), a viral methyltransferase, and a PAS-rich protein, respectively. The functions of the proteins encoded by dsRNA2, dsRNA4, and dsRNA6 have not been elucidated. Comparison of the virus-infected strain LSH3 with virus-cured strain LSHVF revealed that infection with TaPmV-l may reduce the production of red pigments and induce the clustering of fungal sclerotia. Furthermore, transcriptomic analyses demonstrated that infection with TaPmV-l downregulated the expression of transcripts related to metabolism, and may correlate with the reduced production of red pigments and clustering of sclerotia in T. amestolkiae. These results of this study provide novel insights into the mechanism of fungal gene regulation by polymycovirus infections at the transcriptome level, and this study is the first to report a novel polymycovirus of T. amestolkiae.
Collapse
Affiliation(s)
- Li Teng
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China
| | - Sen Chen
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China
| | - Zuquan Hu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China
| | - Jili Chen
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China
| | - Hongmei Liu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China
- *Correspondence: Hongmei Liu, ; Tingting Zhang,
| | - Tingting Zhang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science, Guizhou Medical University, Guiyang, China
- *Correspondence: Hongmei Liu, ; Tingting Zhang,
| |
Collapse
|
45
|
A Botybirnavirus Isolated from Alternaria tenuissima Confers Hypervirulence and Decreased Sensitivity of Its Host Fungus to Difenoconazole. Viruses 2022; 14:v14102093. [DOI: 10.3390/v14102093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022] Open
Abstract
Alternaria alternata botybirnavirus 1 (AaBRV1) was isolated from a strain of Alternaria alternata, causing watermelon leaf blight in our previous research. The effect of AaBRV1 on the phenotype of its host fungus, however, was not determined. In the present study, a novel strain of AaBRV1 was identified in A. tenuissima strain TJ-NH-51S-4, the causal agent of cotton Alternaria leaf spot, and designated as AaBRV1-AT1. A mycovirus AaBRV1-AT1-free strain TJ-NH-51S-4-VF was obtained by protoplast regeneration, which eliminated AaBRV1-AT1 from the mycovirus AaBRV1-AT1-infected strain TJ-NH-51S-4. Colony growth rate, spore production, and virulence of strain TJ-NH-51S-4 were greater than they were in TJ-NH-51S-4-VF, while the sensitivity of strain TJ-NH-51S-4 to difenoconazole, as measured by the EC50, was lower. AaBRV1-AT1 was capable of vertical transmission via asexual spores and horizontal transmission from strain TJ-NH-51S-4 to strain XJ-BZ-5-1hyg (another strain of A. tenuissima) through hyphal contact in pairing cultures. A total of 613 differentially expressed genes (DEGs) were identified in a comparative transcriptome analysis between TJ-NH-51S-4 and TJ-NH-51S-4-VF. Relative to strain TJ-NH-51S-4-VF, the number of up-regulated and down-regulated DEGs in strain TJ-NH-51S-4 was 286 and 327, respectively. Notably, the expression level of one DEG-encoding cytochrome P450 sterol 14α-demethylase and four DEGs encoding siderophore iron transporters were significantly up-regulated. To our knowledge, this is the first documentation of hypervirulence and reduced sensitivity to difenoconazole induced by AaBRV1-AT1 infection in A. tenuissima.
Collapse
|
46
|
Molecular characterization of a novel double-stranded RNA virus infecting the entomopathogenic fungus Metarhizium brunneum. Arch Microbiol 2022; 204:606. [PMID: 36074193 DOI: 10.1007/s00203-022-03224-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
Abstract
There are four dsRNAs segments present in the entomopathogenic fungus Metarhizium brunneum strain RCEF0766. The genomic segments dsRNA1 and dsRNA3 are of a novel virus, "Metarhizium brunneum bipartite mycovirus 1" (MbBV1), while dsRNA2 and dsRNA4 are the components of the Metarhizium brunneum partitivirus 2 (MbPV2), a member in genus Gammapartitivirus of the family Partitiviridae based on molecular analysis and RT-PCR. This suggests that the strain RCEF0766 was co-infected by two different mycoviruses. The complete genome sequence of MbBV1 was elucidated by high-throughput sequencing and RLM-RACE. MbBV1 consists of two dsRNAs (1987 and 1642 bp) encode open-reading frames (ORFs). The ORF1 in dsRNA 1 encode is a putative RNA-dependent RNA polymerase (RdRp) with the molecular weight of 68.08 kDa, while ORF2 in dsRNA 2 encodes a hypothetical protein with the molecular weight of 33.07 kDa. The deduced proteins of ORF1 and ORF2 have the highest identity to those of Erysiphe necator-associated bipartite virus 1 (76.88% and 65.30%). Based on the amino acid sequence of RdRp, MbBV1 is phylogenetically clustered together with the unassigned mycoviruses and represents a distinct lineage. Our study proposes that MbBV1 is a novel mycovirus with bisegmented dsRNA genomes and should be considered a new member of the unassigned group.
Collapse
|
47
|
He Y, Zou Q, Li S, Zhu H, Hong N, Wang G, Wang L. Molecular characterization of a new fusarivirus infecting Botryosphaeria dothidea, the causal agent of pear ring rot disease. Arch Virol 2022; 167:1893-1897. [PMID: 35668128 DOI: 10.1007/s00705-022-05492-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022]
Abstract
Here, a novel mycovirus, tentatively designated as "Botryosphaeria dothidea fusarivirus 2" (BdFV2), was discovered in Botryosphaeria dothidea strain JZ-3. The complete genome sequence is 6,271 nucleotides (nt) in length, excluding the poly(A) tail, and contains two putative open reading frames (ORFs). The larger ORF1 encodes a polypeptide of 1,552 amino acids (aa) with conserved RNA-dependent RNA polymerase (RdRp) domains and a viral helicase domain. The ORF1-encoded polypeptide shares 19.47-78.70% sequence identity with those of other fusariviruses and shares the highest sequence identity (78.70%) with the corresponding protein aa sequences of Neofusicoccum luteum fusarivirus 1 (NlFV1) isolate CBS110299. The small ORF2 encodes a hypothetical protein with 479 aa, which is predicted to contain a chromosome segregation protein SMC domain of unknown function. Sequence alignments and phylogenetic analysis indicated that BdFV2 is a distinct member of the recently established family Fusariviridae. BdFV2 appears to be a novel fusarivirus infecting a pathogenic B. dothidea strain that causes pear ring rot disease.
Collapse
Affiliation(s)
- Ying He
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, 430070, Hubei, China
| | - Qi Zou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, 430070, Hubei, China
| | - Shanshan Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, 430070, Hubei, China
| | - Haodong Zhu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, 430070, Hubei, China
| | - Ni Hong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, 430070, Hubei, China
| | - Guoping Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, 430070, Hubei, China
| | - Liping Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Lab of Plant Pathology of Hubei Province, Wuhan, 430070, Hubei, China.
| |
Collapse
|
48
|
Kondo H, Botella L, Suzuki N. Mycovirus Diversity and Evolution Revealed/Inferred from Recent Studies. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:307-336. [PMID: 35609970 DOI: 10.1146/annurev-phyto-021621-122122] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-throughput virome analyses with various fungi, from cultured or uncultured sources, have led to the discovery of diverse viruses with unique genome structures and even neo-lifestyles. Examples in the former category include splipalmiviruses and ambiviruses. Splipalmiviruses, related to yeast narnaviruses, have multiple positive-sense (+) single-stranded (ss) RNA genomic segments that separately encode the RNA-dependent RNA polymerase motifs, the hallmark of RNA viruses (members of the kingdom Orthornavirae). Ambiviruses appear to have an undivided ssRNA genome of 3∼5 kb with two large open reading frames (ORFs) separated by intergenic regions. Another narna-like virus group has two fully overlapping ORFs on both strands of a genomic segment that span more than 90% of the genome size. New virus lifestyles exhibited by mycoviruses include the yado-kari/yado-nushi nature characterized by the partnership between the (+)ssRNA yadokarivirus and an unrelated dsRNA virus (donor of the capsid for the former) and the hadaka nature of capsidless 10-11 segmented (+)ssRNA accessible by RNase in infected mycelial homogenates. Furthermore, dsRNA polymycoviruses with phylogenetic affinity to (+)ssRNA animal caliciviruses have been shown to be infectious as dsRNA-protein complexes or deproteinized naked dsRNA. Many previous phylogenetic gaps have been filled by recently discovered fungal and other viruses, which haveprovided interesting evolutionary insights. Phylogenetic analyses and the discovery of natural and experimental cross-kingdom infections suggest that horizontal virus transfer may have occurred and continue to occur between fungi and other kingdoms.
Collapse
Affiliation(s)
- Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan;
| | - Leticia Botella
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University, Brno, Czech Republic
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan;
| |
Collapse
|
49
|
Metatranscriptomic Analysis Reveals Rich Mycoviral Diversity in Three Major Fungal Pathogens of Rice. Int J Mol Sci 2022; 23:ijms23169192. [PMID: 36012458 PMCID: PMC9409214 DOI: 10.3390/ijms23169192] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, three major fungal diseases of rice, i.e., rice blast, rice false smut, and rice-sheath blight, have caused serious worldwide rice-yield reductions and are threatening global food security. Mycoviruses are ubiquitous in almost all major groups of filamentous fungi, oomycetes, and yeasts. To reveal the mycoviral diversity in three major fungal pathogens of rice, we performed a metatranscriptomic analysis of 343 strains, representing the three major fungal pathogens of rice, Pyricularia oryzae, Ustilaginoidea virens, and Rhizoctonia solani, sampled in southern China. The analysis identified 682 contigs representing the partial or complete genomes of 68 mycoviruses, with 42 described for the first time. These mycoviruses showed affinity with eight distinct lineages: Botourmiaviridae, Partitiviridae, Totiviridae, Chrysoviridae, Hypoviridae, Mitoviridae, Narnaviridae, and Polymycoviridae. More than half (36/68, 52.9%) of the viral sequences were predicted to be members of the families Narnaviridae and Botourmiaviridae. The members of the family Polymycoviridae were also identified for the first time in the three major fungal pathogens of rice. These findings are of great significance for understanding the diversity, origin, and evolution of, as well as the relationship between, genome structures and functions of mycoviruses in three major fungal pathogens of rice.
Collapse
|
50
|
Zhang G, Zhang J, Yao Z, Shi Y, Xu C, Shao L, Jiang L, Li M, Tong Y, Wang Y. Time-series gene expression patterns and their characteristics of Beauveria bassiana in the process of infecting pest insects. J Basic Microbiol 2022; 62:1274-1286. [PMID: 35781725 DOI: 10.1002/jobm.202200155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/27/2022] [Accepted: 06/11/2022] [Indexed: 11/06/2022]
Abstract
Beauveria bassiana has been widely used as an important biological control fungus for agricultural and forest pests, and clarifying the interaction mechanism between B. bassiana and its host will help to better exert the efficacy of the mycoinsecticide. Here, we proposed a novel pattern analysis (PA) method for analyzing time-series data and applied it to a transcriptomic data set of B. bassiana infecting Galleria mellonella. We screened out 14 patterns including 868 genes, which had some characteristics that were not inferior to differentially expressed genes (DEGs). Compared with the previous analysis of this data set, we had three novel discoveries during B. bassiana infection, including overall downregulation of gene expression, the more critical first 24 h, and enrichment of regulatory functions of downregulated genes. Our new PA method promises to be an important complement to DEGs analysis for time-series transcriptomic data, and our findings enrich our knowledge of molecular mechanisms of fungal-host interactions.
Collapse
Affiliation(s)
- Guochao Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an, China.,School of Biological Engineering/Institute of Digital Ecology and Health, Huainan Normal University, Huainan, Anhui, China.,Shandong Tobacco Research Institute Co., Ltd., Jinan, China
| | - Jifeng Zhang
- School of Biological Engineering/Institute of Digital Ecology and Health, Huainan Normal University, Huainan, Anhui, China.,Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes/School of Plant Protection, Anhui Agricultural University, Hefei, China.,State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, China.,Key Laboratory of Industrial Dust Prevention and Control & Occupational Health and Safety, Ministry of Education, Huainan, China.,Anhui Shanhe Pharmaceutical Excipients Co., Ltd., Huainan, China
| | - Zhuo Yao
- Jinan Agricultural Technology Extension Service Center, Jinan, China
| | - Yong Shi
- School of Computer Science/School of Electronic Engineering, Huainan Normal University, Huainan, China
| | - Chenxi Xu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Lvyi Shao
- School of Biological Engineering/Institute of Digital Ecology and Health, Huainan Normal University, Huainan, Anhui, China
| | - Lei Jiang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes/School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Maoye Li
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes/School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yue Tong
- School of Computer Science/School of Electronic Engineering, Huainan Normal University, Huainan, China
| | - Yujun Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| |
Collapse
|