1
|
Basha S, Mukunda DC, Rodrigues J, Gail D'Souza M, Gangadharan G, Pai AR, Mahato KK. A comprehensive review of protein misfolding disorders, underlying mechanism, clinical diagnosis, and therapeutic strategies. Ageing Res Rev 2023; 90:102017. [PMID: 37468112 DOI: 10.1016/j.arr.2023.102017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
INTRODUCTION Proteins are the most common biological macromolecules in living system and are building blocks of life. They are extremely dynamic in structure and functions. Due to several modifications, proteins undergo misfolding, leading to aggregation and thereby developing neurodegenerative and systemic diseases. Understanding the pathology of these diseases and the techniques used to diagnose them is therefore crucial for their effective management . There are several techniques, currently being in use to diagnose them and those will be discussed in this review. AIM/OBJECTIVES Current review aims to discuss an overview of protein aggregation and the underlying mechanisms linked to neurodegeneration and systemic diseases. Also, the review highlights protein misfolding disorders, their clinical diagnosis, and treatment strategies. METHODOLOGY Literature related to neurodegenerative and systemic diseases was explored through PubMed, Google Scholar, Scopus, and Medline databases. The keywords used for literature survey and analysis are protein aggregation, neurodegenerative disorders, Alzheimer's disease, Parkinson's disease, systemic diseases, protein aggregation mechanisms, etc. DISCUSSION /CONCLUSION: This review summarises the pathogenesis of neurodegenerative and systemic disorders caused by protein misfolding and aggregation. The clinical diagnosis and therapeutic strategies adopted for the management of these diseases are also discussed to aid in a better understanding of protein misfolding disorders. Many significant concerns about the role, characteristics, and consequences of protein aggregates in neurodegenerative and systemic diseases are not clearly understood to date. Regardless of technological advancements, there are still great difficulties in the management and cure of these diseases. Therefore, for better understanding, diagnosis, and treatment of neurodegenerative and systemic diseases, more studies to identify novel drugs that may aid in their treatment and management are required.
Collapse
Affiliation(s)
- Shaik Basha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | | | - Jackson Rodrigues
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Meagan Gail D'Souza
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Gireesh Gangadharan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Aparna Ramakrishna Pai
- Department of Neurology, Kasturba Medical College - Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
2
|
Halder P, Mitra P. Human prion protein: exploring the thermodynamic stability and structural dynamics of its pathogenic mutants. J Biomol Struct Dyn 2022; 40:11274-11290. [PMID: 34338141 DOI: 10.1080/07391102.2021.1957715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Human familial prion diseases are known to be associated with different single-point mutants of the gene coding for prion protein with a primary focus at several locations of the globular domain. We have identified 12 different single-point pathogenic mutants of human prion protein (HuPrP) with the help of extensive perturbations/mutation technique at multiple locations of HuPrP sequence related to potentiality towards conformational disorders. Among these, some of the mutants include pathogenic variants that corroborate well with the literature reported proteins while majority include some unique single-point mutants that are either not explicitly studied early or studied for variants with different residues at the specific position. Primarily, our study sheds light on the unfolding mechanism of the above mentioned mutants in depth. Besides, we could identify some mutants under investigation that demonstrates not only unfolding of the helical structures but also extension and generation of the β-sheet structures and or simultaneously have highly exposed hydrophobic surface which is assumed to be linked with the production of aggregate/fibril structures of the prion protein. Among the identified mutants, Q212E needs special attention due to its maximum exposure of hydrophobic core towards solvent and E200Q is found to be important due to its maximum extent of β-content. We are also able to identify different respective structural conformations of the proteins according to their degree of structural unfolding and those conformations can be extracted and further studied in detail. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Puspita Halder
- Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Pralay Mitra
- Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
3
|
Ilie IM, Caflisch A. Antibody binding increases the flexibility of the prion protein. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140827. [PMID: 35931365 DOI: 10.1016/j.bbapap.2022.140827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/29/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Prion diseases are associated with the conversion of the cellular prion protein (PrP) into a pathogenic conformer (PrPSc). A proposed therapeutic approach to avoid the pathogenic transformation is to develop antibodies that bind to PrP and stabilize its structure. POM1 and POM6 are two monoclonal antibodies that bind the globular domain of PrP and have different biological responses, i.e., trigger neurotoxicity mimicking prion infections (POM1) or prevent neurotoxicity (POM6). The crystal structures of PrP in complex with the two antibodies show similar epitopes which seems inconsistent with the opposite phenotypes. Here, we investigate the influence of the POM1 and POM6 antibodies on the flexibility of the mouse PrP by molecular dynamics simulations. The simulations reveal that the POM6/PrP interface is less stable than the POM1/PrP interface, ascribable to localized polar mismatches at the interface, despite the former complex having a larger epitope than the latter. In the presence of any of the two antibodies, the flexibility of the globular domain increases everywhere except for the β1-α1 loop in the POM1/PrP complex which suggests the involvement of this loop in the pathological conversion. The secondary structure of PrP is preserved whereas the polar interactions involving residues Glu146, Arg156 and Arg208 are modified upon antibody binding.
Collapse
Affiliation(s)
- Ioana M Ilie
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland.
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland.
| |
Collapse
|
4
|
Han ZZ, Kang SG, Arce L, Westaway D. Prion-like strain effects in tauopathies. Cell Tissue Res 2022; 392:179-199. [PMID: 35460367 PMCID: PMC9034081 DOI: 10.1007/s00441-022-03620-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/25/2022] [Indexed: 12/30/2022]
Abstract
Tau is a microtubule-associated protein that plays crucial roles in physiology and pathophysiology. In the realm of dementia, tau protein misfolding is associated with a wide spectrum of clinicopathologically diverse neurodegenerative diseases, collectively known as tauopathies. As proposed by the tau strain hypothesis, the intrinsic heterogeneity of tauopathies may be explained by the existence of structurally distinct tau conformers, “strains”. Tau strains can differ in their associated clinical features, neuropathological profiles, and biochemical signatures. Although prior research into infectious prion proteins offers valuable lessons for studying how a protein-only pathogen can encompass strain diversity, the underlying mechanism by which tau subtypes are generated remains poorly understood. Here we summarize recent advances in understanding different tau conformers through in vivo and in vitro experimental paradigms, and the implications of heterogeneity of pathological tau species for drug development.
Collapse
Affiliation(s)
- Zhuang Zhuang Han
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada.,Department of Medicine, University of Alberta, Edmonton, AB, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Sang-Gyun Kang
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada.,Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Luis Arce
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada.,Department of Medicine, University of Alberta, Edmonton, AB, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada. .,Department of Medicine, University of Alberta, Edmonton, AB, Canada. .,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
5
|
Kamali-Jamil R, Vázquez-Fernández E, Tancowny B, Rathod V, Amidian S, Wang X, Tang X, Fang A, Senatore A, Hornemann S, Dudas S, Aguzzi A, Young HS, Wille H. The ultrastructure of infectious L-type bovine spongiform encephalopathy prions constrains molecular models. PLoS Pathog 2021; 17:e1009628. [PMID: 34061899 PMCID: PMC8195424 DOI: 10.1371/journal.ppat.1009628] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/11/2021] [Accepted: 05/10/2021] [Indexed: 11/18/2022] Open
Abstract
Bovine spongiform encephalopathy (BSE) is a prion disease of cattle that is caused by the misfolding of the cellular prion protein (PrPC) into an infectious conformation (PrPSc). PrPC is a predominantly α-helical membrane protein that misfolds into a β-sheet rich, infectious state, which has a high propensity to self-assemble into amyloid fibrils. Three strains of BSE prions can cause prion disease in cattle, including classical BSE (C-type) and two atypical strains, named L-type and H-type BSE. To date, there is no detailed information available about the structure of any of the infectious BSE prion strains. In this study, we purified L-type BSE prions from transgenic mouse brains and investigated their biochemical and ultrastructural characteristics using electron microscopy, image processing, and immunogold labeling techniques. By using phosphotungstate anions (PTA) to precipitate PrPSc combined with sucrose gradient centrifugation, a high yield of proteinase K-resistant BSE amyloid fibrils was obtained. A morphological examination using electron microscopy, two-dimensional class averages, and three-dimensional reconstructions revealed two structural classes of L-type BSE amyloid fibrils; fibrils that consisted of two protofilaments with a central gap and an average width of 22.5 nm and one-protofilament fibrils that were 10.6 nm wide. The one-protofilament fibrils were found to be more abundant compared to the thicker two-protofilament fibrils. Both fibrillar assemblies were successfully decorated with monoclonal antibodies against N- and C-terminal epitopes of PrP using immunogold-labeling techniques, confirming the presence of polypeptides that span residues 100-110 to 227-237. The fact that the one-protofilament fibrils contain both N- and C-terminal PrP epitopes constrains molecular models for the structure of the infectious conformer in favour of a compact four-rung β-solenoid fold.
Collapse
Affiliation(s)
- Razieh Kamali-Jamil
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Ester Vázquez-Fernández
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Brian Tancowny
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Vineet Rathod
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Sara Amidian
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Xiongyao Wang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Xinli Tang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew Fang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Assunta Senatore
- Institute of Neuropathology, University of Zürich, Zürich, Switzerland
| | - Simone Hornemann
- Institute of Neuropathology, University of Zürich, Zürich, Switzerland
| | - Sandor Dudas
- Canadian BSE Reference Laboratory, Canadian Food Inspection Agency, Lethbridge Laboratory, Lethbridge, Alberta, Canada
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zürich, Zürich, Switzerland
| | - Howard S. Young
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Holger Wille
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Spagnolli G, Requena JR, Biasini E. Understanding prion structure and conversion. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:19-30. [PMID: 32958233 DOI: 10.1016/bs.pmbts.2020.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Since their original identification, prions have represented enigmatic agents that defy the classical concept of genetic inheritance. For almost four decades, the high-resolution structure of PrPSc, the infectious and misfolded counterpart of the cellular prion protein (PrPC), has remained elusive, mostly due to technical challenges posed by its high insolubility and aggregation propensity. As a result, such a lack of information has critically hampered the search for an effective therapy against prion diseases. Nevertheless, multiple attempts to get insights into the structure of PrPSc have provided important experimental constraints that, despite being at limited resolution, are paving the way for the application of computer-aided technologies to model the three-dimensional architecture of prions and their templated replication mechanism. Here, we review the most relevant studies carried out so far to elucidate the conformation of infectious PrPSc and offer an overview of the most advanced molecular models to explain prion structure and conversion.
Collapse
Affiliation(s)
- Giovanni Spagnolli
- Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, TN, Italy; Dulbecco Telethon Institute, University of Trento, Trento, TN, Italy
| | - Jesús R Requena
- CIMUS Biomedical Research Institute & Department of Medical Sciences, University of Santiago de Compostela-IDIS, Santiago, Spain
| | - Emiliano Biasini
- Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, TN, Italy; Dulbecco Telethon Institute, University of Trento, Trento, TN, Italy.
| |
Collapse
|
7
|
Wille H, Dorosh L, Amidian S, Schmitt-Ulms G, Stepanova M. Combining molecular dynamics simulations and experimental analyses in protein misfolding. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 118:33-110. [PMID: 31928730 DOI: 10.1016/bs.apcsb.2019.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The fold of a protein determines its function and its misfolding can result in loss-of-function defects. In addition, for certain proteins their misfolding can lead to gain-of-function toxicities resulting in protein misfolding diseases such as Alzheimer's, Parkinson's, or the prion diseases. In all of these diseases one or more proteins misfold and aggregate into disease-specific assemblies, often in the form of fibrillar amyloid deposits. Most, if not all, protein misfolding diseases share a fundamental molecular mechanism that governs the misfolding and subsequent aggregation. A wide variety of experimental methods have contributed to our knowledge about misfolded protein aggregates, some of which are briefly described in this review. The misfolding mechanism itself is difficult to investigate, as the necessary timescale and resolution of the misfolding events often lie outside of the observable parameter space. Molecular dynamics simulations fill this gap by virtue of their intrinsic, molecular perspective and the step-by-step iterative process that forms the basis of the simulations. This review focuses on molecular dynamics simulations and how they combine with experimental analyses to provide detailed insights into protein misfolding and the ensuing diseases.
Collapse
Affiliation(s)
- Holger Wille
- Department of Biochemistry, University of Alberta, Edmonton, Canada; Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Lyudmyla Dorosh
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| | - Sara Amidian
- Department of Biochemistry, University of Alberta, Edmonton, Canada; Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
| | - Gerold Schmitt-Ulms
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Maria Stepanova
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|
8
|
Heterogeneity and Architecture of Pathological Prion Protein Assemblies: Time to Revisit the Molecular Basis of the Prion Replication Process? Viruses 2019; 11:v11050429. [PMID: 31083283 PMCID: PMC6563208 DOI: 10.3390/v11050429] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 01/24/2023] Open
Abstract
Prions are proteinaceous infectious agents responsible for a range of neurodegenerative diseases in animals and humans. Prion particles are assemblies formed from a misfolded, β-sheet rich, aggregation-prone isoform (PrPSc) of the host-encoded cellular prion protein (PrPC). Prions replicate by recruiting and converting PrPC into PrPSc, by an autocatalytic process. PrPSc is a pleiomorphic protein as different conformations can dictate different disease phenotypes in the same host species. This is the basis of the strain phenomenon in prion diseases. Recent experimental evidence suggests further structural heterogeneity in PrPSc assemblies within specific prion populations and strains. Still, this diversity is rather seen as a size continuum of assemblies with the same core structure, while analysis of the available experimental data points to the existence of structurally distinct arrangements. The atomic structure of PrPSc has not been elucidated so far, making the prion replication process difficult to understand. All currently available models suggest that PrPSc assemblies exhibit a PrPSc subunit as core constituent, which was recently identified. This review summarizes our current knowledge on prion assembly heterogeneity down to the subunit level and will discuss its importance with regard to the current molecular principles of the prion replication process.
Collapse
|
9
|
Pressure Reveals Unique Conformational Features in Prion Protein Fibril Diversity. Sci Rep 2019; 9:2802. [PMID: 30808892 PMCID: PMC6391531 DOI: 10.1038/s41598-019-39261-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/10/2019] [Indexed: 11/08/2022] Open
Abstract
The prion protein (PrP) misfolds and assembles into a wide spectrum of self-propagating quaternary structures, designated PrPSc. These various PrP superstructures can be functionally different, conferring clinically distinctive symptomatology, neuropathology and infectious character to the associated prion diseases. However, a satisfying molecular basis of PrP structural diversity is lacking in the literature. To provide mechanistic insights into the etiology of PrP polymorphism, we have engineered a set of 6 variants of the human protein and obtained PrP amyloid fibrils. We show that pressure induces dissociation of the fibrils, albeit with different kinetics. In addition, by focusing on the generic properties of amyloid fibrils, such as the thioflavin T binding capacities and the PK-resistance, we reveal an unprecedented structure-barostability phenomenological relationship. We propose that the structural diversity of PrP fibrils encompass a multiplicity of packing defects (water-excluded cavities) in their hydrophobic cores, and that the resultant sensitivity to pressure should be considered as a general molecular criterion to accurately define fibril morphotypes. We anticipate that our insights into sequence-dependent fibrillation and conformational stability will shed light on the highly-nuanced prion strain phenomenon and open the opportunity to explain different PrP conformations in terms of volumetric physics.
Collapse
|
10
|
Hexapeptide Tandem Repeats Dictate the Formation of Silkmoth Chorion, a Natural Protective Amyloid. J Mol Biol 2018; 430:3774-3783. [PMID: 29964045 DOI: 10.1016/j.jmb.2018.06.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 12/29/2022]
Abstract
Silkmoth chorion is a fibrous structure composed mainly of two major protein classes, families A and B. Both families of silkmoth chorion proteins present a highly conserved, in sequence and in length, central domain, consisting of Gly-rich tandem hexapeptide repetitive segments, flanked by two more variable N-terminal and C-terminal arms. Primary studies identified silkmoth chorion as a functional protective amyloid by unveiling the amyloidogenic properties of the central domain of both protein families. In this work, we attempt to detect the principal source of amyloidogenicity of the central domain by focusing on the role of the tandem hexapeptide sequence repeats. Concurrently, we discuss a possible mechanism for the self-assembly of class A protofilaments, suggesting that the aggregation-prone hexapeptide building blocks may fold into a triangle-shaped β-helical structure.
Collapse
|
11
|
Glaves JP, Ladner-Keay CL, Bjorndahl TC, Wishart DS, Sykes BD. Residue-specific mobility changes in soluble oligomers of the prion protein define regions involved in aggregation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:982-988. [PMID: 29935976 DOI: 10.1016/j.bbapap.2018.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 12/12/2022]
Abstract
Prion (PrP) diseases are neurodegenerative diseases characterized by the formation of β-sheet rich, insoluble and protease resistant protein deposits (called PrPSc) that occur throughout the brain. Formation of synthetic or in vitro PrPSc can occur through on-pathway toxic oligomers. Similarly, toxic and infectious oligomers identified in cell and animal models of prion disease indicate that soluble oligomers are likely intermediates in the formation of insoluble PrPSc. Despite the critical role of prion oligomers in disease progression, little is known about their structure. In order, to obtain structural insight into prion oligomers, we generated oligomers by shaking-induced conversion of recombinant, monomeric prion protein PrPc (spanning residues 90-231). We then obtained two-dimensional solution NMR spectra of the PrPc monomer, a 40% converted oligomer, and a 94% converted oligomer. Heteronuclear single-quantum correlation (1H-15N) studies revealed that, in comparison to monomeric PrPc, the oligomer has intense amide peak signals in the N-terminal (residues 90-114) and C-terminal regions (residues 226-231). Furthermore, a core region with decreased mobility is revealed from residues ~127 to 225. Within this core oligomer region with decreased mobility, there is a pocket of increased amide peak signal corresponding to the middle of α-helix 2 and the loop between α-helices 2 and 3 in the PrPc monomer structure. Using high-resolution solution-state NMR, this work reveals detailed and divergent residue-specific changes in soluble oligomeric models of PrP.
Collapse
Affiliation(s)
- John Paul Glaves
- Department of Biochemistry, University of Alberta, Edmonton T6G 2H7, Canada
| | - Carol L Ladner-Keay
- Department of Biological Sciences, University of Alberta, Edmonton T6G 2E9, Canada
| | - Trent C Bjorndahl
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 2M9, Canada
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton T6G 2E9, Canada.
| | - Brian D Sykes
- Department of Biochemistry, University of Alberta, Edmonton T6G 2H7, Canada
| |
Collapse
|
12
|
Flores-Fernández JM, Rathod V, Wille H. Comparing the Folds of Prions and Other Pathogenic Amyloids. Pathogens 2018; 7:E50. [PMID: 29734684 PMCID: PMC6027354 DOI: 10.3390/pathogens7020050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 01/13/2023] Open
Abstract
Pathogenic amyloids are the main feature of several neurodegenerative disorders, such as Creutzfeldt⁻Jakob disease, Alzheimer’s disease, and Parkinson’s disease. High resolution structures of tau paired helical filaments (PHFs), amyloid-β(1-42) (Aβ(1-42)) fibrils, and α-synuclein fibrils were recently reported using cryo-electron microscopy. A high-resolution structure for the infectious prion protein, PrPSc, is not yet available due to its insolubility and its propensity to aggregate, but cryo-electron microscopy, X-ray fiber diffraction, and other approaches have defined the overall architecture of PrPSc as a 4-rung β-solenoid. Thus, the structure of PrPSc must have a high similarity to that of the fungal prion HET-s, which is part of the fungal heterokaryon incompatibility system and contains a 2-rung β-solenoid. This review compares the structures of tau PHFs, Aβ(1-42), and α-synuclein fibrils, where the β-strands of each molecule stack on top of each other in a parallel in-register arrangement, with the β-solenoid folds of HET-s and PrPSc.
Collapse
Affiliation(s)
- José Miguel Flores-Fernández
- Department of Biochemistry & Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB T6G 2M8, Canada.
| | - Vineet Rathod
- Department of Biochemistry & Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB T6G 2M8, Canada.
| | - Holger Wille
- Department of Biochemistry & Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB T6G 2M8, Canada.
| |
Collapse
|
13
|
Wang F, Wang X, Abskharon R, Ma J. Prion infectivity is encoded exclusively within the structure of proteinase K-resistant fragments of synthetically generated recombinant PrP Sc. Acta Neuropathol Commun 2018; 6:30. [PMID: 29699569 PMCID: PMC5921397 DOI: 10.1186/s40478-018-0534-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/11/2018] [Indexed: 02/04/2023] Open
Abstract
Transmissible spongiform encephalopathies, also known as prion diseases, are a group of fatal neurodegenerative disorders affecting both humans and animals. The central pathogenic event in prion disease is the misfolding of normal prion protein (PrPC) into the pathogenic conformer, PrPSc, which self-replicates by converting PrPC to more of itself. The biochemical hallmark of PrPSc is its C-terminal resistance to proteinase K (PK) digestion, which has been historically used to define PrPSc and is still the most widely used characteristic for prion detection. We used PK-resistance as a biochemical measure for the generation of recombinant prion from bacterially expressed recombinant PrP. However, the existence of both PK- resistant and -sensitive PrPSc forms in animal and human prion disease led to the question of whether the in vitro-generated recombinant prion infectivity is due to the PK-resistant or -sensitive recombinant PrP forms. In this study, we compared undigested and PK-digested recombinant prions for their infectivity using both the classical rodent bioassay and the cell-based prion infectivity assay. Similar levels of infectivity were detected in PK-digested and -undigested samples by both assays. A time course study of recombinant prion propagation showed that the increased capability to seed the conversion of endogenous PrP in cultured cells coincided with an increase of the PK-resistant form of recombinant PrP. Moreover, prion infectivity diminished when recombinant prion was subjected to an extremely harsh PK digestion. These results demonstrated that the infectivity of recombinant prion is encoded within the structure of the PK-resistant PrP fragments. This characteristic of recombinant prion, that a simple PK digestion is able to eliminate all PK-sensitive (non-infectious) PrP species, makes possible a more homogenous material that will be ideal for dissecting the molecular basis of prion infectivity.
Collapse
|
14
|
Baral PK, Swayampakula M, Aguzzi A, James MNG. Structural characterization of
POM
6 Fab and mouse prion protein complex identifies key regions for prions conformational conversion. FEBS J 2018; 285:1701-1714. [DOI: 10.1111/febs.14438] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 02/02/2018] [Accepted: 03/16/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Pravas Kumar Baral
- Department of Biochemistry Faculty of Medicine and Dentistry University of Alberta Edmonton Canada
| | - Mridula Swayampakula
- Department of Biochemistry Faculty of Medicine and Dentistry University of Alberta Edmonton Canada
| | - Adriano Aguzzi
- Institute of Neuropathology University of Zurich Switzerland
| | - Michael N. G. James
- Department of Biochemistry Faculty of Medicine and Dentistry University of Alberta Edmonton Canada
| |
Collapse
|