1
|
Kuo CF, Chen YY, Chiu CC, Chiu CW, Li TC, Chang YS, Tsao N. Comparative in vitro efficacy of AR-12 derivatives against Streptococcus pyogenes. J Antimicrob Chemother 2025; 80:717-725. [PMID: 39704166 DOI: 10.1093/jac/dkae462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024] Open
Abstract
OBJECTIVES Group A Streptococcus (GAS) results in invasive diseases. Our published studies show that AR-12 can directly kill GAS. However, AR-12 is toxic to the human microvascular endothelial cells (HMEC-1 cells) even at its MIC. In this study, we examined various AR-12 pyrrole derivatives, selected the most effective one and used it to combat GAS. METHODS The bacterial numbers after treatment with AR-12 derivatives were assessed using either spectrophotometry or the colony-forming unit assay. The integrity of cell envelope and the contents of proteins and nucleic acids in GAS were sequentially examined by staining with SYTOX Green, SYPRO or propidium iodide. The protein expression was assessed by western blotting. The cytotoxicity of AR-12 derivatives was evaluated using WST-1 assay, the lactate dehydrogenase release assay and Annexin V staining. RESULTS We tested AR-12 pyrrole derivatives P12, P12-3 and P12-8 on GAS growth and found that P12 and P12-8 were effective against various M-type strains. Both P12 and P12-8 disrupted the GAS envelope and reduced protein and nucleic acid content in GAS at their MICs. At sub-MIC levels, both P12 and P12-8 inhibited GAS chaperone protein and streptococcal pyrogenic exotoxin B expression. P12 and P12-8 also exhibited a synergistic effect with gentamicin against GAS. However, only P12-8 did not affect cell death at its MIC. Besides its bactericidal efficacy, P12-8 also enhanced the clearance of intracellular bacteria in GAS-infected A549 and HMEC-1 cells. CONCLUSIONS Among these three AR-12 derivatives, P12-8 had the best potential to be an alternative agent to fight against GAS.
Collapse
Affiliation(s)
- Chih-Feng Kuo
- School of Medicine, I-Shou University, Kaohsiung City, Taiwan
- Department of Nursing, I-Shou University, Kaohsiung City, Taiwan
| | - You-Yan Chen
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung City, Taiwan
| | - Ching-Chen Chiu
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung City, Taiwan
| | - Chih-Wei Chiu
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung City, Taiwan
| | - Tang-Chi Li
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung City, Taiwan
| | - Yu-Shan Chang
- Department of Laboratory Medicine, E-DA Hospital, Kaohsiung City, Taiwan
| | - Nina Tsao
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung City, Taiwan
| |
Collapse
|
2
|
Elshazly AM, Hosseini N, Shen S, Neely V, Harada H, Grant S, Radhakrishnan SK. Proteasome Inhibition Enhances Lysosome-mediated Targeted Protein Degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.634950. [PMID: 39974947 PMCID: PMC11838415 DOI: 10.1101/2025.01.31.634950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Proteasome inhibitor drugs are currently used in the clinic to treat multiple myeloma and mantle cell lymphoma. These inhibitors cause accumulation of undegraded proteins, thus inducing proteotoxic stress and consequent cell death. However, cancer cells counteract this effect by activating an adaptive response through the transcription factor Nuclear factor erythroid 2-related factor 1 (NRF1, also known as NFE2L1). NRF1 induces transcriptional upregulation of proteasome and autophagy/lysosomal genes, thereby reducing proteotoxic stress and diminishing the effectiveness of proteasome inhibition. While suppressing this protective autophagy response is one potential strategy, here we investigated whether this heightened autophagy could instead be leveraged therapeutically. To this end, we designed an autophagy-targeting chimera (AUTAC) compound to selectively degrade the anti-apoptotic protein Mcl1 via the lysosome. Our results show that this lysosome-mediated targeted degradation is significantly amplified in the presence of proteasome inhibition, in a NRF1-dependent manner. The combination of the proteasome inhibitor carfilzomib and Mcl1 AUTAC synergistically promoted cell death in both wild-type and proteasome inhibitor-resistant multiple myeloma and lung cancer cells. Thus, our work offers a novel strategy for enhancing proteasome inhibitor efficacy by exploiting the adaptive autophagy response. More broadly, our study establishes a framework for amplifying lysosome-mediated targeted protein degradation, with potential applications in cancer therapeutics and beyond.
Collapse
|
3
|
Bergsten H, Nizet V. The intricate pathogenicity of Group A Streptococcus: A comprehensive update. Virulence 2024; 15:2412745. [PMID: 39370779 PMCID: PMC11542602 DOI: 10.1080/21505594.2024.2412745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Group A Streptococcus (GAS) is a versatile pathogen that targets human lymphoid, decidual, skin, and soft tissues. Recent advancements have shed light on its airborne transmission, lymphatic spread, and interactions with neuronal systems. GAS promotes severe inflammation through mechanisms involving inflammasomes, IL-1β, and T-cell hyperactivation. Additionally, it secretes factors that directly induce skin necrosis via Gasdermin activation and sustains survival and replication in human blood through sophisticated immune evasion strategies. These include lysis of erythrocytes, using red cell membranes for camouflage, resisting antimicrobial peptides, evading phagocytosis, escaping from neutrophil extracellular traps (NETs), inactivating chemokines, and cleaving targeted antibodies. GAS also employs molecular mimicry to traverse connective tissues undetected and exploits the host's fibrinolytic system, which contributes to its stealth and potential for causing autoimmune conditions after repeated infections. Secreted toxins disrupt host cell membranes, enhancing intracellular survival and directly activating nociceptor neurons to induce pain. Remarkably, GAS possesses mechanisms for precise genome editing to defend against phages, and its fibrinolytic capabilities have found applications in medicine. Immune responses to GAS are paradoxical: robust responses to its virulence factors correlate with more severe disease, whereas recurrent infections often show diminished immune reactions. This review focuses on the multifaceted virulence of GAS and introduces novel concepts in understanding its pathogenicity.
Collapse
Affiliation(s)
- Helena Bergsten
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
4
|
Zhang J, Pan X, Ji W, Zhou J. Autophagy mediated targeting degradation, a promising strategy in drug development. Bioorg Chem 2024; 149:107466. [PMID: 38843684 DOI: 10.1016/j.bioorg.2024.107466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/17/2024]
Abstract
Targeted protein degradation (TPD) technologies have become promising therapeutic approaches through degrading disease-causing proteins via the protein degradation system. Autophagy is a fundamental biological process with a high relationship to protein degradation, which belongs to one of two main protein degradation pathways, the autophagy-lysosomal system. Recently, various autophagy-based TPD techniques ATTECs, AUTACs, and AUTOTACs, etc, have also been gradually developed, and they have achieved efficient degradation potency for the targeted protein, expanding the potential of degradation for large-size proteins or protein aggregates. Herein, we introduce the machinery of autophagy and its relation to protein degradation, and multiple methods for using autophagy to specifically degrade target proteins.
Collapse
Affiliation(s)
- Jiantao Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, PR China
| | - Xiangyi Pan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, PR China
| | - Wenshu Ji
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, PR China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, PR China.
| |
Collapse
|
5
|
Adamkova V, Adamkova VG, Kroneislova G, Zavora J, Kroneislova M, Huptych M, Lahoda Brodska H. Increasing Rate of Fatal Streptococcus pyogenes Bacteriemia-A Challenge for Prompt Diagnosis and Appropriate Therapy in Real Praxis. Microorganisms 2024; 12:995. [PMID: 38792824 PMCID: PMC11124258 DOI: 10.3390/microorganisms12050995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Streptococcus pyogenes, group A streptococci (GAS) bacteriaemia, is a life-threatening infection with high mortality, requiring fast diagnosis together with the use of appropriate antibiotic therapy as soon as possible. Our study analysed data from 93 patients with GAS bacteraemia at the General University Hospital in Prague between January 2006 and March 2024. In the years 2016-2019 there was an increase in GAS bacteraemia. Mortality in the period 2006-2019 was 21.9%; in the period 2020-2024, the mortality increased to 41.4%, p = 0.08. At the same time, in the post-2020 period, the time from hospital admission to death was reduced from 9.5 days to 3 days. A significant predictor of worse outcome in this period was high levels of procalcitonin, >35.1 µg/L (100% sensitivity and 82.35% specificity), and lactate, >5 mmol/L (90.91% sensitivity and 91.67% specificity). Myoglobin was a significant predictor in both compared periods, the AUC was 0.771, p = 0.044, and the AUC was an even 0.889, p ≤ 0.001, respectively. All isolates of S. pyogenes were susceptible to penicillin, and resistance to clindamycin was 20.3% from 2006-2019 and 10.3% in 2020-2024. Appropriate therapy was initiated in 89.1%. and 96.6%, respectively. We hypothesise that the increase in mortality after 2020 might be due to a decrease in the immune status of the population.
Collapse
Affiliation(s)
- Vaclava Adamkova
- Clinical Microbiology and ATB Centre, General University Hospital, 128 08 Prague, Czech Republic
| | | | - Gabriela Kroneislova
- Clinical Microbiology and ATB Centre, General University Hospital, 128 08 Prague, Czech Republic
| | - Jan Zavora
- Clinical Microbiology and ATB Centre, General University Hospital, 128 08 Prague, Czech Republic
- Department of Medical Microbiology, Palacky University, 779 00 Olomouc, Czech Republic
| | - Marie Kroneislova
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, 9712 CP Groningen, The Netherlands
- Department of Surgery, University Hospital Bulovka, 180 00 Prague, Czech Republic
| | - Michal Huptych
- Czech Institute of Informatics, Robotics and Cybernetics (CIIRC), Czech Technical University in Prague, 160 00 Prague, Czech Republic
| | | |
Collapse
|
6
|
Su MSW, Cheng YL, Lin YS, Wu JJ. Interplay between group A Streptococcus and host innate immune responses. Microbiol Mol Biol Rev 2024; 88:e0005222. [PMID: 38451081 PMCID: PMC10966951 DOI: 10.1128/mmbr.00052-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
SUMMARYGroup A Streptococcus (GAS), also known as Streptococcus pyogenes, is a clinically well-adapted human pathogen that harbors rich virulence determinants contributing to a broad spectrum of diseases. GAS is capable of invading epithelial, endothelial, and professional phagocytic cells while evading host innate immune responses, including phagocytosis, selective autophagy, light chain 3-associated phagocytosis, and inflammation. However, without a more complete understanding of the different ways invasive GAS infections develop, it is difficult to appreciate how GAS survives and multiplies in host cells that have interactive immune networks. This review article attempts to provide an overview of the behaviors and mechanisms that allow pathogenic GAS to invade cells, along with the strategies that host cells practice to constrain GAS infection. We highlight the counteractions taken by GAS to apply virulence factors such as streptolysin O, nicotinamide-adenine dinucleotidase, and streptococcal pyrogenic exotoxin B as a hindrance to host innate immune responses.
Collapse
Affiliation(s)
- Marcia Shu-Wei Su
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Lin Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
7
|
Meng M, Wang J, Li H, Wang J, Wang X, Li M, Gao X, Li W, Ma C, Wei L. Eliminating the invading extracellular and intracellular FnBp + bacteria from respiratory epithelial cells by autophagy mediated through FnBp-Fn-Integrin α5β1 axis. Front Cell Infect Microbiol 2024; 13:1324727. [PMID: 38264727 PMCID: PMC10803403 DOI: 10.3389/fcimb.2023.1324727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
Background We previously found that the respiratory epithelial cells could eliminate the invaded group A streptococcus (GAS) through autophagy induced by binding a fibronectin (Fn) binding protein (FnBp) expressed on the surface of GAS to plasma protein Fn and its receptor integrin α5β1 of epithelial cells. Is autophagy initiated by FnBp+ bacteria via FnBp-Fn-Integrin α5β1 axis a common event in respiratory epithelial cells? Methods We chose Staphylococcus aureus (S. aureus/S. a) and Listeria monocytogenes (L. monocytogenes/L. m) as representatives of extracellular and intracellular FnBp+ bacteria, respectively. The FnBp of them was purified and the protein function was confirmed by western blot, viable bacteria count, confocal and pull-down. The key molecule downstream of the action axis was detected by IP, mass spectrometry and bio-informatics analysis. Results We found that different FnBp from both S. aureus and L. monocytogenes could initiate autophagy through FnBp-Fn-integrin α5β1 axis and this could be considered a universal event, by which host tries to remove invading bacteria from epithelial cells. Importantly, we firstly reported that S100A8, as a key molecule downstream of integrin β1 chain, is highly expressed upon activation of integrin α5β1, which in turn up-regulates autophagy. Conclusions Various FnBp from FnBp+ bacteria have the ability to initiate autophagy via FnBp-Fn-Integrin α5β1 axis to promote the removal of invading bacteria from epithelial cells in the presence of fewer invaders. S100A8 is a key molecule downstream of Integrin α5β1 in this autophagy pathway.
Collapse
Affiliation(s)
- Meiqi Meng
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Jiachao Wang
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Hongru Li
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Jiao Wang
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Xuan Wang
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
- Clinical Laboratory, the Second Hospital of Hebei Medical University, Hebei Key Laboratory of Laboratory Medicine, Shijiazhuang, China
| | - Miao Li
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Xue Gao
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Wenjian Li
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Cuiqing Ma
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| | - Lin Wei
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
8
|
Wang J, He Y, Zhou D. The role of ubiquitination in microbial infection induced endothelial dysfunction: potential therapeutic targets for sepsis. Expert Opin Ther Targets 2023; 27:827-839. [PMID: 37688775 DOI: 10.1080/14728222.2023.2257888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/11/2023] [Accepted: 09/07/2023] [Indexed: 09/11/2023]
Abstract
INTRODUCTION The ubiquitin system is an evolutionarily conserved and universal means of protein modification that regulates many essential cellular processes. Endothelial dysfunction plays a critical role in the pathophysiology of sepsis and organ failure. However, the mechanisms underlying the ubiquitination-mediated regulation on endothelial dysfunction are not fully understood. AREAS COVERED Here we review the advances in basic and clinical research for relevant papers in PubMed database. We attempt to provide an updated overview of diverse ubiquitination events in endothelial cells, discussing the fundamental role of ubiquitination mediated regulations involving in endothelial dysfunction to provide potential therapeutic targets for sepsis. EXPERT OPINION The central event underlying sepsis syndrome is the overwhelming host inflammatory response to the pathogen infection, leading to endothelial dysfunction. As the key components of the ubiquitin system, E3 ligases are at the center stage of the battle between host and microbial pathogens. Such a variety of ubiquitination regulates a multitude of cellular regulatory processes, including signal transduction, autophagy, inflammasome activation, redox reaction and immune response and so forth. In this review, we discuss the many mechanisms of ubiquitination-mediated regulation with a focus on those that modulate endothelial function to provide potential therapeutic targets for the management of sepsis.
Collapse
Affiliation(s)
- Junshuai Wang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Yang He
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Daixing Zhou
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| |
Collapse
|
9
|
Meng K, Zhu P, Shi L, Li S. Determination of the Salmonella intracellular lifestyle by the diversified interaction of Type III secretion system effectors and host GTPases. WIREs Mech Dis 2023; 15:e1587. [PMID: 36250298 DOI: 10.1002/wsbm.1587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/03/2022] [Accepted: 09/03/2022] [Indexed: 11/06/2022]
Abstract
Intracellular bacteria have developed sophisticated strategies to subvert the host endomembrane system to establish a stable replication niche. Small GTPases are critical players in regulating each step of membrane trafficking events, such as vesicle biogenesis, cargo transport, tethering, and fusion events. Salmonella is a widely studied facultative intracellular bacteria. Salmonella delivers several virulence proteins, termed effectors, to regulate GTPase dynamics and subvert host trafficking for their benefit. In this review, we summarize an updated and systematic understanding of the interactions between bacterial effectors and host GTPases in determining the intracellular lifestyle of Salmonella. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Kun Meng
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ping Zhu
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Liuliu Shi
- School of Basic Medical Science, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shan Li
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
10
|
Zhao HY, Xin M, Zhang SQ. Progress of small molecules for targeted protein degradation: PROTACs and other technologies. Drug Dev Res 2023; 84:337-394. [PMID: 36606428 DOI: 10.1002/ddr.22026] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/01/2022] [Accepted: 12/17/2022] [Indexed: 01/07/2023]
Abstract
Recent years have witnessed the rapid development of targeted protein degradation (TPD), especially proteolysis targeting chimeras. These degraders have manifested many advantages over small molecule inhibitors. To date, a huge number of degraders have been excavated against over 70 disease-related targets. In particular, degraders against estrogen receptor and androgen receptor have crowded into phase II clinical trial. TPD technologies largely expand the scope of druggable targets, and provide powerful tools for addressing intractable problems that can not be tackled by traditional small molecule inhibitors. In this review, we mainly focus on the structures and biological activities of small molecule degraders as well as the elucidation of mechanisms of emerging TPD technologies. We also propose the challenges that exist in the TPD field at present.
Collapse
Affiliation(s)
- Hong-Yi Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| |
Collapse
|
11
|
Lu SL, Omori H, Zhou Y, Lin YS, Liu CC, Wu JJ, Noda T. VEGF-Mediated Augmentation of Autophagic and Lysosomal Activity in Endothelial Cells Defends against Intracellular Streptococcus pyogenes. mBio 2022; 13:e0123322. [PMID: 35862783 PMCID: PMC9426552 DOI: 10.1128/mbio.01233-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/17/2022] [Indexed: 12/30/2022] Open
Abstract
Group A Streptococcus (GAS), a deleterious human-pathogenic bacterium, causes life-threatening diseases such as sepsis and necrotic fasciitis. We recently reported that GAS survives and replicates within blood vessel endothelial cells because these cells are intrinsically defective in xenophagy. Because blood vessel endothelial cells are relatively germfree environments, specific stimulation may be required to sufficiently induce xenophagy. Here, we explored how vascular endothelial growth factor (VEGF) promoted xenophagy and lysosomal activity in endothelial cells. These effects were achieved by amplifying the activation of TFEB, a transcriptional factor crucial for lysosome/autophagy biogenesis, via cAMP-mediated calcium release. In a mouse model of local infection with GAS, the VEGF level was significantly elevated at the infection site. Interestingly, low serum VEGF levels were found in a mouse model of invasive bacteremia and in patients with severe GAS-induced sepsis. Moreover, the administration of VEGF improved the survival of GAS-infected mice. We propose a novel theory regarding GAS infection in endothelial cells, wherein VEGF concentrations in the systemic circulation play a critical role. IMPORTANCE Sepsis caused by Streptococcus pyogenes is a life-threatening condition. Blood vessel endothelial cells should serve as a barrier to infection, although we recently reported that endothelial cells allow intracellular GAS proliferation due to defective xenophagy. In this study, we revealed that administration of VEGF augmented both xenophagy and lysosomal activity in these cells, leading to the efficient killing of intracellular GAS. By comparison, the opposite relationship was observed in vivo, as low serum VEGF concentrations were accompanied by high-severity sepsis in both a mouse model and in human patients. Administration of VEGF reduced mortality in the GAS sepsis model. Based on these findings, we hypothesize that during acute infection, strong VEGF stimulation boosts the intracellular defense system of the endothelium to provide a stronger blood vessel barrier, thereby helping to prevent bacterial dissemination.
Collapse
Affiliation(s)
- Shiou-Ling Lu
- Center for Frontier Oral Science, Graduate School of Dentistry, Osaka Universitygrid.136593.b, Osaka, Japan
| | - Hiroko Omori
- Research Institute for Microbial Disease, Osaka Universitygrid.136593.b, Osaka, Japan
| | - Yi Zhou
- Center for Frontier Oral Science, Graduate School of Dentistry, Osaka Universitygrid.136593.b, Osaka, Japan
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung Universitygrid.64523.36, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung Universitygrid.64523.36, Tainan, Taiwan
| | - Ching-Chuan Liu
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung Universitygrid.64523.36, Tainan, Taiwan
- Department of Pediatrics, College of Medicine, National Cheng Kung Universitygrid.64523.36, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Takeshi Noda
- Center for Frontier Oral Science, Graduate School of Dentistry, Osaka Universitygrid.136593.b, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka Universitygrid.136593.b, Osaka, Japan
| |
Collapse
|
12
|
Hua L, Zhang Q, Zhu X, Wang R, You Q, Wang L. Beyond Proteolysis-Targeting Chimeric Molecules: Designing Heterobifunctional Molecules Based on Functional Effectors. J Med Chem 2022; 65:8091-8112. [PMID: 35686733 DOI: 10.1021/acs.jmedchem.2c00316] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, with the successful development of proteolysis-targeting chimeric molecules (PROTACs), the potential of heterobifunctional molecules to contribute to reenvisioning drug design, especially small-molecule drugs, has been increasingly recognized. Inspired by PROTACs, diverse heterobifunctional molecules have been reported to simultaneously bind two or more molecules and bring them into proximity to interaction, such as ribonuclease-recruiting, autophagy-recruiting, lysosome-recruiting, kinase-recruiting, phosphatase-recruiting, glycosyltransferase-recruiting, and acetyltransferase-recruiting chimeras. On the basis of the heterobifunctional principle, more opportunities for advancing drug design by linking potential effectors to a protein of interest (POI) have emerged. Herein, we introduce heterobifunctional molecules other than PROTACs, summarize the limitations of existing molecules, list the main challenges, and propose perspectives for future research directions, providing insight into alternative design strategies based on substrate-proximity-based targeting.
Collapse
Affiliation(s)
- Liwen Hua
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, P. R. China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R.China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, P. R. China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R.China
| | - Xinyue Zhu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, P. R. China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R.China
| | - Ruoning Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, P. R. China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R.China
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, P. R. China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R.China
| |
Collapse
|
13
|
Zorca CE, Fallahi A, Luo S, Eldeeb MA. Multifaceted targeted protein degradation systems for different cellular compartments. Bioessays 2022; 44:e2200008. [PMID: 35417040 DOI: 10.1002/bies.202200008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 11/10/2022]
Abstract
Selective protein degradation maintains cellular homeostasis, but this process is disrupted in many diseases. Targeted protein degradation (TPD) approaches, built upon existing cellular mechanisms, are promising methods for therapeutically regulating protein levels. Here, we review the diverse palette of tools that are now available for doing so throughout the gene expression pathway and in specific cellular compartments. These include methods for directly removing targeted proteins via the ubiquitin proteasome system with proteolysis targeting chimeras (PROTACs) or dephosphorylation targeting chimeras (DEPTACs). Similar effects can also be achieved through the lysosomal system with autophagy-targeting chimeras (AUTACs), autophagosome tethering compounds (ATTECs), and lysosome targeting chimeras (LYTACs). Other methods act upstream to degrade RNAs (ribonuclease targeting chimeras; RIBOTACs) or transcription factors (transcription factor targeting chimeras; TRAFTACs), offering control throughout the gene expression process. We highlight the evolution and function of these methods and discuss their clinical implications in diverse disease contexts.
Collapse
Affiliation(s)
- Cornelia E Zorca
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Armaan Fallahi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Sophie Luo
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Mohamed A Eldeeb
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
14
|
Grijmans BJM, van der Kooij SB, Varela M, Meijer AH. LAPped in Proof: LC3-Associated Phagocytosis and the Arms Race Against Bacterial Pathogens. Front Cell Infect Microbiol 2022; 11:809121. [PMID: 35047422 PMCID: PMC8762105 DOI: 10.3389/fcimb.2021.809121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/10/2021] [Indexed: 01/05/2023] Open
Abstract
Cells of the innate immune system continuously patrol the extracellular environment for potential microbial threats that are to be neutralized by phagocytosis and delivery to lysosomes. In addition, phagocytes employ autophagy as an innate immune mechanism against pathogens that succeed to escape the phagolysosomal pathway and invade the cytosol. In recent years, LC3-associated phagocytosis (LAP) has emerged as an intermediate between phagocytosis and autophagy. During LAP, phagocytes target extracellular microbes while using parts of the autophagic machinery to label the cargo-containing phagosomes for lysosomal degradation. LAP contributes greatly to host immunity against a multitude of bacterial pathogens. In the pursuit of survival, bacteria have developed elaborate strategies to disarm or circumvent the LAP process. In this review, we will outline the nature of the LAP mechanism and discuss recent insights into its interplay with bacterial pathogens.
Collapse
Affiliation(s)
| | | | - Monica Varela
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | | |
Collapse
|
15
|
Yamada A, Hikichi M, Nozawa T, Nakagawa I. FBXO2/SCF ubiquitin ligase complex directs xenophagy through recognizing bacterial surface glycan. EMBO Rep 2021; 22:e52584. [PMID: 34515398 DOI: 10.15252/embr.202152584] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/26/2021] [Accepted: 08/20/2021] [Indexed: 11/09/2022] Open
Abstract
Xenophagy, also known as antibacterial selective autophagy, degrades invading bacterial pathogens such as group A Streptococcus (GAS) to defend cells. Although invading bacteria are known to be marked with ubiquitin and selectively targeted by xenophagy, how ubiquitin ligases recognize invading bacteria is poorly understood. Here, we show that FBXO2, a glycoprotein-specific receptor for substrate in the SKP1/CUL1/F-box protein (SCF) ubiquitin ligase complex, mediates recognition of GlcNAc side chains of the GAS surface carbohydrate structure and promotes ubiquitin-mediated xenophagy against GAS. FBXO2 targets cytosolic GAS through its sugar-binding motif and GlcNAc expression on the GAS surface. FBXO2 knockout resulted in decreased ubiquitin accumulation on intracellular GAS and xenophagic degradation of bacteria. Furthermore, SCF components such as SKP1, CUL1, and ROC1 are required for ubiquitin-mediated xenophagy against GAS. Thus, SCFFBXO2 recognizes GlcNAc residues of GAS surface carbohydrates and functions in ubiquitination during xenophagy.
Collapse
Affiliation(s)
- Akihiro Yamada
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Miyako Hikichi
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Nozawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
Pei J, Wang G, Feng L, Zhang J, Jiang T, Sun Q, Ouyang L. Targeting Lysosomal Degradation Pathways: New Strategies and Techniques for Drug Discovery. J Med Chem 2021; 64:3493-3507. [PMID: 33764774 DOI: 10.1021/acs.jmedchem.0c01689] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A series of tools for targeted protein degradation are inspiring scientists to develop new drugs with advantages over traditional small-molecule drugs. Among these tools, proteolysis-targeting chimeras (PROTACs) are most representative of the technology based on proteasomes. However, the proteasome has little degradation effect on certain macromolecular proteins or aggregates, extracellular proteins, and organelles, which limits the application of PROTACs. Additionally, lysosomes play an important role in protein degradation. Therefore, lysosome-induced protein degradation drugs can directly regulate protein levels in vivo, achieve the goal of treating diseases, and provide new strategies for drug discovery. Lysosome-based degradation technology has the potential for clinical translation. In this review, strategies targeting lysosomal pathways and lysosome-based degradation techniques are summarized. In addition, lysosome-based degrading drugs are described, and the advantages and challenges are listed. Our efforts will certainly promote the design, discovery, and clinical application of drugs associated with this technology.
Collapse
Affiliation(s)
- Junping Pei
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Lu Feng
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jifa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Tingting Jiang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
17
|
Abstract
Autophagy is an adaptive catabolic process functioning to promote cell survival in the event of inappropriate living conditions such as nutrient shortage and to cope with diverse cytotoxic insults. It is regarded as one of the key survival mechanisms of living organisms. Cells undergo autophagy to accomplish the lysosomal digestion of intracellular materials including damaged proteins, organelles, and foreign bodies, in a bulk, non-selective or a cargo-specific manner. Studies in the past decades have shed light on the association of autophagy pathways with various diseases and also highlighted the therapeutic value of autophagy modulation. Hence, it is crucial to develop effective approaches for monitoring intracellular autophagy dynamics, as a comprehensive account of methodology establishment is far from complete. In this review, we aim to provide an overview of the major current fluorescence-based techniques utilized for visualizing, sensing or measuring autophagic activities in cells or tissues, which are categorized firstly by targets detected and further by the types of fluorescence tools. We will mainly focus on the working mechanisms of these techniques, put emphasis on the insight into their roles in biomedical science and provide perspectives on the challenges and future opportunities in this field.
Collapse
Affiliation(s)
- Siyang Ding
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne Victoria 3086, Australia.
| | | |
Collapse
|
18
|
The Bartonella autotransporter BafA activates the host VEGF pathway to drive angiogenesis. Nat Commun 2020; 11:3571. [PMID: 32678094 PMCID: PMC7366657 DOI: 10.1038/s41467-020-17391-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/26/2020] [Indexed: 12/29/2022] Open
Abstract
Pathogenic bacteria of the genus Bartonella can induce vasoproliferative lesions during infection. The underlying mechanisms are unclear, but involve secretion of an unidentified mitogenic factor. Here, we use functional transposon-mutant screening in Bartonella henselae to identify such factor as a pro-angiogenic autotransporter, called BafA. The passenger domain of BafA induces cell proliferation, tube formation and sprouting of microvessels, and drives angiogenesis in mice. BafA interacts with vascular endothelial growth factor (VEGF) receptor-2 and activates the downstream signaling pathway, suggesting that BafA functions as a VEGF analog. A BafA homolog from a related pathogen, Bartonella quintana, is also functional. Our work unveils the mechanistic basis of vasoproliferative lesions observed in bartonellosis, and we propose BafA as a key pathogenic factor contributing to bacterial spread and host adaptation. Pathogenic bacteria of the genus Bartonella can induce vasoproliferative lesions during infection. Here, Tsukamoto et al. show that this effect is caused by a secreted protein that induces cell proliferation and angiogenesis by acting as an analog of the host’s vascular endothelial growth factor (VEGF).
Collapse
|
19
|
Hsieh CL, Hsieh SY, Huang HM, Lu SL, Omori H, Zheng PX, Ho YN, Cheng YL, Lin YS, Chiang-Ni C, Tsai PJ, Wang SY, Liu CC, Noda T, Wu JJ. Nicotinamide Increases Intracellular NAD + Content to Enhance Autophagy-Mediated Group A Streptococcal Clearance in Endothelial Cells. Front Microbiol 2020; 11:117. [PMID: 32117141 PMCID: PMC7026195 DOI: 10.3389/fmicb.2020.00117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/20/2020] [Indexed: 12/16/2022] Open
Abstract
Group A streptococcus (GAS) is a versatile pathogen that causes a wide spectrum of diseases in humans. Invading host cells is a known strategy for GAS to avoid antibiotic killing and immune recognition. However, the underlying mechanisms of GAS resistance to intracellular killing need to be explored. Endothelial HMEC-1 cells were infected with GAS, methicillin-resistant Staphylococcus aureus (MRSA) and Salmonella Typhimurium under nicotinamide (NAM)-supplemented conditions. The intracellular NAD+ level and cell viability were respectively measured by NAD+ quantification kit and protease-based cytotoxicity assay. Moreover, the intracellular bacteria were analyzed by colony-forming assay, transmission electron microscopy, and confocal microscopy. We found that supplementation with exogenous nicotinamide during infection significantly inhibited the growth of intracellular GAS in endothelial cells. Moreover, the NAD+ content and NAD+/NADH ratio of GAS-infected endothelial cells were dramatically increased, whereas the cell cytotoxicity was decreased by exogenous nicotinamide treatment. After knockdown of the autophagy-related ATG9A, the intracellular bacterial load was increased in nicotinamide-treated endothelial cells. The results of Western blot and transmission electron microscopy also revealed that cells treated with nicotinamide can increase autophagy-associated LC3 conversion and double-membrane formation during GAS infection. Confocal microscopy images further showed that more GAS-containing vacuoles were colocalized with lysosome under nicotinamide-supplemented conditions than without nicotinamide treatment. In contrast to GAS, supplementation with exogenous nicotinamide did not effectively inhibit the growth of MRSA or S. Typhimurium in endothelial cells. These results indicate that intracellular NAD+ homeostasis is crucial for controlling intracellular GAS infection in endothelial cells. In addition, nicotinamide may be a potential new therapeutic agent to overcome persistent infections of GAS.
Collapse
Affiliation(s)
- Cheng-Lu Hsieh
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Ying Hsieh
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsuan-Min Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shiou-Ling Lu
- Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Hiroko Omori
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Po-Xing Zheng
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Ning Ho
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Lin Cheng
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Yee-Shin Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chuan Chiang-Ni
- Department of Microbiology & Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Pei-Jane Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Ying Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Chuan Liu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pediatrics, College of Medicine, National Cheng Kung University and Hospital, Tainan, Taiwan
| | - Takeshi Noda
- Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Jiunn-Jong Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
20
|
Nozawa T, Nakagawa I. Identification of Group A Streptococcus-Containing Autophagosome-Like Vacuoles. Methods Mol Biol 2020; 2136:223-231. [PMID: 32430824 DOI: 10.1007/978-1-0716-0467-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Group A Streptococcus (GAS) is one of the major human pathogens that can invade nonphagocytic cells. GAS internalized through endocytosis secretes the pore-forming toxin Streptolysin O (SLO) to escape into the cytoplasm. The cytosolic GAS is selectively captured by autophagic membranes (GAS-containing autophagosome-like vacuoles, GcAVs) and delivered to lysosomes for degradation. Macroautophagy (referred to as autophagy hereafter) is a highly conserved lysosome-mediated catabolic process, which is critical for cellular homeostasis. Autophagy also acts as an intracellular immune system. In this section, we describe how to identify GcAVs in infected cells using fluorescent microscopy.
Collapse
Affiliation(s)
- Takashi Nozawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
21
|
AUTACs: Cargo-Specific Degraders Using Selective Autophagy. Mol Cell 2019; 76:797-810.e10. [DOI: 10.1016/j.molcel.2019.09.009] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 07/09/2019] [Accepted: 09/04/2019] [Indexed: 12/24/2022]
|
22
|
Group A Streptococcus Induces LAPosomes via SLO/β1 Integrin/NOX2/ROS Pathway in Endothelial Cells That Are Ineffective in Bacterial Killing and Suppress Xenophagy. mBio 2019; 10:mBio.02148-19. [PMID: 31575768 PMCID: PMC6775456 DOI: 10.1128/mbio.02148-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Our previous reports showed that the LC3-associated GAS-containing single membrane vacuoles are inefficient for bacterial clearance in endothelial cells, which may result in bacteremia. However, the characteristics and the induction mechanisms of these LC3-positive vacuoles are still largely unknown. Here we provide the first evidence that these LC3-positive GAS-containing single membrane compartments appear to be LAPosomes, which are induced by NOX2 and ROS. Through NOX2- and ROS-mediated signaling, GAS preferentially induces LAP and inhibits bacteriostatic xenophagy in endothelial cells. We also provide the first demonstration that β1 integrin acts as the receptor for LAP induction through GAS-produced SLO stimulation in endothelial cells. Our findings reveal the underlying mechanisms of LAP induction and autophagy evasion for GAS multiplication in endothelial cells. Group A streptococcus (GAS) is an important human pathogen which can cause fatal diseases after invasion into the bloodstream. Although antibiotics and immune surveillance are the main defenses against GAS infection, GAS utilizes internalization into cells as a major immune evasion strategy. Our previous findings revealed that light chain 3 (LC3)-associated single membrane GAS-containing vacuoles in endothelial cells are compromised for bacterial clearance due to insufficient acidification after fusion with lysosomes. However, the characteristics and the activation mechanisms of these LC3-positive compartments are still largely unknown. In the present study, we demonstrated that the LC3-positive GAS is surrounded by single membrane and colocalizes with NADPH oxidase 2 (NOX2) complex but without ULK1, which are characteristics of LC3-associated phagocytosis (LAP). Inhibition of NOX2 or reactive oxygen species (ROS) significantly reduces GAS multiplication and enhances autolysosome acidification in endothelial cells through converting LAP to conventional xenophagy, which is revealed by enhancement of ULK1 recruitment, attenuation of p70s6k phosphorylation, and formation of the isolation membrane. We also clarify that the inactivation of mTORC1, which is the initiation signal of autophagy, is inhibited by NOX2- and ROS-activated phosphatidylinositol 3-kinase (PI3K)/AKT and MEK/extracellular signal-regulated kinase (ERK) pathways. In addition, streptolysin O (SLO) of GAS is identified as a crucial inducer of ROS for β1 integrin-mediated LAP induction. After downregulation of β1 integrin, GAS multiplication is reduced, accompanied with LAP inhibition and xenophagy induction. These results demonstrate that GAS infection preferentially induces ineffective LAP to evade xenophagic killing in endothelial cells through the SLO/β1 integrin/NOX2/ROS pathway.
Collapse
|
23
|
Pancholi V. Group A Streptococcus-Mediated Host Cell Signaling. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0021-2018. [PMID: 30767846 PMCID: PMC11590744 DOI: 10.1128/microbiolspec.gpp3-0021-2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Indexed: 12/14/2022] Open
Abstract
In the past decade, the field of the cellular microbiology of group A Streptococcus (S. pyogenes) infection has made tremendous advances and touched upon several important aspects of pathogenesis, including receptor biology, invasive and evasive phenomena, inflammasome activation, strain-specific autophagic bacterial killing, and virulence factor-mediated programmed cell death. The noteworthy aspect of S. pyogenes-mediated cell signaling is the recognition of the role of M protein in a variety of signaling events, starting with the targeting of specific receptors on the cell surface and on through the induction and evasion of NETosis, inflammasome, and autophagy/xenophagy to pyroptosis and apoptosis. Variations in reports on S. pyogenes-mediated signaling events highlight the complex mechanism of pathogenesis and underscore the importance of the host cell and S. pyogenes strain specificity, as well as in vitro/in vivo experimental parameters. The severity of S. pyogenes infection is, therefore, dependent on the virulence gene expression repertoire in the host environment and on host-specific dynamic signaling events in response to infection. Commonly known as an extracellular pathogen, S. pyogenes finds host macrophages as safe havens wherein it survives and even multiplies. The fact that endothelial cells are inherently deficient in autophagic machinery compared to epithelial cells and macrophages underscores the invasive nature of S. pyogenes and its ability to cause severe systemic diseases. S. pyogenes is still one of the top 10 causes of infectious mortality. Understanding the orchestration of dynamic host signaling networks will provide a better understanding of the increasingly complex mechanism of S. pyogenes diseases and novel ways of therapeutically intervening to thwart severe and often fatal infections.
Collapse
Affiliation(s)
- Vijay Pancholi
- Department of Pathology, The Ohio State University College of Medicine, Columbus, OH 43210
| |
Collapse
|
24
|
Davies AK, Itzhak DN, Edgar JR, Archuleta TL, Hirst J, Jackson LP, Robinson MS, Borner GHH. AP-4 vesicles contribute to spatial control of autophagy via RUSC-dependent peripheral delivery of ATG9A. Nat Commun 2018; 9:3958. [PMID: 30262884 PMCID: PMC6160451 DOI: 10.1038/s41467-018-06172-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/17/2018] [Indexed: 12/03/2022] Open
Abstract
Adaptor protein 4 (AP-4) is an ancient membrane trafficking complex, whose function has largely remained elusive. In humans, AP-4 deficiency causes a severe neurological disorder of unknown aetiology. We apply unbiased proteomic methods, including 'Dynamic Organellar Maps', to find proteins whose subcellular localisation depends on AP-4. We identify three transmembrane cargo proteins, ATG9A, SERINC1 and SERINC3, and two AP-4 accessory proteins, RUSC1 and RUSC2. We demonstrate that AP-4 deficiency causes missorting of ATG9A in diverse cell types, including patient-derived cells, as well as dysregulation of autophagy. RUSC2 facilitates the transport of AP-4-derived, ATG9A-positive vesicles from the trans-Golgi network to the cell periphery. These vesicles cluster in close association with autophagosomes, suggesting they are the "ATG9A reservoir" required for autophagosome biogenesis. Our study uncovers ATG9A trafficking as a ubiquitous function of the AP-4 pathway. Furthermore, it provides a potential molecular pathomechanism of AP-4 deficiency, through dysregulated spatial control of autophagy.
Collapse
Affiliation(s)
- Alexandra K Davies
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Daniel N Itzhak
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - James R Edgar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Tara L Archuleta
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37235, USA
| | - Jennifer Hirst
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Lauren P Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37235, USA
| | - Margaret S Robinson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK.
| | - Georg H H Borner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany.
| |
Collapse
|
25
|
Siqueira MDS, Ribeiro RDM, Travassos LH. Autophagy and Its Interaction With Intracellular Bacterial Pathogens. Front Immunol 2018; 9:935. [PMID: 29875765 PMCID: PMC5974045 DOI: 10.3389/fimmu.2018.00935] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 04/16/2018] [Indexed: 12/20/2022] Open
Abstract
Cellular responses to stress can be defined by the overwhelming number of changes that cells go through upon contact with and stressful conditions such as infection and modifications in nutritional status. One of the main cellular responses to stress is autophagy. Much progress has been made in the understanding of the mechanisms involved in the induction of autophagy during infection by intracellular bacteria. This review aims to discuss recent findings on the role of autophagy as a cellular response to intracellular bacterial pathogens such as, Streptococcus pyogenes, Mycobacterium tuberculosis, Shigella flexneri, Salmonella typhimurium, Listeria monocytogenes, and Legionella pneumophila, how the autophagic machinery senses these bacteria directly or indirectly (through the detection of bacteria-induced nutritional stress), and how some of these bacterial pathogens manage to escape from autophagy.
Collapse
Affiliation(s)
- Mariana da Silva Siqueira
- Laboratory of Immunoreceptors and Signaling, Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renato de Moraes Ribeiro
- Laboratory of Immunoreceptors and Signaling, Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo H Travassos
- Laboratory of Immunoreceptors and Signaling, Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|