1
|
Zhang Y, Klein K, Ratcliff A, Galappaththi SL, Hathaway N, Twells N, Patel M, Temesy S, Bailey J, Mahal L, Creuzenet C, Arts E. Transmitted/founder (T/F) HIV-1 derived from sexual contact exhibits greater transmission fitness in human cervical tissue than T/F HIV-1 from blood-to-blood contact: Unique glycan profiles on T/F envelopes associated with transmission phenotypes. PLoS Pathog 2025; 21:e1013177. [PMID: 40408432 DOI: 10.1371/journal.ppat.1013177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 05/01/2025] [Indexed: 05/25/2025] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) risk groups include, but are not limited to, heterosexual individuals (HET), men-who-have-sex-with-men (MSM), and people who inject drugs (PWID). Although genetically diverse HIV-1 populations are transferred from donor to recipient, systemic infection is often established by a single clone, the transmitted/founder (T/F) virus. This phenomenon is especially prevalent in sexual transmission, but less stringent in blood-to-blood contact transmission. Specific traits that permit successful transmission have not been well characterized. Thus, HIV-1 containing the chimeric T/F envelope (Env) from different transmission routes was assessed for ex vivo transmission fitness by performing mixed competition assays (also referred to as mixed competitions) on human cervical tissues. We found that chimeric T/F viruses isolated from the PWID exhibit limited replication capacity in cervical tissues when compared to those from MSM and HET, diminishing their chances of transmission to T helper type 1 (Th1) and Th17 cells. This reduced transmission fitness of T/F HIV-1 from PWID was not observed when infecting Th1 and Th17 cells directly, bypassing cervical tissues. Phenotypic assays showed that the chimeric T/F viruses from PWID differed from other groups by having an enhanced ability to utilize diverse CCR5 conformations, while Env expression level, CD4/CCR5 utilization, and entry speed did not differ. Different glycosylation profiles were detected on T/F compared to chronic Env with increased complex, fucosylated N- and O-glycans found more frequently on the T/F Env. Furthermore, the increased presence of these fucosylated glycans correlated with replication fitness in cervical tissues. In contrast, bisecting branched N-glycan found more frequently on chronic Env was associated with decreased entry efficiency and more stringent usage of CCR5. These findings suggest that glycosylation patterns/levels and/or Env structure greatly impact the differences in transmission fitness of T/F HIV-1.
Collapse
Affiliation(s)
- Yiying Zhang
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada
| | - Katja Klein
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
| | - Annette Ratcliff
- Department of Molecular Biology and Microbiology and Division of Infectious Diseases, Case Western Reserve University, Cleveland, United States of America
| | | | - Nicholas Hathaway
- Department of Pathology and Laboratory Medicine, Brown University, Providence, United States of America
| | - Nicholas Twells
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Mukti Patel
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada
| | - Stephen Temesy
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada
| | - Jeffrey Bailey
- Department of Pathology and Laboratory Medicine, Brown University, Providence, United States of America
| | - Lara Mahal
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Carole Creuzenet
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada
| | - Eric Arts
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada
- Department of Molecular Biology and Microbiology and Division of Infectious Diseases, Case Western Reserve University, Cleveland, United States of America
| |
Collapse
|
2
|
Trifone C, Richard C, Pagliuzza A, Dufour C, Lemieux A, Clark NM, Janaka SK, Fennessey CM, Keele BE, Fromentin R, Estes JD, Kaufmann DE, Finzi A, Evans DT, Chomont N. Contribution of intact viral genomes persisting in blood and tissues during ART to plasma viral rebound in SHIV-infected rhesus macaques. iScience 2025; 28:111998. [PMID: 40104070 PMCID: PMC11914814 DOI: 10.1016/j.isci.2025.111998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 11/26/2024] [Accepted: 02/07/2025] [Indexed: 03/20/2025] Open
Abstract
Persistent SIV/HIV reservoirs are the primary obstacle to a cure and the source of viral rebound after ART interruption (ATI). However, the anatomical source of viral rebound remains elusive. Here, we characterized the proviral landscape in the blood, inguinal, and axillary lymph nodes and colon biopsies of five SHIV-infected rhesus macaques (RMs), under ART for 28 weeks. From the 144 near full-length (NFL) proviral sequences obtained pre-ATI, 35% were genetically intact and only 2.8% were found in multiple copies. Envelope sequences of plasma rebounding viruses after ATI, more frequently matched pre-ATI intact proviruses retrieved from lymph nodes compared to sequences isolated from the blood or the colon (4, 1, and 1 pair of matched sequences, respectively). Our results suggest that clonal expansion of infected cells rare in this model, and that intact proviruses persisting in the lymph nodes may be a preferential source of viral rebound upon ATI.
Collapse
Affiliation(s)
- César Trifone
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | | | | | | | - Audrée Lemieux
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
| | - Natasha M Clark
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53707, USA
| | - Sanath K Janaka
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53707, USA
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Brandon E Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Rémi Fromentin
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97239, USA
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97239, USA
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Département de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Division of Infectious Diseases, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - David T Evans
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53707, USA
| | - Nicolas Chomont
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
3
|
Steytler J, Craig C, van der Ryst E, Van Baelen B, Nuttall J, van Niekerk N, Mellors J, Parikh U, Wallis C, for the Ring Study and the DREAM Trial Study Teams. Characterization of Viruses in Phase 3 and Phase 3b Trials (the Ring Study and the Dapivirine Ring Extended Access and Monitoring Trial) of the Dapivirine Vaginal Ring for Human Immunodeficiency Virus Type 1 Infection Risk Reduction. Clin Infect Dis 2023; 76:996-1002. [PMID: 36345569 PMCID: PMC12097997 DOI: 10.1093/cid/ciac875] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The Ring Study demonstrated 35.1% human immunodeficiency virus type 1 (HIV-1) infection risk reduction among participants who used the Dapivirine vaginal ring-004 (DVR), whereas the Dapivirine Ring Extended Access and Monitoring (DREAM) trial, approximated a 62% risk reduction. The observed non-nucleoside reverse-transcriptase inhibitor (NNRTI) resistance-associated mutations (RAMs) and effects on viral susceptibility are described here. METHODS Population-based genotyping on plasma samples collected longitudinally, and next-generation sequencing (NGS) and phenotypic susceptibility testing were done on plasma collected at seroconversion. Retrospective HIV-1 RNA testing was used to more accurately establish the time of infection. RESULTS In the Ring Study, NNRTI RAMs were not observed in most viruses at seroconversion (population-based genotyping: DVR: 71 of 84, 84.5%; placebo: 50 of 58, 86.2%). However, more E138A was found in the DVR group (E138A DVR: 9 of 84, 10.7%; placebo: 2 of 58, 3.4%; P = .2, Fisher exact test). NGS detected 1 additional mutation in each group (DVR: G190A; placebo: G190A and G190E). Marginal dapivirine susceptibility reduction was found with NNRTI RAMs at seroconversion (geometric mean fold-change, range: DVR, 3.1, 1.3-5.1; placebo, 5.8, 0.9-120). NNRTI RAMs were not emergent between first detectable HIV-1 RNA and seroconversion when these visits differed (paired samples, mean ring use: DVR, n = 52, 35 days; placebo, n = 26, 31 days). After stopping DVR, 2 of 63 viruses had emergent G190G/A or K103K/N with V106V/M at final study visit. Resistance profiles from the DREAM trial were consistent with the Ring Study. CONCLUSIONS DVR showed little potential for selection of NNRTI-resistant variants. CLINICAL TRIALS REGISTRATION NCT01539226 and NCT02862171.
Collapse
Affiliation(s)
- John Steytler
- International Partnership for Microbicides South Africa NPC, Johannesburg, South Africa
| | - Charles Craig
- Research Virology Consulting Ltd, Cambridgeshire, United Kingdom
| | | | | | - Jeremy Nuttall
- International Partnership for Microbicides, Silver Spring, Maryland, USA
| | - Neliëtte van Niekerk
- International Partnership for Microbicides South Africa NPC, Johannesburg, South Africa
| | - John Mellors
- Microbicide Trials Network Virology Core Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Urvi Parikh
- Microbicide Trials Network Virology Core Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Carole Wallis
- Bio-Analytical Research Corporation Laboratory and Lancet Laboratories, Johannesburg, South Africa
| | | |
Collapse
|
4
|
Lau CY, Adan MA, Maldarelli F. Why the HIV Reservoir Never Runs Dry: Clonal Expansion and the Characteristics of HIV-Infected Cells Challenge Strategies to Cure and Control HIV Infection. Viruses 2021; 13:2512. [PMID: 34960781 PMCID: PMC8708047 DOI: 10.3390/v13122512] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022] Open
Abstract
Antiretroviral therapy (ART) effectively reduces cycles of viral replication but does not target proviral populations in cells that persist for prolonged periods and that can undergo clonal expansion. Consequently, chronic human immunodeficiency virus (HIV) infection is sustained during ART by a reservoir of long-lived latently infected cells and their progeny. This proviral landscape undergoes change over time on ART. One of the forces driving change in the landscape is the clonal expansion of infected CD4 T cells, which presents a key obstacle to HIV eradication. Potential mechanisms of clonal expansion include general immune activation, antigenic stimulation, homeostatic proliferation, and provirus-driven clonal expansion, each of which likely contributes in varying, and largely unmeasured, amounts to maintaining the reservoir. The role of clinical events, such as infections or neoplasms, in driving these mechanisms remains uncertain, but characterizing these forces may shed light on approaches to effectively eradicate HIV. A limited number of individuals have been cured of HIV infection in the setting of bone marrow transplant; information from these and other studies may identify the means to eradicate or control the virus without ART. In this review, we describe the mechanisms of HIV-1 persistence and clonal expansion, along with the attempts to modify these factors as part of reservoir reduction and cure strategies.
Collapse
Affiliation(s)
- Chuen-Yen Lau
- HIV Dynamics and Replication Program, NCI, NIH, Bethesda, MD 20892, USA; (C.-Y.L.); (M.A.A.)
| | - Matthew A. Adan
- HIV Dynamics and Replication Program, NCI, NIH, Bethesda, MD 20892, USA; (C.-Y.L.); (M.A.A.)
- Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, NCI, NIH, Bethesda, MD 20892, USA; (C.-Y.L.); (M.A.A.)
| |
Collapse
|
5
|
An Amino Acid Polymorphism within the HIV-1 Nef Dileucine Motif Functionally Uncouples Cell Surface CD4 and SERINC5 Downregulation. J Virol 2021; 95:e0058821. [PMID: 34037423 DOI: 10.1128/jvi.00588-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serine incorporator 5 (SERINC5) reduces the infectivity of progeny HIV-1 virions by incorporating into the outer host-derived viral membrane during egress. To counter SERINC5, the HIV-1 accessory protein Nef triggers SERINC5 internalization by engaging the adaptor protein 2 (AP-2) complex using the [D/E]xxxL[L/I]167 Nef dileucine motif. Nef also engages AP-2 via its dileucine motif to downregulate the CD4 receptor. Although these two Nef functions are related, the mechanisms governing SERINC5 downregulation are incompletely understood. Here, we demonstrate that two primary Nef isolates, referred to as 2410 and 2391 Nef, acquired from acutely HIV-1 infected women from Zimbabwe, both downregulate CD4 from the cell surface. However, only 2410 Nef retains the ability to downregulate cell surface SERINC5. Using a series of Nef chimeras, we mapped the region of 2391 Nef responsible for the functional uncoupling of these two antagonistic pathways to the dileucine motif. Modifications of the first and second x positions of the 2410 Nef dileucine motif to asparagine and aspartic acid residues, respectively (ND164), impaired cell surface SERINC5 downregulation, which resulted in reduced infectious virus yield in the presence of SERINC5. The ND164 mutation additionally partially impaired, but did not completely abrogate, Nef-mediated cell surface CD4 downregulation. Furthermore, the patient infected with HIV-1 encoding 2391 Nef had stable CD4+ T cell counts, whereas infection with HIV-1 encoding 2410 Nef resulted in CD4+ T cell decline and disease progression. IMPORTANCE A contributing factor to HIV-1 persistence is evasion of the host immune response. HIV-1 uses the Nef accessory protein to evade the antiviral roles of the adaptive and intrinsic innate immune responses. Nef targets SERINC5, a restriction factor which potently impairs HIV-1 infection by triggering SERINC5 removal from the cell surface. The molecular determinants underlying this Nef function remain incompletely understood. Recent studies have found a correlation between the extent of Nef-mediated SERINC5 downregulation and the rate of disease progression. Furthermore, single-residue polymorphisms outside the known Nef functional motifs can modulate SERINC5 downregulation. The identification of a naturally occurring Nef polymorphism impairing SERINC5 downregulation in this study supports a link between Nef downregulation of SERINC5 and the rate of plasma CD4+ T cell decline. Moreover, the observed functional impairments of this polymorphism could provide clues to further elucidate unknown aspects of the SERINC5 antagonistic pathway via Nef.
Collapse
|
6
|
Deep Gene Sequence Cluster Analyses of Multi-Virus-Infected Mucosal Tissue Reveal Enhanced Transmission of Acute HIV-1. J Virol 2021; 95:JVI.01737-20. [PMID: 33177204 PMCID: PMC7925087 DOI: 10.1128/jvi.01737-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/31/2020] [Indexed: 12/12/2022] Open
Abstract
During heterosexual HIV-1 transmission, a genetic bottleneck occurs in the newly infected individual as the virus passes from the mucosa, leading to systemic infection with a single transmitted HIV-1 clone in the recipient. This bottleneck in the recipient has just been described, and the mechanisms involved in this selection process have not been elucidated. Exposure of the genital mucosa to a genetically diverse viral swarm from the donor HIV-1 can result in breakthrough and systemic infection by a single transmitted/founder (TF) virus in the recipient. The highly diverse HIV-1 envelope (Env) in this inoculating viral swarm may have a critical role in transmission and subsequent immune response. Thus, chronic (Envchronic) and acute (Envacute) Env chimeric HIV-1 were tested using multivirus competition assays in human mucosal penile and cervical tissues. Viral competition analysis revealed that Envchronic viruses resided and replicated mainly in the tissue, while Envacute viruses penetrated the human tissue and established infection of CD4+ T cells more efficiently. Analysis of the replication fitness, as tested in peripheral blood mononuclear cells (PBMCs), showed similar replication fitness of Envacute and Envchronic viruses, which did not correlate with transmission fitness in penile tissue. Further, we observed that chimeric Env viruses with higher replication in genital mucosal tissue (chronic Env viruses) had higher binding affinity to C-type lectins. Data presented herein suggest that the inoculating HIV-1 may be sequestered in the genital mucosal tissue (represented by chronic Env HIV-1) but that a single HIV-1 clone (e.g., acute Env HIV-1) can escape this trapped replication for systemic infection. IMPORTANCE During heterosexual HIV-1 transmission, a genetic bottleneck occurs in the newly infected individual as the virus passes from the mucosa, leading to systemic infection with a single transmitted HIV-1 clone in the recipient. This bottleneck in the recipient has just been described (K. Klein et al., PLoS Pathog 14:e1006754, https://doi.org/10.1371/journal.ppat.1006754), and the mechanisms involved in this selection process have not been elucidated. However, understanding mucosal restriction is of the utmost importance for understanding dynamics of infections and for designing focused vaccines. Using our human penile and cervical mucosal tissue models for mixed HIV infections, we provide evidence that HIV-1 from acute/early infection, compared to that from chronic infection, can more efficiently traverse the mucosal epithelium and be transmitted to T cells, suggesting higher transmission fitness. This study focused on the role of the HIV-1 envelope in transmission and provides strong evidence that HIV transmission may involve breaking the mucosal lectin trap.
Collapse
|
7
|
Okafo G, Valdebenito S, Donoso M, Luu R, Ajasin D, Prideaux B, Gorantla S, Eugenin EA. Role of Tunneling Nanotube-like Structures during the Early Events of HIV Infection: Novel Features of Tissue Compartmentalization and Mechanism of HIV Spread. THE JOURNAL OF IMMUNOLOGY 2020; 205:2726-2741. [PMID: 33037140 DOI: 10.4049/jimmunol.2000803] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
HIV has become a chronic disease despite the effective use of antiretroviral therapy (ART). However, the mechanisms of tissue colonization, viral evolution, generation of viral reservoirs, and compartmentalization are still a matter of debate due to the challenges involved in examining early events of infection at the cellular and molecular level. Thus, there is still an urgent need to explore these areas to develop effective HIV cure strategies. In this study, we describe the early events of tissue colonization and compartmentalization as well as the role of tunneling nanotube-like structures during viral spread in the presence and absence of effective antiretroviral treatment. To examine these mechanisms, NOD/SCID IL-2 RG-/- humanized mice were either directly infected with HIVADA or with low numbers of HIVADA-infected leukocytes to limit tissue colonization in the presence and absence of TAK779, an effective CCR5 blocker of HIV entry. We identify that viral seeding in tissues occurs early in a tissue- and cell type-specific manner (24-72 h). Reduction in systemic HIV replication by TAK779 treatment did not affect tissue seeding or spreading, despite reduced systemic viral replication. Tissue-associated HIV-infected cells had different properties than cells in the circulation because the virus continues to spread in tissues in a tunneling nanotube-like structure-dependent manner, despite ART. Thus, understanding these mechanisms can provide new approaches to enhance the efficacy of existing ART and HIV infection cure strategies.
Collapse
Affiliation(s)
- George Okafo
- GO Pharma Consulting Ltd., Welwyn AL6 0QT, United Kingdom
| | - Silvana Valdebenito
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX 77555; and
| | - Maribel Donoso
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX 77555; and
| | - Ross Luu
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX 77555; and
| | - David Ajasin
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX 77555; and
| | - Brendan Prideaux
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX 77555; and
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198
| | - Eliseo A Eugenin
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX 77555; and
| |
Collapse
|
8
|
Kariuki SM, Selhorst P, Anthony C, Matten D, Abrahams MR, Martin DP, Ariën KK, Rebe K, Williamson C, Dorfman JR. Compartmentalization and Clonal Amplification of HIV-1 in the Male Genital Tract Characterized Using Next-Generation Sequencing. J Virol 2020; 94:e00229-20. [PMID: 32269124 PMCID: PMC7307092 DOI: 10.1128/jvi.00229-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/16/2020] [Indexed: 12/17/2022] Open
Abstract
Compartmentalization of HIV-1 between the systemic circulation and the male genital tract may have a substantial impact on which viruses are available for sexual transmission to new hosts. We studied compartmentalization and clonal amplification of HIV-1 populations between the blood and the genital tract from 10 antiretroviral-naive men using Illumina MiSeq with a PrimerID approach. We found evidence of some degree of compartmentalization in every study participant, unlike previous studies, which collectively showed that only ∼50% of analyzed individuals exhibited compartmentalization of HIV-1 lineages between the male genital tract (MGT) and blood. Using down-sampling simulations, we determined that this disparity can be explained by differences in sampling depth in that had we sequenced to a lower depth, we would also have found compartmentalization in only ∼50% of the study participants. For most study participants, phylogenetic trees were rooted in blood, suggesting that the male genital tract reservoir is seeded by incoming variants from the blood. Clonal amplification was observed in all study participants and was a characteristic of both blood and semen viral populations. We also show evidence for independent viral replication in the genital tract in the individual with the most severely compartmentalized HIV-1 populations. The degree of clonal amplification was not obviously associated with the extent of compartmentalization. We were also unable to detect any association between history of sexually transmitted infections and level of HIV-1 compartmentalization. Overall, our findings contribute to a better understanding of the dynamics that affect the composition of virus populations that are available for transmission.IMPORTANCE Within an individual living with HIV-1, factors that restrict the movement of HIV-1 between different compartments-such as between the blood and the male genital tract-could strongly influence which viruses reach sites in the body from which they can be transmitted. Using deep sequencing, we found strong evidence of restricted HIV-1 movements between the blood and genital tract in all 10 men that we studied. We additionally found that neither the degree to which particular genetic variants of HIV-1 proliferate (in blood or genital tract) nor an individual's history of sexually transmitted infections detectably influenced the degree to which virus movements were restricted between the blood and genital tract. Last, we show evidence that viral replication gave rise to a large clonal amplification in semen in a donor with highly compartmentalized HIV-1 populations, raising the possibility that differential selection of HIV-1 variants in the genital tract may occur.
Collapse
Affiliation(s)
- Samuel Mundia Kariuki
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
- Department of Biological Sciences, School of Science, University of Eldoret, Eldoret, Kenya
| | - Philippe Selhorst
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Colin Anthony
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - David Matten
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Melissa-Rose Abrahams
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Darren P Martin
- Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Insitute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Kevin Rebe
- Anova Health Institute, Cape Town, South Africa
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, University of Cape Town, Cape Town, South Africa
| | - Carolyn Williamson
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Insitute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jeffrey R Dorfman
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Although HIV-1 diversity is a critical barrier to HIV-1 vaccine development, implementing vaccine strategies that directly address HIV-1 genetic specificities has been challenging. Here, we discuss the intersection between HIV-1 phylogenetics and vaccine development. RECENT FINDINGS We describe the vaccine regimens that are currently tested in two vaccine efficacy trials and recent research highlighting HIV-1 genetic features that were associated with the development of broadly neutralizing antibodies. SUMMARY Compared with how widely HIV-1 diversity is recognized as a critical issue for vaccine research, relatively few genetically informed vaccine solutions have been compared, in part because the lack of correlates of protection against HIV-1 limits the ability to develop and test multiple vaccine candidates in a fully rational manner. Yet, recent findings have provided a better understanding of the viral features associated with the development of broad and potent neutralizing antibodies, offering new avenues for engineering vaccine candidates. Future research should also plan to address potential consequences associated with the rollout of an efficacious vaccine, including the possibility of vaccine resistance spreading in the population.
Collapse
|
10
|
Kariuki SM, Selhorst P, Norman J, Cohen K, Rebe K, Williamson C, Dorfman JR. Detectable HIV-1 in semen in individuals with very low blood viral loads. Virol J 2020; 17:29. [PMID: 32138741 PMCID: PMC7059658 DOI: 10.1186/s12985-020-01300-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Background Several reports indicate that a portion (5–10%) of men living with HIV-1 intermittently shed HIV-1 RNA into seminal plasma while on long term effective antiretroviral therapy (ART). This is highly suggestive of an HIV-1 reservoir in the male genital tract. However, the status of this reservoir in men living with HIV-1 who are not under treatment is underexplored and has implications for understanding the origins and evolution of the reservoir. Finding Forty-three HIV-1 positive, antiretroviral therapy naïve study participants attending a men’s health clinic were studied. Semen viral loads and blood viral loads were generally correlated, with semen viral loads generally detected in individuals with blood viral loads > 10,000 cp/ml. However, we found 1 individual with undetectable viral loads (<20cp/ml) and 2 individuals with very low blood viral load (97 and 333cp/ml), but with detectable HIV-1 in semen (485–1157 copies/semen sample). Blood viral loads in the first individual were undetectable when tested three times over the prior 5 years. Conclusions Semen HIV-1 viral loads are usually related to blood viral loads, as we confirm. Nonetheless, this was not true in a substantial minority of individuals suggesting unexpectedly high levels of replication in the male genital tract in a few individuals, despite otherwise effective immune control. This may reflect establishment of a local reservoir of HIV-1 populations.
Collapse
Affiliation(s)
- Samuel Mundia Kariuki
- Division of Immunology, Department of Pathology, University of Cape Town, Anzio Rd, Observatory, Cape Town, 7925, South Africa.,International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa.,Department of Biological Sciences, School of Science, University of Eldoret, Eldoret, Kenya
| | - Philippe Selhorst
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa.,Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jennifer Norman
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Karen Cohen
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Kevin Rebe
- Anova Health Institute, Cape Town, South Africa.,Division of Infectious Diseases and HIV Medicine, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Carolyn Williamson
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa.,Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,National Health Laboratory Service, Johannesburg, South Africa
| | - Jeffrey R Dorfman
- Division of Immunology, Department of Pathology, University of Cape Town, Anzio Rd, Observatory, Cape Town, 7925, South Africa. .,Division of Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa.
| |
Collapse
|
11
|
Gaube G, Armero A, Salmona M, Néré ML, Mahjoub N, Lascoux-Combe C, Gabassi A, Gallien S, Amara A, Molina JM, Delaugerre C, Chaix ML. Characterization of HIV-1 diversity in various compartments at the time of primary infection by ultradeep sequencing. Sci Rep 2020; 10:2409. [PMID: 32051463 PMCID: PMC7016127 DOI: 10.1038/s41598-020-59234-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/13/2020] [Indexed: 12/18/2022] Open
Abstract
We used next-generation sequencing to evaluate the quantity and genetic diversity of the HIV envelope gene in various compartments in eight patients with acute infection. Plasma (PL) and seminal fluid (SF) were available for all patients, whole blood (WB) for seven, non-spermatozoid cells (NSC) for four, and saliva (SAL) for three. Median HIV-1 RNA was 6.2 log10 copies/mL [IQR: 5.5-6.95] in PL, 4.9 log10 copies/mL [IQR: 4.25-5.29] in SF, and 4.9 log10 copies/mL [IQR: 4.46-5.09] in SAL. Median HIV-1 DNA was 4.1 log10 copies/106 PBMCs [IQR: 3.15-4.15] in WB and 2.6 log10 copies /106 Cells [IQR: 2.23-2.75] in NSC. The median overall diversity per patient varied from 0.0005 to 0.0232, suggesting very low diversity, confirmed by the clonal aspect of most of the phylogenetic trees. One single haplotype was present in all compartments for five patients in the earliest stage of infection. Evidence of higher diversity was established for two patients in PL and WB, suggesting compartmentalization. Our study shows low diversity of the env gene in the first stages of infection followed by the rapid establishment of cellular reservoirs of the virus. Such clonality could be exploited in the search for early patient-specific therapeutic solutions.
Collapse
Affiliation(s)
- Géraldine Gaube
- AP-HP, Hôpital Henri Mondor, Service d'Immunologie et Maladies Infectieuses, Université Paris Est Créteil, Inserm U955, Créteil, France
| | - Alix Armero
- AP-HP, Hôpital Saint-Louis, Virologie, Paris, France
| | - Maud Salmona
- AP-HP, Hôpital Saint-Louis, Virologie, Paris, France
- INSERM UMR 976, Université de Paris, Paris, France
| | - Marie-Laure Néré
- AP-HP, Hôpital Saint-Louis, Virologie, Paris, France
- CNR VIH, Paris, France
| | - Nadia Mahjoub
- AP-HP, Hôpital Saint-Louis, Virologie, Paris, France
| | | | | | - Sébastien Gallien
- AP-HP, Hôpital Henri Mondor, Service d'Immunologie et Maladies Infectieuses, Université Paris Est Créteil, Inserm U955, Créteil, France
| | - Ali Amara
- INSERM UMR 944, Université de Paris, Paris, France
| | - Jean Michel Molina
- AP-HP, Hôpital Saint Louis, SMIT, Paris, France
- INSERM UMR 944, Université de Paris, Paris, France
| | - Constance Delaugerre
- AP-HP, Hôpital Saint-Louis, Virologie, Paris, France
- CNR VIH, Paris, France
- INSERM UMR 944, Université de Paris, Paris, France
| | - Marie-Laure Chaix
- AP-HP, Hôpital Saint-Louis, Virologie, Paris, France.
- CNR VIH, Paris, France.
- INSERM UMR 944, Université de Paris, Paris, France.
| |
Collapse
|
12
|
Pérez-Losada M, Arenas M, Galán JC, Bracho MA, Hillung J, García-González N, González-Candelas F. High-throughput sequencing (HTS) for the analysis of viral populations. INFECTION GENETICS AND EVOLUTION 2020; 80:104208. [PMID: 32001386 DOI: 10.1016/j.meegid.2020.104208] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/12/2022]
Abstract
The development of High-Throughput Sequencing (HTS) technologies is having a major impact on the genomic analysis of viral populations. Current HTS platforms can capture nucleic acid variation across millions of genes for both selected amplicons and full viral genomes. HTS has already facilitated the discovery of new viruses, hinted new taxonomic classifications and provided a deeper and broader understanding of their diversity, population and genetic structure. Hence, HTS has already replaced standard Sanger sequencing in basic and applied research fields, but the next step is its implementation as a routine technology for the analysis of viruses in clinical settings. The most likely application of this implementation will be the analysis of viral genomics, because the huge population sizes, high mutation rates and very fast replacement of viral populations have demonstrated the limited information obtained with Sanger technology. In this review, we describe new technologies and provide guidelines for the high-throughput sequencing and genetic and evolutionary analyses of viral populations and metaviromes, including software applications. With the development of new HTS technologies, new and refurbished molecular and bioinformatic tools are also constantly being developed to process and integrate HTS data. These allow assembling viral genomes and inferring viral population diversity and dynamics. Finally, we also present several applications of these approaches to the analysis of viral clinical samples including transmission clusters and outbreak characterization.
Collapse
Affiliation(s)
- Marcos Pérez-Losada
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, DC, USA; CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão 4485-661, Portugal
| | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain; Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain.
| | - Juan Carlos Galán
- Microbiology Service, Hospital Ramón y Cajal, Madrid, Spain; CIBER in Epidemiology and Public Health, Spain.
| | - Mª Alma Bracho
- CIBER in Epidemiology and Public Health, Spain; Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain.
| | - Julia Hillung
- Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain; Institute for Integrative Systems Biology (I2SysBio), CSIC-University of Valencia, Valencia, Spain.
| | - Neris García-González
- Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain; Institute for Integrative Systems Biology (I2SysBio), CSIC-University of Valencia, Valencia, Spain.
| | - Fernando González-Candelas
- CIBER in Epidemiology and Public Health, Spain; Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain; Institute for Integrative Systems Biology (I2SysBio), CSIC-University of Valencia, Valencia, Spain.
| |
Collapse
|
13
|
Ait-Ammar A, Kula A, Darcis G, Verdikt R, De Wit S, Gautier V, Mallon PWG, Marcello A, Rohr O, Van Lint C. Current Status of Latency Reversing Agents Facing the Heterogeneity of HIV-1 Cellular and Tissue Reservoirs. Front Microbiol 2020; 10:3060. [PMID: 32038533 PMCID: PMC6993040 DOI: 10.3389/fmicb.2019.03060] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
One of the most explored therapeutic approaches aimed at eradicating HIV-1 reservoirs is the "shock and kill" strategy which is based on HIV-1 reactivation in latently-infected cells ("shock" phase) while maintaining antiretroviral therapy (ART) in order to prevent spreading of the infection by the neosynthesized virus. This kind of strategy allows for the "kill" phase, during which latently-infected cells die from viral cytopathic effects or from host cytolytic effector mechanisms following viral reactivation. Several latency reversing agents (LRAs) with distinct mechanistic classes have been characterized to reactivate HIV-1 viral gene expression. Some LRAs have been tested in terms of their potential to purge latent HIV-1 in vivo in clinical trials, showing that reversing HIV-1 latency is possible. However, LRAs alone have failed to reduce the size of the viral reservoirs. Together with the inability of the immune system to clear the LRA-activated reservoirs and the lack of specificity of these LRAs, the heterogeneity of the reservoirs largely contributes to the limited success of clinical trials using LRAs. Indeed, HIV-1 latency is established in numerous cell types that are characterized by distinct phenotypes and metabolic properties, and these are influenced by patient history. Hence, the silencing mechanisms of HIV-1 gene expression in these cellular and tissue reservoirs need to be better understood to rationally improve this cure strategy and hopefully reach clinical success.
Collapse
Affiliation(s)
- Amina Ait-Ammar
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Anna Kula
- Malopolska Centre of Biotechnology, Laboratory of Virology, Jagiellonian University, Krakow, Poland
| | - Gilles Darcis
- Infectious Diseases Department, Liège University Hospital, Liège, Belgium
| | - Roxane Verdikt
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Stephane De Wit
- Service des Maladies Infectieuses, CHU Saint-Pierre, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Virginie Gautier
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin, Dublin, Ireland
| | - Patrick W G Mallon
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin, Dublin, Ireland
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Olivier Rohr
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| |
Collapse
|
14
|
Tovanabutra S, Sirijatuphat R, Pham PT, Bonar L, Harbolick EA, Bose M, Song H, Chang D, Oropeza C, O'Sullivan AM, Balinang J, Kroon E, Colby DJ, Sacdalan C, Hellmuth J, Chan P, Prueksakaew P, Pinyakorn S, Jagodzinski LL, Sutthichom D, Pattamaswin S, de Souza M, Gramzinski RA, Kim JH, Michael NL, Robb ML, Phanuphak N, Ananworanich J, Valcour V, Kijak GH, Sanders-Buell E, Spudich S. Deep Sequencing Reveals Central Nervous System Compartmentalization in Multiple Transmitted/Founder Virus Acute HIV-1 Infection. Cells 2019; 8:E902. [PMID: 31443253 PMCID: PMC6721674 DOI: 10.3390/cells8080902] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/10/2019] [Accepted: 08/11/2019] [Indexed: 01/31/2023] Open
Abstract
HIV-1 disseminates to a broad range of tissue compartments during acute HIV-1 infection (AHI). The central nervous system (CNS) can serve as an early and persistent site of viral replication, which poses a potential challenge for HIV-1 remission strategies that target the HIV reservoir. CNS compartmentalization is a key feature of HIV-1 neuropathogenesis. Thus far, the timing of how early CNS compartmentalization develops after infection is unknown. We examined whether HIV-1 transmitted/founder (T/F) viruses differ between CNS and blood during AHI using single-genome sequencing of envelope gene and further examined subregions in pol and env using next-generation sequencing in paired plasma and cerebrospinal fluid (CSF) from 18 individuals. Different proportions of mostly minor variants were found in six of the eight multiple T/F-infected individuals, indicating enrichment of some variants in CSF that may lead to significant compartmentalization in the later stages of infection. This study provides evidence for the first time that HIV-1 compartmentalization in the CNS can occur within days of HIV-1 exposure in multiple T/F infections. Further understanding of factors that determine enrichment of T/F variants in the CNS, as well as potential long-term implications of these findings for persistence of HIV-1 reservoirs and neurological impairment in HIV, is needed.
Collapse
Affiliation(s)
- Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA.
| | - Rujipas Sirijatuphat
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Phuc T Pham
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Lydia Bonar
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Elizabeth A Harbolick
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Meera Bose
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Hongshuo Song
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - David Chang
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Celina Oropeza
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Anne Marie O'Sullivan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Joyce Balinang
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Eugene Kroon
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok 10330, Thailand
| | - Donn J Colby
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok 10330, Thailand
| | - Carlo Sacdalan
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok 10330, Thailand
| | - Joanna Hellmuth
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Phillip Chan
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok 10330, Thailand
| | | | - Suteeraporn Pinyakorn
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Linda L Jagodzinski
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | | | | | - Mark de Souza
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok 10330, Thailand
| | - Robert A Gramzinski
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Jerome H Kim
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- International Vaccine Institute, Seoul 08826, Korea
| | - Nelson L Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Nittaya Phanuphak
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok 10330, Thailand
| | - Jintanat Ananworanich
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok 10330, Thailand
- Academic Medical Center, Department of Global Health, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Victor Valcour
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Gustavo H Kijak
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Eric Sanders-Buell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Serena Spudich
- Department of Neurology, Yale University; New Haven, CT 06510, USA
| |
Collapse
|
15
|
Cohen MS, Council OD, Chen JS. Sexually transmitted infections and HIV in the era of antiretroviral treatment and prevention: the biologic basis for epidemiologic synergy. J Int AIDS Soc 2019; 22 Suppl 6:e25355. [PMID: 31468737 PMCID: PMC6715951 DOI: 10.1002/jia2.25355] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 06/26/2019] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION HIV is a unique sexually transmitted infection (STI) that is greatly affected by other concomitant "classical" bacterial and viral STIs that cause genital ulcers and/or mucosal inflammation. STIs also serve as a marker for risky sexual behaviours. STIs increase infectiousness of people living with HIV by increasing the viral concentration in the genital tract, and by increasing the potential for HIV acquisition in people at risk for HIV. In addition, some STIs can increase blood HIV concentration and promote progression of disease. This review is designed to investigate the complex relationship between HIV and classical STIs. DISCUSSION Treatment of STIs with appropriate antibiotics reduces HIV in blood, semen and female genital secretions. However, community-based trials could not reliably reduce the spread of HIV by mass treatment of STIs. Introduction of antiretroviral agents for the treatment and prevention of HIV has led to renewed interest in the complex relationship between STIs and HIV. Antiretroviral treatment (ART) reduces the infectiousness of HIV and virtually eliminates the transmission of HIV in spite of concomitant or acquired STIs. However, while ART interrupts HIV transmission, it does not stop intermittent shedding of HIV in genital secretions. Such shedding of HIV is increased by STIs, although the viral copies are not likely replication competent or infectious. Pre-exposure prophylaxis (PrEP) of HIV with the combination of tenofovir disoproxil fumarate and emtricitabine (TDF/FTC) prevents HIV acquisition in spite of concomitant STIs. CONCLUSIONS STIs remain pandemic, and the availability of ART may have led to an increase in STIs, as fear of HIV has diminished. Classical STIs present a huge worldwide health burden that cannot be separated from HIV, and they deserve far more attention than they currently receive.
Collapse
Affiliation(s)
- Myron S Cohen
- UNC School of MedicineInstitute for Global Health & Infectious DiseasesChapel HillNCUSA
| | | | - Jane S Chen
- Department of EpidemiologyGillings School of Global Public HealthUNCChapel HillNCUSA
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW HIV functional cure requires the elimination or a major reduction of HIV reservoir pool including male and female genital HIV reservoirs. A comprehensive understanding of HIV dynamics in these compartments is mandatory. RECENT FINDINGS Data from chronically HIV-infected therapy-naïve individuals or fully suppressed on combined antiretroviral therapy (cART) or undergoing ART interruptions are now available. Using paired blood/genital samples, HIV-RNA/DNA quantification and sequencing provide new insights on HIV dynamics in genital reservoirs. SUMMARY In the absence of cART, HIV shedding in semen and cervicovaginal secretions is frequent, resulting most likely from passive transfer of HIV strains that originates from bloodborne virions or infected blood cells. Partial and intermittent HIV compartmentalization in the male and female genital tracts can occur not only in chronically infected ART-naïve individuals but also when cART is used to prevent active blood replication. This transient autonomous HIV replication in the genital reservoir in a few individuals originates from recent transfer of virions or infected blood cells. cART interruption studies showed that blood and genital quasispecies are closely related, in agreement with a passive transfer. Altogether these data suggest that HIV genital reservoirs seem not to be a significant barrier to achieve HIV cure.
Collapse
|
17
|
Evidence for both Intermittent and Persistent Compartmentalization of HIV-1 in the Female Genital Tract. J Virol 2019; 93:JVI.00311-19. [PMID: 30842323 DOI: 10.1128/jvi.00311-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 02/27/2019] [Indexed: 12/26/2022] Open
Abstract
HIV-1 has been shown to evolve independently in different anatomical compartments, but studies in the female genital tract have been inconclusive. Here, we examined evidence of compartmentalization using HIV-1 subtype C envelope (Env) glycoprotein genes (gp160) obtained from matched cervicovaginal lavage (CVL) and plasma samples over 2 to 3 years of infection. HIV-1 gp160 amplification from CVL was achieved for only 4 of 18 acutely infected women, and this was associated with the presence of proinflammatory cytokines and/or measurable viremia in the CVL. Maximum likelihood trees and divergence analyses showed that all four individuals had monophyletic compartment-specific clusters of CVL- and/or plasma-derived gp160 sequences at all or some time points. However, two participants (CAP177 and CAP217) had CVL gp160 diversity patterns that differed from those in plasma and showed restricted viral flow from the CVL. Statistical tests of compartmentalization revealed evidence of persistent compartment-specific gp160 evolution in CAP177, while in CAP217 this was intermittent. Lastly, we identified several Env sites that distinguished viruses in these two compartments; for CAP177, amino acid differences arose largely through positive selection, while insertions/deletions were more common in CAP217. In both cases these differences contributed to substantial charge changes spread across the Env. Our data indicate that, in some women, HIV-1 populations within the genital tract can have Env genetic features that differ from those of viruses in plasma, which could impact the sensitivity of viruses in the genital tract to vaginal microbicides and vaccine-elicited antibodies.IMPORTANCE Most HIV-1 infections in sub-Saharan Africa are acquired heterosexually through the genital mucosa. Understanding the properties of viruses replicating in the female genital tract, and whether these properties differ from those of more commonly studied viruses replicating in the blood, is therefore important. Using longitudinal CVL and plasma-derived sequences from four HIV-1 subtype C-infected women, we found fewer viral migrations from the genital tract to plasma than in the opposite direction, suggesting a mucosal sieve effect from the genital tract to the blood compartment. Evidence for both persistent and intermittent compartmentalization between the genital tract and plasma viruses during chronic infection was detected in two of four individuals, perhaps explaining previously conflicting findings. In cases where compartmentalization occurred, comparison of CVL- and plasma-derived HIV sequences indicated that distinct features of viral populations in the CVL may affect the efficacy of microbicides and vaccines designed to provide mucosal immunity.
Collapse
|
18
|
Metagenomic Sequencing of HIV-1 in the Blood and Female Genital Tract Reveals Little Quasispecies Diversity during Acute Infection. J Virol 2019; 93:JVI.00804-18. [PMID: 30381486 PMCID: PMC6321908 DOI: 10.1128/jvi.00804-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 10/17/2018] [Indexed: 01/16/2023] Open
Abstract
Due to error-prone replication, HIV-1 generates a diverse population of viruses within a chronically infected individual. When HIV-1 is transmitted to a new individual, one or a few viruses establish the new infection, leading to a genetic bottleneck in the virus population. Understanding the timing and nature of this bottleneck may provide insight into HIV-1 vaccine design and other preventative strategies. We examined the HIV-1 population in three women enrolled in a unique prospective cohort in South Africa who were followed closely during the earliest stages of HIV-1 infection. We found very little HIV-1 diversity in the blood and female genital tract during the first 2 weeks after virus was detected in the bloodstream. These results are compatible with a very early HIV-1 population bottleneck, suggesting the need to study the HIV-1 population in the female genital tract before virus is detectable in the bloodstream. Heterosexual transmission of human immunodeficiency virus type 1 (HIV-1) is associated with a significant bottleneck in the viral quasispecies population, yet the timing of that bottleneck is poorly understood. We characterized HIV-1 diversity in the blood and female genital tract (FGT) within 2 weeks after detection of infection in three women enrolled in a unique prospective cohort in South Africa. We assembled full-length HIV-1 genomes from matched cervicovaginal lavage (CVL) samples and plasma. Deep sequencing allowed us to identify intrahost single-nucleotide variants (iSNVs) and to characterize within-sample HIV-1 diversity. Our results demonstrated very little HIV-1 diversity in the FGT and plasma by the time viremia was detectable. Within each subject, the consensus HIV-1 sequences were identical in plasma and CVL fluid. No iSNV was present at >6% frequency. One subject had 77 low-frequency iSNVs across both CVL fluid and plasma, another subject had 14 iSNVs in only CVL fluid from the earliest time point, and the third subject had no iSNVs in CVL fluid or plasma. Overall, the small amount of diversity that we detected was greater in the FGT than in plasma and declined over the first 2 weeks after viremia was detectable, compatible with a very early HIV-1 transmission bottleneck. To our knowledge, our study represents the earliest genomic analysis of HIV-1 in the FGT after transmission. Further, the use of metagenomic sequencing allowed us to characterize other organisms in the FGT, including commensal bacteria and sexually transmitted infections, highlighting the utility of the method to sequence both HIV-1 and its metagenomic environment. IMPORTANCE Due to error-prone replication, HIV-1 generates a diverse population of viruses within a chronically infected individual. When HIV-1 is transmitted to a new individual, one or a few viruses establish the new infection, leading to a genetic bottleneck in the virus population. Understanding the timing and nature of this bottleneck may provide insight into HIV-1 vaccine design and other preventative strategies. We examined the HIV-1 population in three women enrolled in a unique prospective cohort in South Africa who were followed closely during the earliest stages of HIV-1 infection. We found very little HIV-1 diversity in the blood and female genital tract during the first 2 weeks after virus was detected in the bloodstream. These results are compatible with a very early HIV-1 population bottleneck, suggesting the need to study the HIV-1 population in the female genital tract before virus is detectable in the bloodstream.
Collapse
|