1
|
Li Z, Tang Y, She X, Yu L, Lan G, Ding S, He Z. Characterisation of a Betasatellite Associated With Tomato Yellow Leaf Curl Guangdong Virus and Discovery of an Unusual Modulation of Virus Infection Associated With C4 Protein. MOLECULAR PLANT PATHOLOGY 2025; 26:e70051. [PMID: 39810290 PMCID: PMC11732742 DOI: 10.1111/mpp.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/26/2024] [Accepted: 12/26/2024] [Indexed: 01/16/2025]
Abstract
Tomato yellow leaf curl Guangdong virus (TYLCGdV), a monopartite begomovirus first identified in 2004, remains poorly characterised. In this study, we demonstrate that TYLCGdV associates with a betasatellite, TYLCGdB, and the βC1 protein encoded by TYLCGdB is essential for symptom development. We also explore the role of TYLCGdV C4 protein by generating a C4-deficient infectious clone (TYLCGdVmC4), revealing a dynamic role for TYLCGdV C4. Specifically, viral accumulation in TYLCGdVmC4/TYLCGdB-inoculated plants was significantly lower than that in TYLCGdV/TYLCGdB-inoculated plants at 7 and 14 days post-inoculation (dpi), but surpassed that of TYLCGdV/TYLCGdB-inoculated plants by 25 dpi. Furthermore, although C4 proteins in other begomoviruses typically exhibit one or more of the following properties: (i) suppression of post-transcriptional gene silencing (PTGS), (ii) suppression of transcriptional gene silencing (TGS), (iii) enhancement of pathogenicity in potato virus X (PVX) and (iv) symptom induction when transgenically expressed, TYLCGdV C4 did not exhibit any of these properties. However, the dynamic role of TYLCGdV C4 in viral infection appears to result from its effects on viral DNA methylation. At 7 dpi, the cytosine methylation level in the TYLCGdVmC4 genome was notably elevated compared to that of the wild-type virus. However, this trend reversed by 14 dpi, with the wild-type virus exhibiting a higher methylation level. By 25 dpi, the cytosine methylation levels of both TYLCGdVmC4 and TYLCGdV were comparable. These results indicate that TYLCGdV C4 modulates viral infection via an unconventional mechanism. This novel observation highlights the need for further investigation into the diverse roles of C4 proteins in begomoviruses.
Collapse
Affiliation(s)
- Zhenggang Li
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Yafei Tang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Xiaoman She
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Lin Yu
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Guobing Lan
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Shanwen Ding
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Zifu He
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| |
Collapse
|
2
|
Feng L, Luo X, Huang L, Zhang Y, Li F, Li S, Zhang Z, Yang X, Wang X, OuYang X, Shi X, Zhang D, Tao X, Chen J, Yang J, Zhang S, Liu Y. A viral protein activates the MAPK pathway to promote viral infection by downregulating callose deposition in plants. Nat Commun 2024; 15:10548. [PMID: 39632828 PMCID: PMC11618657 DOI: 10.1038/s41467-024-54467-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are evolutionarily conserved in both plants and animals and play critical roles in activating innate immunity to defend against various pathogens. However, the role of MAPK cascades in positively regulating or enhancing viral infections in plants is unclear. In this study, we investigate the involvement of MAPK cascades in infection by the positive-strand RNA virus tomato chlorosis virus (ToCV). Our findings reveal that ToCV infection activates MAPK cascades, promoting virus spread within plants. Specifically, ToCV P7, a pathogenicity determinant protein, localizes to the plasma membrane and recruits NbMPK3/6 from the nucleus. Subsequently, P7 is directly phosphorylated on serine 59 by NbMPK3/6. Phosphorylated P7 interacts with NbREM1.1 and inhibits its ability to induce callose deposition at plasmodesmata. These results demonstrate that NbMPK3/6 directly phosphorylate ToCV P7, modulating antiviral defence mechanisms by downregulating callose deposition at plasmodesmata and thereby enhancing ToCV transmission in N. benthamiana. This study sheds light on the intricate arms race between host defence and viral counter-defence strategies.
Collapse
Affiliation(s)
- Lixiao Feng
- Longping Branch, Biology College of Hunan University, Changsha, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Xiangwen Luo
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
| | - Liping Huang
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
| | - Yu Zhang
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shijun Li
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Zhanhong Zhang
- Longping Branch, Biology College of Hunan University, Changsha, China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
| | - Xiao Yang
- Longping Branch, Biology College of Hunan University, Changsha, China
| | - Xin Wang
- Longping Branch, Biology College of Hunan University, Changsha, China
| | - Xian OuYang
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Xiaobin Shi
- Longping Branch, Biology College of Hunan University, Changsha, China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
| | - Deyong Zhang
- Longping Branch, Biology College of Hunan University, Changsha, China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.
- Yuelushan Laboratory, Changsha, China.
| | - Songbai Zhang
- Longping Branch, Biology College of Hunan University, Changsha, China.
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China.
- Yuelushan Laboratory, Changsha, China.
| | - Yong Liu
- Longping Branch, Biology College of Hunan University, Changsha, China.
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China.
- Yuelushan Laboratory, Changsha, China.
| |
Collapse
|
3
|
Zhang J, Yuan L, Li D, Yang X, Li J, Wu Z, Du Z. The C5 protein of euphorbia leaf curl virus is a virulence factor and gene silencing suppressor. Virology 2024; 600:110252. [PMID: 39383774 DOI: 10.1016/j.virol.2024.110252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024]
Abstract
The genome of a monopartite begomovirus, or the DNA-A component of a bipartite begomovirus, typically encodes six proteins: two on the viral strand (AV1/V1 and AV2/V2) and four on the complementary strand (AC1/C1, AC2/C2, AC3/C3, AC4/C4). Recent studies, however, have identified additional begomoviral proteins with various functions. This paper reports that euphorbia leaf curl virus (EuLCV), a monopartite begomovirus, encodes a seventh protein, C5. Promoter activity of the upstream fragment of the EuLCV C5 gene was shown using a GUS expression vector. EuLCV C5 also enhanced the pathogenicity and accumulation of potato virus X (PVX) in Nicotiana benthamiana. Localization studies revealed that EuLCV C5 localizes to the cytoplasm and nucleus, forming granular structures on the cell membrane. Additionally, C5 acts as a post-transcriptional gene silencing (PTGS) suppressor. A C5 deletion mutant of EuLCV (EuLCV-ΔC5) exhibited reduced pathogenicity and viral accumulation compared to wild-type EuLCV in N. benthamiana.
Collapse
Affiliation(s)
- Jie Zhang
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Linkai Yuan
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dingshan Li
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xueying Yang
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingyuan Li
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zujian Wu
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenguo Du
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
4
|
Yin ZN, Han PY, Han TT, Huang Y, Yang JJ, Zhang MS, Fang M, Zhong K, Zhang J, Lu QY. V2 Protein Enhances the Replication of Genomic DNA of Mulberry Crinkle Leaf Virus. Int J Mol Sci 2024; 25:10521. [PMID: 39408850 PMCID: PMC11476850 DOI: 10.3390/ijms251910521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 10/20/2024] Open
Abstract
Mulberry crinkle leaf virus (MCLV), identified in mulberry plants (Morus alba L.), is a member of the genus Mulcrilevirus in the family Geminiviridae. The functions of the V2 protein encoded by MCLV remain unclear. Here, Agrobacterium-mediated infectious clones of a wild-type MCLV vII (MCLVWT) and two V2 mutant MCLV vIIs, including MCLVmV2 (with a mutation of the start codon of the V2 ORF) and MCLVdV2 (5'-end partial deletion of the V2 ORF sequence), were constructed to investigate the roles of V2 both in planta and at the cellular level. Although all three constructs (pCA-1.1MCLVWT, pCA-MCLVmV2, and pCA-MCLVdV2) were able to infect both natural host mulberry plants and experimental tomato plants systematically, the replication of the MCLVmV2 and MCLVdV2 genomes in these hosts was significantly reduced compared to that of MCLVWT. Similarly, the accumulation of MCLVmV2 and MCLVdV2 in protoplasts of Nicotiana benthamiana plants was significantly lower than that of MCLVWT either 24 h or 48 h post-transfection. A complementation experiment further confirmed that the decreased accumulation of MCLV in the protoplasts was due to the absence of V2 expression. These results revealed that MCLV-encoded V2 greatly enhances the level of MCLV DNA accumulation and is designated the replication enhancer protein of MCLV.
Collapse
Affiliation(s)
- Zhen-Ni Yin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
| | - Pei-Yu Han
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
| | - Tao-Tao Han
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
| | - Ying Huang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
| | - Jing-Jing Yang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
| | - Meng-Si Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
| | - Miao Fang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Kui Zhong
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jian Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Quan-You Lu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
5
|
Yue H, Chen G, Zhang Z, Guo Z, Zhang Z, Zhang S, Turlings TCJ, Zhou X, Peng J, Gao Y, Zhang D, Shi X, Liu Y. Single-cell transcriptome landscape elucidates the cellular and developmental responses to tomato chlorosis virus infection in tomato leaf. PLANT, CELL & ENVIRONMENT 2024; 47:2660-2674. [PMID: 38619176 DOI: 10.1111/pce.14906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/14/2024] [Accepted: 03/23/2024] [Indexed: 04/16/2024]
Abstract
Plant viral diseases compromise the growth and yield of the crop globally, and they tend to be more serious under extreme temperatures and drought climate changes. Currently, regulatory dynamics during plant development and in response to virus infection at the plant cell level remain largely unknown. In this study, single-cell RNA sequencing on 23 226 individual cells from healthy and tomato chlorosis virus-infected leaves was established. The specific expression and epigenetic landscape of each cell type during the viral infection stage were depicted. Notably, the mesophyll cells showed a rapid function transition in virus-infected leaves, which is consistent with the pathological changes such as thinner leaves and decreased chloroplast lamella in virus-infected samples. Interestingly, the F-box protein SKIP2 was identified to play a pivotal role in chlorophyll maintenance during virus infection in tomato plants. Knockout of the SlSKIP2 showed a greener leaf state before and after virus infection. Moreover, we further demonstrated that SlSKIP2 was located in the cytomembrane and nucleus and directly regulated by ERF4. In conclusion, with detailed insights into the plant responses to viral infections at the cellular level, our study provides a genetic framework and gene reference in plant-virus interaction and breeding in the future research.
Collapse
Affiliation(s)
- Hao Yue
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- Longping Branch, College of Biology, Hunan University, Changsha, China
| | - Gong Chen
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Zhuo Zhang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhaojiang Guo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhanhong Zhang
- Institute of Vegetable, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Songbai Zhang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| | - Jing Peng
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yang Gao
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Deyong Zhang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- Longping Branch, College of Biology, Hunan University, Changsha, China
| | - Xiaobin Shi
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- Longping Branch, College of Biology, Hunan University, Changsha, China
| | - Yong Liu
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- Longping Branch, College of Biology, Hunan University, Changsha, China
| |
Collapse
|
6
|
Kamal H, Zafar MM, Razzaq A, Parvaiz A, Ercisli S, Qiao F, Jiang X. Functional role of geminivirus encoded proteins in the host: Past and present. Biotechnol J 2024; 19:e2300736. [PMID: 38900041 DOI: 10.1002/biot.202300736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/19/2024] [Accepted: 04/16/2024] [Indexed: 06/21/2024]
Abstract
During plant-pathogen interaction, plant exhibits a strong defense system utilizing diverse groups of proteins to suppress the infection and subsequent establishment of the pathogen. However, in response, pathogens trigger an anti-silencing mechanism to overcome the host defense machinery. Among plant viruses, geminiviruses are the second largest virus family with a worldwide distribution and continue to be production constraints to food, feed, and fiber crops. These viruses are spread by a diverse group of insects, predominantly by whiteflies, and are characterized by a single-stranded DNA (ssDNA) genome coding for four to eight proteins that facilitate viral infection. The most effective means to managing these viruses is through an integrated disease management strategy that includes virus-resistant cultivars, vector management, and cultural practices. Dynamic changes in this virus family enable the species to manipulate their genome organization to respond to external changes in the environment. Therefore, the evolutionary nature of geminiviruses leads to new and novel approaches for developing virus-resistant cultivars and it is essential to study molecular ecology and evolution of geminiviruses. This review summarizes the multifunctionality of each geminivirus-encoded protein. These protein-based interactions trigger the abrupt changes in the host methyl cycle and signaling pathways that turn over protein normal production and impair the plant antiviral defense system. Studying these geminivirus interactions localized at cytoplasm-nucleus could reveal a more clear picture of host-pathogen relation. Data collected from this antagonistic relationship among geminivirus, vector, and its host, will provide extensive knowledge on their virulence mode and diversity with climate change.
Collapse
Affiliation(s)
- Hira Kamal
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA
| | - Muhammad Mubashar Zafar
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Abdul Razzaq
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Aqsa Parvaiz
- Department of Biochemistry and Biotechnology, The Women University Multan, Multan, Pakistan
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Fei Qiao
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Xuefei Jiang
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| |
Collapse
|
7
|
Xie Y, Liu X, Luo C, Hu Q, Che X, Zhao L, Zhao M, Wu L, Ding M. Distinct tomato yellow leaf curl Chuxiong virus isolated from whiteflies and plants in China and its symptom determinant and suppressor of post-transcriptional gene silencing. Virology 2024; 594:110040. [PMID: 38471198 DOI: 10.1016/j.virol.2024.110040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
A begomovirus isolated from whiteflies (Bemisia tabaci) and tomato, sweet potato in China was found to be representative of a distinct begomovirus species, for which the name tomato yellow leaf curl Chuxiong virus (TYLCCxV) is proposed. The results of genomic identification and sequence comparison showed that TYLCCxV shares the highest complete nucleotide sequence identity (88.3%) with croton yellow vein mosaic virus (CroYVMV), and may have originated from the recombination between synedrella leaf curl virus (SyLCV) and squash leaf curl Yunnan virus (SLCuYV). Agrobacterium-mediated inoculation showed that TYLCCxV is highly infectious for a range of plant species, producing upward leaf curling, leaf crumpling, chlorosis, distortion, and stunt symptoms in Solanum lycopersicum plants. The results of Southern blot indicated that TYLCCxV is capable of efficiently replicating two heterologous betasatellites. The inoculation of PVX::C4 on Nicotiana benthamiana induced upward leaf curling and stem elongation symptoms, suggesting that TYLCCxV C4 functions as a symptom determinant. TYLCCxV V2 is an important virulence factor that induces downward leaf curling symptoms, elicits systemic necrosis, and suppresses local and systemic GFP silencing in co-agroinfiltrated N. benthamiana and transgenic 16c plants. Considering the multifunctional virulence proteins V2 and C4, the possibility of TYLCCxV causing devastating epidemics on tomato in China is discussed.
Collapse
Affiliation(s)
- Yan Xie
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Xianan Liu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Chaohu Luo
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Qianqian Hu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xuan Che
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Liling Zhao
- Key Laboratory of Agricultural Biotechnology of Yunnan Province, Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming, 650223, China
| | - Min Zhao
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Liqi Wu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ming Ding
- Key Laboratory of Agricultural Biotechnology of Yunnan Province, Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming, 650223, China.
| |
Collapse
|
8
|
Yang J, Chen L, Zhang J, Liu P, Chen M, Chen Z, Zhong K, Liu J, Chen J, Yang J. TaTHI2 interacts with Ca 2+-dependent protein kinase TaCPK5 to suppress virus infection by regulating ROS accumulation. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1335-1351. [PMID: 38100262 PMCID: PMC11022809 DOI: 10.1111/pbi.14270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/09/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Thiamine (vitamin B1) biosynthesis involves key enzymes known as thiazole moieties (THI1/THI2), which have been shown to participate in plant responses to abiotic stress. However, the role of THI1/THI2 in plant immunity remains unclear. In this study, we cloned TaTHI2 from wheat and investigated its function in Chinese wheat mosaic virus (CWMV) infection. Overexpression of TaTHI2 (TaTHI2-OE) inhibited CWMV infection, while TaTHI2 silencing enhanced viral infection in wheat. Interestingly, the membrane-localized TaTHI2 protein was increased during CWMV infection. TaTHI2 also interacted with the Ca2+-dependent protein kinase 5 (TaCPK5), which is localized in the plasma membrane, and promoted reactive oxygen species (ROS) production by repressing TaCPK5-mediated activity of the catalase protein TaCAT1. CWMV CP disrupted the interaction between TaTHI2 and TaCAT1, reducing ROS accumulation and facilitating viral infection. Additionally, transgenic plants overexpressing TaTHI2 showed increased seed number per ear and 1000-kernel weight compared to control plants. Our findings reveal a novel function of TaTHI2 in plant immunity and suggest its potential as a valuable gene for balancing disease resistance and wheat yield. Furthermore, the disruption of the TaTHI2-mediated plant immune pathway by CWMV CP provides further evidence for the evolutionary arms race between plants and viruses.
Collapse
Affiliation(s)
- Jin Yang
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
- College of Plant ProtectionNorthwest Agriculture and Forestry UniversityYanglingChina
| | - Lu Chen
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
- Institute of Crop Sciences, State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural SciencesBeijingChina
| | - Juan Zhang
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Peng Liu
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Ming Chen
- Institute of Crop Sciences, State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural SciencesBeijingChina
| | - Zhihui Chen
- School of Life SciencesUniversity of DundeeDundeeUK
| | - Kaili Zhong
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Jiaqian Liu
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Jianping Chen
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Jian Yang
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| |
Collapse
|
9
|
Wu J, Zhang Y, Li F, Zhang X, Ye J, Wei T, Li Z, Tao X, Cui F, Wang X, Zhang L, Yan F, Li S, Liu Y, Li D, Zhou X, Li Y. Plant virology in the 21st century in China: Recent advances and future directions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:579-622. [PMID: 37924266 DOI: 10.1111/jipb.13580] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023]
Abstract
Plant viruses are a group of intracellular pathogens that persistently threaten global food security. Significant advances in plant virology have been achieved by Chinese scientists over the last 20 years, including basic research and technologies for preventing and controlling plant viral diseases. Here, we review these milestones and advances, including the identification of new crop-infecting viruses, dissection of pathogenic mechanisms of multiple viruses, examination of multilayered interactions among viruses, their host plants, and virus-transmitting arthropod vectors, and in-depth interrogation of plant-encoded resistance and susceptibility determinants. Notably, various plant virus-based vectors have also been successfully developed for gene function studies and target gene expression in plants. We also recommend future plant virology studies in China.
Collapse
Affiliation(s)
- Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Ye
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Taiyun Wei
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaorong Tao
- Department of Plant Pathology, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianbing Wang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lili Zhang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yi Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
10
|
Han TT, Tang JX, Fang M, Zhang P, Han PY, Yin ZN, Ma Y, Zhang J, Lu QY. Two genes encoded by mulberry crinkle leaf virus (MCLV): The V4 gene enhances viral replication, and the V5 gene is needed for MCLV infection in Nicotiana benthamiana. Virus Res 2024; 339:199288. [PMID: 38043724 PMCID: PMC10751690 DOI: 10.1016/j.virusres.2023.199288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Mulberry crinkle leaf virus (MCLV) is a member of the genus Mulcrilevirus, family Geminiviridae. The expression and functions of the V4 and V5 genes encoded by the MCLV genome remain unknown. Here, we confirmed the expression of V4 and V5 by analyzing the V4 and V5 mRNAs and the promoter activity of individual ORFs upstream sequences. The functions of V4 and V5 were investigated by constructing Agrobacterium-mediated infectious clones of wild-type MCLV variant П (MCLV vII), MCLVwt and MCLV vП mutants, such as MCLVmV4 (start codon of V4 ORF mutated), MCLVdV4 (5'-end partial deletion of V4 ORF sequence) and MCLVmV5 (V5 ORF start codon mutated). Although MCLVwt, MCLVmV4, and MCLVdV4 could infect natural host mulberry and experimental tomato plants systematically, the replication of the MCLVmV4 and MCLVdV4 genomes was obviously reduced compared to MCLVwt in both mulberry and tomato plants. MCLV vП expressing V5 could infect Nicotiana benthamiana plants systematically, but MCLVmV5 could not, implying that V5 is needed for MCLV vП to infect N. benthamiana plants. Taken together, V4 is involved in replication of the MCLV genome in host plants, and V5 potentially might extend the host range. Our findings lay a foundation for in-depth insight into the functions of MCLV-encoded proteins and provide a novel perspective for the subsequent study of MCLV-host plant interactions.
Collapse
Affiliation(s)
- Tao-Tao Han
- College of Biotechnology, Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Jia-Xuan Tang
- College of Biotechnology, Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Miao Fang
- College of Biotechnology, Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Peng Zhang
- College of Biotechnology, Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Pei-Yu Han
- College of Biotechnology, Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Zhen-Ni Yin
- College of Biotechnology, Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Yu Ma
- College of Biotechnology, Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Jian Zhang
- College of Biotechnology, Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China; Key Laboratory of Genetic Improvement of Silkworm and Mulberry, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China
| | - Quan-You Lu
- College of Biotechnology, Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China; Key Laboratory of Genetic Improvement of Silkworm and Mulberry, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China.
| |
Collapse
|
11
|
Prasad A, Sharma S, Prasad M. Post translational modifications at the verge of plant-geminivirus interaction. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194983. [PMID: 37717937 DOI: 10.1016/j.bbagrm.2023.194983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Plant-virus interaction is a complex phenomenon and involves the communication between plant and viral factors. Viruses have very limited coding ability yet, they are able to cause infection which results in huge agro-economic losses throughout the globe each year. Post-translational modifications (PTMs) are covalent modifications of proteins that have a drastic effect on their conformation, stability and function. Like the host proteins, geminiviral proteins are also subject to PTMs and these modifications greatly expand the diversity of their functions. Additionally, these viral proteins can also interact with the components of PTM pathways and modulate them. Several studies have highlighted the importance of PTMs such as phosphorylation, ubiquitination, SUMOylation, myristoylation, S-acylation, acetylation and methylation in plant-geminivirus interaction. PTMs also regulate epigenetic modifications during geminivirus infection which determines viral gene expression. In this review, we have summarized the role of PTMs in regulating geminiviral protein function, influence of PTMs on viral gene expression and how geminiviral proteins interact with the components of PTM pathways to modulate their function.
Collapse
Affiliation(s)
- Ashish Prasad
- Department of Botany, Kurukshetra University, Kurukshetra, India.
| | | | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India; Department of Plant Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
12
|
Zhang W, Liu S, Xie G, Li X, Zhai Y, Lin W, Wu Z, Du Z, Zhang J. Size Restriction Is Required for Proper Functioning of a Bipartite Begomovirus AC4 Protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:774-778. [PMID: 37665597 DOI: 10.1094/mpmi-02-23-0020-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Many geminiviruses, including members of the genus Begomovirus, produce a protein known as C4 or AC4. Whereas C4/AC4 typically consists of more than 80 amino acid residues, a few are much shorter. The significance of these shorter C4/AC4 proteins in viral infection and why the virus maintains their abbreviated length is not yet understood. The AC4 of the begomovirus Tomato leaf curl Hsinchu virus contains only 65 amino acids, but it extends to 96 amino acids when the natural termination codon is replaced with a normal codon. We discovered that both interrupting and extending AC4 were harmful to tomato leaf curl Hsinchu virus (ToLCHsV). The extended AC4 (EAC4) also showed a reduced ability to promote the infection of the heterologous virus Potato virus X than the wild-type AC4. When the wild-type AC4 was fused with yellow fluorescent protein (AC4-YFP), it was predominantly found in chloroplasts, whereas EAC4-YFP was mainly localized to the cell periphery. These results suggest that ToLCHsV's AC4 protein is important for viral infection, and the virus may benefit from the abbreviated length, because it may lead to chloroplast localization. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Wenwen Zhang
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shunmin Liu
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou 318020, China
| | - Guohui Xie
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiuyu Li
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yingying Zhai
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenzhong Lin
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zujian Wu
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenguo Du
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Zhang
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
13
|
Bonnamy M, Blanc S, Michalakis Y. Replication mechanisms of circular ssDNA plant viruses and their potential implication in viral gene expression regulation. mBio 2023; 14:e0169223. [PMID: 37695133 PMCID: PMC10653810 DOI: 10.1128/mbio.01692-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
The replication of members of the two circular single-stranded DNA (ssDNA) virus families Geminiviridae and Nanoviridae, the only ssDNA viruses infecting plants, is believed to be processed by rolling-circle replication (RCR) and recombination-dependent replication (RDR) mechanisms. RCR is a ubiquitous replication mode for circular ssDNA viruses and involves a virus-encoded Replication-associated protein (Rep) which fulfills multiple functions in the replication mechanism. Two key genomic elements have been identified for RCR in Geminiviridae and Nanoviridae: (i) short iterative sequences called iterons which determine the specific recognition of the viral DNA by the Rep and (ii) a sequence enabling the formation of a stem-loop structure which contains a conserved motif and constitutes the origin of replication. In addition, studies in Geminiviridae provided evidence for a second replication mode, RDR, which has also been documented in some double-stranded DNA viruses. Here, we provide a synthesis of the current understanding of the two presumed replication modes of Geminiviridae and Nanoviridae, and we identify knowledge gaps and discuss the possibility that these replication mechanisms could regulate viral gene expression through modulation of gene copy number.
Collapse
Affiliation(s)
- Mélia Bonnamy
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
- MIVEGEC, CNRS, IRD, Univ Montpellier, Montpellier, France
| | - Stéphane Blanc
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | | |
Collapse
|
14
|
Shakir S, Mubin M, Nahid N, Serfraz S, Qureshi MA, Lee TK, Liaqat I, Lee S, Nawaz-ul-Rehman MS. REPercussions: how geminiviruses recruit host factors for replication. Front Microbiol 2023; 14:1224221. [PMID: 37799604 PMCID: PMC10548238 DOI: 10.3389/fmicb.2023.1224221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
Circular single-stranded DNA viruses of the family Geminiviridae encode replication-associated protein (Rep), which is a multifunctional protein involved in virus DNA replication, transcription of virus genes, and suppression of host defense responses. Geminivirus genomes are replicated through the interaction between virus Rep and several host proteins. The Rep also interacts with itself and the virus replication enhancer protein (REn), which is another essential component of the geminivirus replicase complex that interacts with host DNA polymerases α and δ. Recent studies revealed the structural and functional complexities of geminivirus Rep, which is believed to have evolved from plasmids containing a signature domain (HUH) for single-stranded DNA binding with nuclease activity. The Rep coding sequence encompasses the entire coding sequence for AC4, which is intricately embedded within it, and performs several overlapping functions like Rep, supporting virus infection. This review investigated the structural and functional diversity of the geminivirus Rep.
Collapse
Affiliation(s)
- Sara Shakir
- Plant Genetics Lab, Gembloux Agro-Bio Tech, University of Liѐge, Gembloux, Belgium
| | - Muhammad Mubin
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, Pakistan
| | - Nazia Nahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Saad Serfraz
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, Pakistan
| | - Muhammad Amir Qureshi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Taek-Kyun Lee
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje, Republic of Korea
| | - Iram Liaqat
- Microbiology Lab, Department of Zoology, Government College University, Lahore, Pakistan
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Muhammad Shah Nawaz-ul-Rehman
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
15
|
Wang Y, Hu T, He Y, Su C, Wang Z, Zhou X. N-terminal acetylation of the βC1 protein encoded by the betasatellite of tomato yellow leaf curl China virus is critical for its viral pathogenicity. Virology 2023; 586:1-11. [PMID: 37473501 DOI: 10.1016/j.virol.2023.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023]
Abstract
N-terminal acetylation (N-acetylation) is one of the most common protein modifications and plays crucial roles in viability and stress responses in animals and plants. However, very little is known about N-acetylation of viral proteins. Here, we identified the Thr residue at position 2 (Thr-2) in the βC1 protein encoded by the betasatellite of tomato yellow leaf curl China virus (TYLCCNB-βC1) as a novel N-acetylation site. Furthermore, the effects of TYLCCNB-βC1 N-acetylation on its function as a pathogenicity factor were determined via N-acetylation mutants in Nicotiana benthamiana plants. We found that N-acetylation of TYLCCNB-βC1 is critical for its self-interaction in the nucleus and viral pathogenesis, and that removal of N-acetylation of TYLCCNB-βC1 attenuated tomato yellow leaf curl China virus-induced symptoms and led to accelerated degradation of TYLCCNB-βC1 through the ubiquitin-proteasome system. Our data reveal a protective effect of N-acetylation of TYLCCNB-βC1 on its pathogenesis and demonstrate an antagonistic crosstalk between N-acetylation and ubiquitination in this geminiviral protein.
Collapse
Affiliation(s)
- Yaqin Wang
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Tao Hu
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yuting He
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Chenlu Su
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000, China.
| | - Xueping Zhou
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
16
|
Jiang T, Zhou T. Unraveling the Mechanisms of Virus-Induced Symptom Development in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2830. [PMID: 37570983 PMCID: PMC10421249 DOI: 10.3390/plants12152830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Plant viruses, as obligate intracellular parasites, induce significant changes in the cellular physiology of host cells to facilitate their multiplication. These alterations often lead to the development of symptoms that interfere with normal growth and development, causing USD 60 billion worth of losses per year, worldwide, in both agricultural and horticultural crops. However, existing literature often lacks a clear and concise presentation of the key information regarding the mechanisms underlying plant virus-induced symptoms. To address this, we conducted a comprehensive review to highlight the crucial interactions between plant viruses and host factors, discussing key genes that increase viral virulence and their roles in influencing cellular processes such as dysfunction of chloroplast proteins, hormone manipulation, reactive oxidative species accumulation, and cell cycle control, which are critical for symptom development. Moreover, we explore the alterations in host metabolism and gene expression that are associated with virus-induced symptoms. In addition, the influence of environmental factors on virus-induced symptom development is discussed. By integrating these various aspects, this review provides valuable insights into the complex mechanisms underlying virus-induced symptoms in plants, and emphasizes the urgency of addressing viral diseases to ensure sustainable agriculture and food production.
Collapse
Affiliation(s)
| | - Tao Zhou
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
17
|
Hou W, Lu Q, Ma L, Sun X, Wang L, Nie J, Guo P, Liu T, Li Z, Sun C, Ren Y, Wang X, Yang J, Chen F. Mapping of quantitative trait loci for leaf rust resistance in the wheat population 'Xinmai 26/Zhoumai 22'. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3019-3032. [PMID: 36879436 DOI: 10.1093/jxb/erad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/02/2023] [Indexed: 05/21/2023]
Abstract
Leaf rust, caused by the fungal pathogen Puccinia triticina (Pt), is one of the major and dangerous diseases of wheat, and has caused serious yield loss of wheat worldwide. Here, we investigated adult-plant resistance (APR) to leaf rust in a recombinant inbred line (RIL) population derived from 'Xinmai 26' and 'Zhoumai 22' over 3 years. Linkage mapping for APR to leaf rust revealed four quantitative trait loci (QTL) in this RIL population. Two QTL, QLr.hnau-2BS and QLr.hnau-3BS were contributed by 'Zhoumai22', whereas QLr.hnau-2DS and QLr.hnau-5AL were contributed by 'Xinmai 26'. The QLr.hnau-2BS covering a race-specific resistance gene Lr13 showed the most stable APR to leaf rust. Overexpression of Lr13 significantly increased APR to leaf rust. Interestingly, we found that a CNL(coiled coil-nucleotide-binding site-leucine-rich repeat)-like gene, TaCN, in QLr.hnau-2BS completely co-segregated with leaf rust resistance. The resistant haplotype TaCN-R possessed half the sequence of the coiled-coil domain of TaCN protein. Lr13 strongly interacted with TaCN-R, but did not interact with the full-length TaCN (TaCN-S). In addition, TaCN-R was significantly induced after Pt inoculation and changed the sub-cellular localization of Lr13 after interaction. Therefore, we hypothesized that TaCN-R mediated leaf rust resistance possibly by interacting with Lr13. This study provides important QTL for APR to leaf rust, and new insights into understanding how a CNL gene modulates disease resistance in common wheat.
Collapse
Affiliation(s)
- Weixiu Hou
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Qisen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Lin Ma
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaonan Sun
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Liyan Wang
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Jingyun Nie
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Peng Guo
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Ti Liu
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Zaifeng Li
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Congwei Sun
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Yan Ren
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaodong Wang
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
18
|
Jiang T, Du K, Xie J, Sun G, Wang P, Chen X, Cao Z, Wang B, Chao Q, Li X, Fan Z, Zhou T. Activated malate circulation contributes to the manifestation of light-dependent mosaic symptoms. Cell Rep 2023; 42:112333. [PMID: 37018076 DOI: 10.1016/j.celrep.2023.112333] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/19/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
Mosaic symptoms are commonly observed in virus-infected plants. However, the underlying mechanism by which viruses cause mosaic symptoms as well as the key regulator(s) involved in this process remain unclear. Here, we investigate maize dwarf mosaic disease caused by sugarcane mosaic virus (SCMV). We find that the manifestation of mosaic symptoms in SCMV-infected maize plants requires light illumination and is correlated with mitochondrial reactive oxidative species (mROS) accumulation. The transcriptomic and metabolomic analyses results together with the genetic and cytopathological evidence indicate that malate and malate circulation pathways play essential roles in promoting mosaic symptom development. Specifically, at the pre-symptomatic infection stage or infection front, SCMV infection elevates the enzymatic activity of pyruvate orthophosphate dikinase by decreasing the phosphorylation of threonine527 under light, resulting in malate overproduction and subsequent mROS accumulation. Our findings indicate that activated malate circulation contributes to the manifestation of light-dependent mosaic symptoms via mROS.
Collapse
Affiliation(s)
- Tong Jiang
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Kaitong Du
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Jipeng Xie
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Geng Sun
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Pei Wang
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xi Chen
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Zhiyan Cao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Baichen Wang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
| | - Qing Chao
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
| | - Xiangdong Li
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Zaifeng Fan
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Tao Zhou
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
19
|
Song Y, Wang Y, Yu Q, Sun Y, Zhang J, Zhan J, Ren M. Regulatory network of GSK3-like kinases and their role in plant stress response. FRONTIERS IN PLANT SCIENCE 2023; 14:1123436. [PMID: 36938027 PMCID: PMC10014926 DOI: 10.3389/fpls.2023.1123436] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Glycogen synthase kinase 3 (GSK3) family members are evolutionally conserved Ser/Thr protein kinases in mammals and plants. In plants, the GSK3s function as signaling hubs to integrate the perception and transduction of diverse signals required for plant development. Despite their role in the regulation of plant growth and development, emerging research has shed light on their multilayer function in plant stress responses. Here we review recent advances in the regulatory network of GSK3s and the involvement of GSK3s in plant adaptation to various abiotic and biotic stresses. We also discuss the molecular mechanisms underlying how plants cope with environmental stresses through GSK3s-hormones crosstalk, a pivotal biochemical pathway in plant stress responses. We believe that our overview of the versatile physiological functions of GSK3s and underlined molecular mechanism of GSK3s in plant stress response will not only opens further research on this important topic but also provide opportunities for developing stress-resilient crops through the use of genetic engineering technology.
Collapse
Affiliation(s)
- Yun Song
- School of Life Sciences, Liaocheng University, Liaocheng, China
| | - Ying Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| | - Qianqian Yu
- School of Life Sciences, Liaocheng University, Liaocheng, China
| | - Yueying Sun
- School of Life Sciences, Liaocheng University, Liaocheng, China
| | - Jianling Zhang
- School of Life Sciences, Liaocheng University, Liaocheng, China
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
20
|
Kumar R, Dasgupta I. Geminiviral C4/AC4 proteins: An emerging component of the viral arsenal against plant defence. Virology 2023; 579:156-168. [PMID: 36693289 DOI: 10.1016/j.virol.2023.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/26/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
Virus infection triggers a plethora of defence reactions in plants to incapacitate the intruder. Viruses, in turn, have added additional functions to their genes so that they acquire capabilities to neutralize the above defence reactions. In plant-infecting viruses, the family Geminiviridae comprises members, majority of whom encode 6-8 genes in their small single-stranded DNA genomes. Of the above genes, one which shows the most variability in its amino acid sequence is the C4/AC4. Recent studies have uncovered evidence, which point towards a wide repertoire of functions performed by C4/AC4 revealing its role as a major player in suppressing plant defence. This review summarizes the various plant defence mechanisms against viruses and highlights how C4/AC4 has evolved to counter most of them.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
21
|
Chowdhury S, Mukherjee A, Basak S, Das R, Mandal A, Kundu P. Disruption of tomato TGS machinery by ToLCNDV causes reprogramming of vascular tissue-specific TORNADO1 gene expression. PLANTA 2022; 256:78. [PMID: 36094622 DOI: 10.1007/s00425-022-03985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Vascular development-related TRN1 transcription is suppressed by cytosine methylation in fully developed leaves of tomato. ToLCNDV infection disrupts methylation machinery and reactivates TRN1 expression - likely causing abnormal leaf growth pattern. Leaf curl disease of tomato caused by tomato leaf curl New Delhi virus (ToLCNDV) inflicts huge economical loss. Disease symptoms resemble leaf developmental defects including abnormal vein architecture. Leaf vein patterning-related TORNADO1 gene's (SlTRN1) transcript level is augmented in virus-infected leaves. To elucidate the molecular mechanism of the upregulation of SlTRN1 in vivo, we have deployed SlTRN1 promoter-reporter transgenic tomato plants and investigated the gene's dynamic expression pattern in leaf growth stages and infection. Expression of the gene was delimited in the vascular tissues and suppressed in fully developed leaves. WRKY16 transcription factor readily activated SlTRN1 promoter in varied sized leaves and upon virus infection, while silencing of WRKY16 gene resulted in dampened promoter activity. Methylation-sensitive PCR analyses confirmed the accumulation of CHH methylation at multiple locations in the SlTRN1 promoter in older leaves. However, ToLCNDV infection reverses the methylation status and restores expression level in the leaf vascular bundle. The virus dampens the level of key maintenance and de novo DNA methyltransferases SlDRM5, SlMET1, SlCMT2 with concomitant augmentation of two DNA demethylases, SlDML1 and SlDML2 levels in SlTRN1 promoter-reporter transgenics. Transient overexpression of SlDML2 mimics the virus-induced hypomethylation state of the SlTRN1 promoter in mature leaves, while silencing of SlDML2 lessens promoter activity. Furthermore, in line with the previous studies, we confirm the crucial role of viral suppressors of RNA silencing AC2 and AC4 proteins in promoting DNA demethylation and directing it to restore activated transcription of SlTRN1. Unusually elevated expression of SlTRN1 may negatively impact normal growth of leaves.
Collapse
Affiliation(s)
- Shreya Chowdhury
- Division of Plant Biology, Bose Institute, EN Block, Sector V, Bidhan Nagar, Kolkata, 700091, West Bengal, India
| | - Ananya Mukherjee
- Division of Plant Biology, Bose Institute, EN Block, Sector V, Bidhan Nagar, Kolkata, 700091, West Bengal, India
| | - Shrabani Basak
- Division of Plant Biology, Bose Institute, EN Block, Sector V, Bidhan Nagar, Kolkata, 700091, West Bengal, India
| | - Rohit Das
- Division of Plant Biology, Bose Institute, EN Block, Sector V, Bidhan Nagar, Kolkata, 700091, West Bengal, India
| | - Arunava Mandal
- Division of Plant Biology, Bose Institute, EN Block, Sector V, Bidhan Nagar, Kolkata, 700091, West Bengal, India
- Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Pallob Kundu
- Division of Plant Biology, Bose Institute, EN Block, Sector V, Bidhan Nagar, Kolkata, 700091, West Bengal, India.
| |
Collapse
|
22
|
Zhuang X, Guo X, Gu T, Xu X, Qin L, Xu K, He Z, Zhang K. Phosphorylation of plant virus proteins: Analysis methods and biological functions. Front Microbiol 2022; 13:935735. [PMID: 35958157 PMCID: PMC9360750 DOI: 10.3389/fmicb.2022.935735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphorylation is one of the most extensively investigated post-translational modifications that orchestrate a variety of cellular signal transduction processes. The phosphorylation of virus-encoded proteins plays an important regulatory role in the infection cycle of such viruses in plants. In recent years, molecular mechanisms underlying the phosphorylation of plant viral proteins have been widely studied. Based on recent publications, our study summarizes the phosphorylation analyses of plant viral proteins and categorizes their effects on biological functions according to the viral life cycle. This review provides a theoretical basis for elucidating the molecular mechanisms of viral infection. Furthermore, it deepens our understanding of the biological functions of phosphorylation in the interactions between plants and viruses.
Collapse
Affiliation(s)
- Xinjian Zhuang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xiao Guo
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Tianxiao Gu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xiaowei Xu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Lang Qin
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Kai Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhen He
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Kun Zhang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China,Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China,*Correspondence: Kun Zhang, ;
| |
Collapse
|
23
|
Zhang C, Wang X, Li H, Wang J, Zeng Q, Huang W, Huang H, Xie Y, Yu S, Kan Q, Wang Q, Cheng Y. GLRaV-2 protein p24 suppresses host defenses by interaction with a RAV transcription factor from grapevine. PLANT PHYSIOLOGY 2022; 189:1848-1865. [PMID: 35485966 PMCID: PMC9237672 DOI: 10.1093/plphys/kiac181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/24/2022] [Indexed: 05/27/2023]
Abstract
Grapevine leafroll-associated virus 2 (GLRaV-2) is a prevalent virus associated with grapevine leafroll disease, but the molecular mechanism underlying GLRaV-2 infection is largely unclear. Here, we report that 24-kDa protein (p24), an RNA-silencing suppressor (RSS) encoded by GLRaV-2, promotes GLRaV-2 accumulation via interaction with the B3 DNA-binding domain of grapevine (Vitis vinifera) RELATED TO ABSCISIC ACID INSENSITIVE3/VIVIPAROUS1 (VvRAV1), a transcription factor belonging to the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) superfamily. Salicylic acid-inducible VvRAV1 positively regulates the grapevine pathogenesis-related protein 1 (VvPR1) gene by directly binding its promoter, indicating that VvRAV1 may function in the regulation of host basal defense responses. p24 hijacks VvRAV1 to the cytoplasm and employs the protein to sequester 21-nt double-stranded siRNA together, thereby enhancing its own RSS activity. Moreover, p24 enters the nucleus via interaction with VvRAV1 and weakens the latter's binding affinity to the VvPR1 promoter, leading to decreased expression of VvPR1. Our results provide a mechanism by which a viral RSS interferes with both the antiviral RNA silencing and the AP2/ERF-mediated defense responses via the targeting of one specific host factor.
Collapse
Affiliation(s)
| | - Xianyou Wang
- Department of Pomology/Lab of Stress Physiology and Molecular Biology for Tree Fruits, Key Lab of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Hanwei Li
- Department of Pomology/Lab of Stress Physiology and Molecular Biology for Tree Fruits, Key Lab of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Jinying Wang
- Department of Pomology/Lab of Stress Physiology and Molecular Biology for Tree Fruits, Key Lab of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Qi Zeng
- Department of Pomology/Lab of Stress Physiology and Molecular Biology for Tree Fruits, Key Lab of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Wenting Huang
- Department of Pomology/Lab of Stress Physiology and Molecular Biology for Tree Fruits, Key Lab of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Haoqiang Huang
- Department of Pomology/Lab of Stress Physiology and Molecular Biology for Tree Fruits, Key Lab of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Yinshuai Xie
- Department of Pomology/Lab of Stress Physiology and Molecular Biology for Tree Fruits, Key Lab of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Shangzhen Yu
- Department of Pomology/Lab of Stress Physiology and Molecular Biology for Tree Fruits, Key Lab of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Qing Kan
- Department of Pomology/Lab of Stress Physiology and Molecular Biology for Tree Fruits, Key Lab of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Qi Wang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | | |
Collapse
|
24
|
The tomato yellow leaf curl virus C4 protein alters the expression of plant developmental genes correlating to leaf upward cupping phenotype in tomato. PLoS One 2022; 17:e0257936. [PMID: 35551312 PMCID: PMC9098041 DOI: 10.1371/journal.pone.0257936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 04/13/2022] [Indexed: 11/20/2022] Open
Abstract
Tomato yellow leaf curl virus (TYLCV), a monopartite begomovirus in the family Geminiviridae, is efficiently transmitted by the whitefly, Bemisia tabaci, and causes serious economic losses to tomato crops around the world. TYLCV-infected tomato plants develop distinctive symptoms of yellowing and leaf upward cupping. In recent years, excellent progress has been made in the characterization of TYLCV C4 protein function as a pathogenicity determinant in experimental plants, including Nicotiana benthamiana and Arabidopsis thaliana. However, the molecular mechanism leading to disease symptom development in the natural host plant, tomato, has yet to be characterized. The aim of the current study was to generate transgenic tomato plants expressing the TYLCV C4 gene and evaluate differential gene expression through comparative transcriptome analysis between the transgenic C4 plants and the transgenic green fluorescent protein (Gfp) gene control plants. Transgenic tomato plants expressing TYLCV C4 developed phenotypes, including leaf upward cupping and yellowing, that are similar to the disease symptoms expressed on tomato plants infected with TYLCV. In a total of 241 differentially expressed genes identified in the transcriptome analysis, a series of plant development-related genes, including transcription factors, glutaredoxins, protein kinases, R-genes and microRNA target genes, were significantly altered. These results provide further evidence to support the important function of the C4 protein in begomovirus pathogenicity. These transgenic tomato plants could serve as basic genetic materials for further characterization of plant receptors that are interacting with the TYLCV C4.
Collapse
|
25
|
Sun Z, Liu X, Zhu W, Lin H, Chen X, Li Y, Ye W, Yin Z. Molecular Traits and Functional Exploration of BES1 Gene Family in Plants. Int J Mol Sci 2022; 23:ijms23084242. [PMID: 35457060 PMCID: PMC9027564 DOI: 10.3390/ijms23084242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022] Open
Abstract
The BES1 (BRI1-EMSSUPPRESSOR1) gene family is a unique class of transcription factors that play dynamic roles in the Brassinosteroids (BRs) signaling pathway. The published genome sequences of a large number of plants provide an opportunity to identify and perform a comprehensive functional study on the BES1 gene family for their potential roles in developmental processes and stress responses. A total of 135 BES1 genes in 27 plant species were recognized and characterized, which were divided into five well-conserved subfamilies. BES1 was not found in lower plants, such as Cyanophora paradoxa and Galdieria sulphuraria. The spatial expression profiles of BES1s in Arabidopsis, rice, and cotton, as well as their response to abiotic stresses, were analyzed. The overexpression of two rice BES1 genes, i.e., OsBES1-3 and OsBES1-5, promotes root growth under drought stress. The overexpression of GhBES1-4 from cotton enhanced the salt tolerance in Arabidopsis. Five protein interaction networks were constructed and numerous genes co-expressed with GhBES1-4 were characterized in transgenic Arabidopsis. BES1 may have evolved in the ancestors of the first land plants following its divergence from algae. Our results lay the foundation for understanding the complex mechanisms of BES1-mediated developmental processes and abiotic stress tolerance.
Collapse
Affiliation(s)
- Zhenting Sun
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.S.); (X.C.)
| | - Xingzhou Liu
- Suzhou Academy of Agricultural Science, Suzhou 234000, China;
| | - Weidong Zhu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
| | - Huan Lin
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (H.L.); (Y.L.)
| | - Xiugui Chen
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.S.); (X.C.)
| | - Yan Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (H.L.); (Y.L.)
| | - Wuwei Ye
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.S.); (X.C.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (H.L.); (Y.L.)
- Correspondence: (W.Y.); (Z.Y.); Tel.: +86-372-2562219 (W.Y. & Z.Y.); Fax: +86-372-2562311 (W.Y. & Z.Y.)
| | - Zujun Yin
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.S.); (X.C.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (H.L.); (Y.L.)
- Correspondence: (W.Y.); (Z.Y.); Tel.: +86-372-2562219 (W.Y. & Z.Y.); Fax: +86-372-2562311 (W.Y. & Z.Y.)
| |
Collapse
|
26
|
Li P, Guo L, Lang X, Li M, Wu G, Wu R, Wang L, Zhao M, Qing L. Geminivirus C4 proteins inhibit GA signaling via prevention of NbGAI degradation, to promote viral infection and symptom development in N. benthamiana. PLoS Pathog 2022; 18:e1010217. [PMID: 35390110 PMCID: PMC9060335 DOI: 10.1371/journal.ppat.1010217] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/02/2022] [Accepted: 03/22/2022] [Indexed: 11/25/2022] Open
Abstract
The phytohormone gibberellin (GA) is a vital plant signaling molecule that regulates plant growth and defense against abiotic and biotic stresses. To date, the molecular mechanism of the plant responses to viral infection mediated by GA is still undetermined. DELLA is a repressor of GA signaling and is recognized by the F-box protein, a component of the SCFSLY1/GID2 complex. The recognized DELLA is degraded by the ubiquitin-26S proteasome, leading to the activation of GA signaling. Here, we report that ageratum leaf curl Sichuan virus (ALCScV)-infected N. benthamiana plants showed dwarfing symptoms and abnormal flower development. The infection by ALCScV significantly altered the expression of GA pathway-related genes and decreased the content of endogenous GA in N. benthamiana. Furthermore, ALCScV-encoded C4 protein interacts with the DELLA protein NbGAI and interferes with the interaction between NbGAI and NbGID2 to prevent the degradation of NbGAI, leading to inhibition of the GA signaling pathway. Silencing of NbGAI or exogenous GA3 treatment significantly reduces viral accumulation and disease symptoms in N. benthamiana plants. The same results were obtained from experiments with the C4 protein encoded by tobacco curly shoot virus (TbCSV). Therefore, we propose a novel mechanism by which geminivirus C4 proteins control viral infection and disease symptom development by interfering with the GA signaling pathway. Gibberellins (GAs) are plant hormones essential for many developmental processes in plants. Plant virus infection can induce abnormal flower development and influence the GA pathway, resulting in plant dwarfing symptoms, but the underlying mechanisms are still not well described. Here, we demonstrate that the geminivirus-encoded C4 protein regulates the GA signaling pathway to promote viral accumulation and disease symptom development. By directly interacting with NbGAI, the C4 protein interferes with the interaction between NbGAI and NbGID2, which inhibits the degradation of NbGAI. As a result, the GA signaling pathway is blocked, and the infected plants display symptoms of typical dwarfing and delayed flowering. Our results reveal a novel mechanism by which geminivirus C4 proteins influence viral pathogenicity by interfering with the GA signaling pathway and provide new insights into the interaction between the virus and host.
Collapse
Affiliation(s)
- Pengbai Li
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
| | - Liuming Guo
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
| | - Xinyuan Lang
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
| | - Mingjun Li
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
| | - Gentu Wu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
| | - Rui Wu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
| | - Lyuxin Wang
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
| | - Meisheng Zhao
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
| | - Ling Qing
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
- National Citrus Engineering Research Center, Southwest University, Chongqing, People’s Republic of China
- * E-mail:
| |
Collapse
|
27
|
Role of the Sw5 Gene Cluster in the Fight against Plant Viruses. J Virol 2022; 96:e0208421. [PMID: 34985996 DOI: 10.1128/jvi.02084-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Sw5 gene cluster furnishes robust resistance to Tomato spotted wilt virus in tomato, which has led to its widespread applicability in agriculture. Among the five orthologs, Sw5b functions as a resistance gene against a broad-spectrum tospovirus and is linked with tospovirus resistance. However, its paralog Sw5a has been recently implicated in providing resistance against Tomato leaf curl New Delhi virus, broadening the relevance of the Sw5 gene cluster in promoting defense against plant viruses. We propose that plants have established modifications within the homologs of R genes that permit identification of different effector proteins and provide broad and robust resistance against different pathogens through activation of the hypersensitive response and cell death.
Collapse
|
28
|
Identification of Crucial Amino Acids in Begomovirus C4 Proteins Involved in the Modulation of the Severity of Leaf Curling Symptoms. Viruses 2022; 14:v14030499. [PMID: 35336906 PMCID: PMC8955491 DOI: 10.3390/v14030499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Begomoviruses frequently inflict upward or downward leaf curling symptoms on infected plants, leading to severe economic damages. Knowledge of the underlying mechanism controlling the leaf curling severity may facilitate the development of alternative disease management strategies. In this study, through genomic recombination between Ageratum yellow vein virus Nan-Tou strain (AYVV-NT) and Tomato leaf curl virus Tai-Chung Strain (TLCV-TC), which caused upward and downward leaf curling on Nicotiana benthamiana, respectively, it was found that the coding region of C4 protein might be involved in the determination of leaf curling directions. Sequence comparison and mutational analysis revealed that the cysteine and glycine at position 8 and 14 of AYVV-TC C4 protein, respectively, are involved in the modulation of leaf curling symptoms. Cross-protection assays further demonstrated that N. benthamiana inoculated with AYVV-carrying mutations of the aforementioned amino acids exhibited attenuated leaf curling symptoms under the challenge of wild-type AYVV-NT. Together, these findings revealed a new function of begomovirus C4 proteins involved in the modulation of leaf curling severity during symptom formation and suggested potential applications for managing viral diseases through manipulating the symptoms.
Collapse
|
29
|
Sun S, Ren Y, Wang D, Farooq T, He Z, Zhang C, Li S, Yang X, Zhou X. A group I WRKY transcription factor regulates mulberry mosaic dwarf-associated virus-triggered cell death in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2022; 23:237-253. [PMID: 34738705 PMCID: PMC8743015 DOI: 10.1111/mpp.13156] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 05/27/2023]
Abstract
Geminiviruses constitute the largest group of known plant viruses and cause devastating losses to a wide range of crops and woody plants globally. Mulberry mosaic dwarf-associated virus (MMDaV), identified from Chinese mulberry trees via small RNA-based deep sequencing, is a divergent monopartite geminivirus belonging to the genus Mulcrilevirus of the family Geminiviridae. Previous studies have shown that plants employ multiple layers of defence to protect themselves from geminivirus infection. The interplay between plant and MMDaV is nevertheless less studied. This study presents evidence that MMDaV triggers hypersensitive response (HR)-mediated antiviral defence in Nicotiana benthamiana plants. We show that the RepA protein of MMDaV is engaged in HR-type cell death induction. We find that the RepA mutants with compromised nuclear localization ability impair their capabilities of cell death induction. Virus-induced gene silencing of the key components of the R protein-mediated signalling pathway reveals that down-regulation of the nucleus-targeting NbWRKY1 alleviates the cell death induction activity of RepA. We further demonstrate that RepA up-regulates the transcript level of NbWRKY1. Furthermore, expression of RepA in N. benthamiana confers plant resistance against two begomoviruses. We propose that plant resistance against RepA can be potentially used to improve plant defence against geminiviruses in crops.
Collapse
Affiliation(s)
- Shaoshuang Sun
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Yanxiang Ren
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Dongxue Wang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Tahir Farooq
- Plant Protection Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Zifu He
- Plant Protection Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Chao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory of Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhouChina
| |
Collapse
|
30
|
Devendran R, Namgial T, Reddy KK, Kumar M, Zarreen F, Chakraborty S. Insights into the multifunctional roles of geminivirus-encoded proteins in pathogenesis. Arch Virol 2022; 167:307-326. [PMID: 35079902 DOI: 10.1007/s00705-021-05338-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/23/2021] [Indexed: 12/18/2022]
Abstract
Geminiviruses are a major threat to agriculture in tropical and subtropical regions of the world. Geminiviruses have small genome with limited coding capacity. Despite this limitation, these viruses have mastered hijacking the host cellular metabolism for their survival. To compensate for the small size of their genome, geminiviruses encode multifunctional proteins. In addition, geminiviruses associate themselves with satellite DNA molecules which also encode proteins that support the virus in establishing successful infection. Geminiviral proteins recruit multiple host factors, suppress the host defense, and manipulate host metabolism to establish infection. We have updated the knowledge accumulated about the proteins of geminiviruses and their satellites in the context of pathogenesis in a single review. We also discuss their interactions with host factors to provide a mechanistic understanding of the infection process.
Collapse
Affiliation(s)
- Ragunathan Devendran
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Tsewang Namgial
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Kishore Kumar Reddy
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Manish Kumar
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Fauzia Zarreen
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
31
|
Zolkiewicz K, Gruszka D. Glycogen synthase kinases in model and crop plants - From negative regulators of brassinosteroid signaling to multifaceted hubs of various signaling pathways and modulators of plant reproduction and yield. FRONTIERS IN PLANT SCIENCE 2022; 13:939487. [PMID: 35909730 PMCID: PMC9335153 DOI: 10.3389/fpls.2022.939487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/01/2022] [Indexed: 05/15/2023]
Abstract
Glycogen synthase kinases, also known as SHAGGY-like Kinases (GSKs/SKs), are highly conserved serine/threonine protein kinases present both in animals and plants. Plant genomes contain multiple homologs of the GSK3 genes which participate in various biological processes. Plant GSKs/SKs, and their best known representative in Arabidopsis thaliana - Brassinosteroid Insentisive2 (BIN2/SK21) in particular, were first identified as components of the brassinosteroid (BR) signaling pathway. As phytohormones, BRs regulate a wide range of physiological processes in plants - from germination, cell division, elongation and differentiation to leaf senescence, and response to environmental stresses. The GSKs/SKs proteins belong to a group of several highly conserved components of the BR signaling which evolved early during evolution of this molecular relay. However, recent reports indicated that the GSKs/SKs proteins are also implicated in signaling pathways of other phytohormones and stress-response processes. As a consequence, the GSKs/SKs proteins became hubs of various signaling pathways and modulators of plant development and reproduction. Thus, it is very important to understand molecular mechanisms regulating activity of the GSKs/SKs proteins, but also to get insights into role of the GSKs/SKs proteins in modulation of stability and activity of various substrate proteins which participate in the numerous signaling pathways. Although elucidation of these aspects is still in progress, this review presents a comprehensive and detailed description of these processes and their implications for regulation of development, stress response, and reproduction of model and crop species. The GSKs/SKs proteins and their activity are modulated through phosphorylation and de-phosphorylation reactions which are regulated by various proteins. Importantly, both phosphorylations and de-phosphorylations may have positive and negative effects on the activity of the GSKs/SKs proteins. Additionally, the activity of the GSKs/SKs proteins is positively regulated by reactive oxygen species, whereas it is negatively regulated through ubiquitylation, deacetylation, and nitric oxide-mediated nitrosylation. On the other hand, the GSKs/SKs proteins interact with proteins representing various signaling pathways, and on the basis of the complicated network of interactions the GSKs/SKs proteins differentially regulate various physiological, developmental, stress response, and yield-related processes.
Collapse
|
32
|
Li C, Zhang B, Yu H. GSK3s: nodes of multilayer regulation of plant development and stress responses. TRENDS IN PLANT SCIENCE 2021; 26:1286-1300. [PMID: 34417080 DOI: 10.1016/j.tplants.2021.07.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 07/20/2021] [Accepted: 07/24/2021] [Indexed: 05/28/2023]
Abstract
Glycogen synthase kinase 3 (GSK3) family members are highly conserved serine/threonine protein kinases in eukaryotes. Unlike animals, plants have evolved with multiple homologs of GSK3s involved in a diverse array of biological processes. Emerging evidence suggests that GSK3s act as signaling hubs for integrating perception and transduction of diverse signals required for plant development and responses to abiotic and biotic cues. Here we review recent advances in understanding the molecular interactions between GSK3s and an expanding spectrum of their upstream regulators and downstream substrates in plants. We further discuss how GSK3s act as key signaling nodes of multilayer regulation of plant development and stress response through either being regulated at the post-translational level or regulating their substrates via phosphorylation.
Collapse
Affiliation(s)
- Chengxiang Li
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Bin Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Hao Yu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore.
| |
Collapse
|
33
|
Abstract
The fast-paced evolution of viruses enables them to quickly adapt to the organisms they infect by constantly exploring the potential functional landscape of the proteins encoded in their genomes. Geminiviruses, DNA viruses infecting plants and causing devastating crop diseases worldwide, produce a limited number of multifunctional proteins that mediate the manipulation of the cellular environment to the virus’ advantage. Among the proteins produced by the members of this family, C4, the smallest one described to date, is emerging as a powerful viral effector with unexpected versatility. C4 is the only geminiviral protein consistently subjected to positive selection and displays a number of dynamic subcellular localizations, interacting partners, and functions, which can vary between viral species. In this review, we aim to summarize our current knowledge on this remarkable viral protein, encompassing the different aspects of its multilayered diversity, and discuss what it can teach us about geminivirus evolution, invasion requirements, and virulence strategies.
Collapse
|
34
|
Li P, Su F, Meng Q, Yu H, Wu G, Li M, Qing L. The C5 protein encoded by Ageratum leaf curl Sichuan virus is a virulence factor and contributes to the virus infection. MOLECULAR PLANT PATHOLOGY 2021; 22:1149-1158. [PMID: 34219358 PMCID: PMC8359000 DOI: 10.1111/mpp.13103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 05/21/2023]
Abstract
Earlier reports have indicated that begomoviruses encode four proteins (AC1/C1, AC2/C2, AC3/C3, and AC4/C4 proteins) using complementary-sense DNA as the template. In recent years, several reports have shown that some begomoviruses also encode an AC5/C5 protein from the complementary DNA strand, and these AC5/C5 proteins play different roles in virus infections. Here, we provide evidence showing that Ageratum leaf curl Sichuan virus (ALCScV), a monopartite begomovirus, also encodes a C5 protein that is important for disease symptom formation and can affect viral replication. Infection of Nicotiana benthamiana plants with a potato virus X (PVX)-based vector carrying the ALCScV C5 gene resulted in more severe disease symptoms and higher virus accumulation levels. ALCScV C5 protein can be found in the cytoplasm and the nucleus. Furthermore, this protein is also a suppressor of posttranscriptional gene silencing. Mutational analysis showed that knockout of C5 gene expression significantly reduced ALCScV-induced disease symptoms and virus accumulation, while expression of the C5 gene using the PVX-based vector enhanced ALCScV accumulation in coinfected N. benthamiana plants.
Collapse
Affiliation(s)
- Pengbai Li
- Chongqing Key Laboratory of Plant Disease BiologyCollege of Plant ProtectionSouthwest UniversityChongqingChina
| | - Feng Su
- Chongqing Key Laboratory of Plant Disease BiologyCollege of Plant ProtectionSouthwest UniversityChongqingChina
| | - Qiyuan Meng
- Chongqing Key Laboratory of Plant Disease BiologyCollege of Plant ProtectionSouthwest UniversityChongqingChina
| | - Huabin Yu
- Chongqing Key Laboratory of Plant Disease BiologyCollege of Plant ProtectionSouthwest UniversityChongqingChina
| | - Gentu Wu
- Chongqing Key Laboratory of Plant Disease BiologyCollege of Plant ProtectionSouthwest UniversityChongqingChina
| | - Mingjun Li
- Chongqing Key Laboratory of Plant Disease BiologyCollege of Plant ProtectionSouthwest UniversityChongqingChina
| | - Ling Qing
- Chongqing Key Laboratory of Plant Disease BiologyCollege of Plant ProtectionSouthwest UniversityChongqingChina
| |
Collapse
|
35
|
Zhao W, Zhou Y, Zhou X, Wang X, Ji Y. Host GRXC6 restricts Tomato yellow leaf curl virus infection by inhibiting the nuclear export of the V2 protein. PLoS Pathog 2021; 17:e1009844. [PMID: 34398921 PMCID: PMC8389846 DOI: 10.1371/journal.ppat.1009844] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/26/2021] [Accepted: 07/27/2021] [Indexed: 11/27/2022] Open
Abstract
Geminiviruses cause serious symptoms and devastating losses in crop plants. With a circular, single-stranded DNA genome, geminiviruses multiply their genomic DNA in the nucleus, requiring the nuclear shuttling of viral proteins and viral genomic DNAs. Many host factors, acting as proviral or antiviral factors, play key roles in geminivirus infections. Here, we report the roles of a tomato glutaredoxin (GRX), SlGRXC6, in the infection of Tomato yellow leaf curl virus (TYLCV), a single-component geminivirus. The V2 protein of TYLCV specifically and preferentially interacts with SlGRXC6 among the 55-member tomato GRX family that are broadly involved in oxidative stress responses, plant development, and pathogen responses. We show that overexpressed SlGRXC6 increases the nuclear accumulation of V2 by inhibiting its nuclear export and, in turn, inhibits trafficking of the V1 protein and viral genomic DNA. Conversely, the silenced expression of SlGRXC6 leads to an enhanced susceptibility to TYLCV. SlGRXC6 is also involved in symptom development as we observed a positive correlation where overexpression of SlGRXC6 promotes while knockdown of SlGRXC6 expression inhibits plant growth. We further showed that SlGRXC6 works with SlNTRC80, a tomato NADPH-dependent thioredoxin reductase, to regulate plant growth. V2 didn’t interact with SlNTRC80 but competed with SlNTR80 for binding to SlGRXC6, suggesting that the V2-disrupted SlGRXC6-SlNTRC80 interaction is partially responsible for the virus-caused symptoms. These results suggest that SlGRXC6 functions as a host restriction factor that inhibits the nuclear trafficking of viral components and point out a new way to control TYLCV infection by targeting the V2-SlGRXC6 interaction. Geminiviruses infect numerous crops, induce a wide range of symptoms, and cause tremendous crop losses annually. Tomato yellow leaf curl virus (TYLCV), a single-component geminivirus, is a causative agent leading to one of the most devastating tomato diseases in the world. As a single-stranded DNA virus, genomic replication occurs in the nucleus and therefore, the nuclear shuttling is a critical step of viral infection. The V2 protein of TYLCV is involved in symptom development and viral trafficking, among other steps, and hijacks host proteins for executing its functions. Nevertheless, host factors involved in the V2-mediated functions are not well addressed. We show that tomato GRXC6 (SlGRXC6) functions as a restriction factor of TYLCV infection by interacting with and preventing V2 from moving out of the nucleus, leading to the inhibited V2-mediated nuclear export of V1 and the V1-viral DNA complex. SlGRXC6 also contributes to symptom development via its interaction with SINTRC80. V2 sequesters SlGRXC6 from forming the SlGRXC6-SlNTRC80 complex and regulates plant growth. Our work, therefore, identified a new host partner of V2 and revealed the mechanisms whereby V2 functions as a pathogenicity determinant and can be targeted for virus control.
Collapse
Affiliation(s)
- Wenhao Zhao
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Yijun Zhou
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- * E-mail: (XZ); (XW); (YJ)
| | - Xiaofeng Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail: (XZ); (XW); (YJ)
| | - Yinghua Ji
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- * E-mail: (XZ); (XW); (YJ)
| |
Collapse
|
36
|
The Sw5a gene confers resistance to ToLCNDV and triggers an HR response after direct AC4 effector recognition. Proc Natl Acad Sci U S A 2021; 118:2101833118. [PMID: 34385303 DOI: 10.1073/pnas.2101833118] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Several attempts have been made to identify antiviral genes against Tomato leaf curl New Delhi virus (ToLCNDV) and related viruses. This has led to the recognition of Ty genes (Ty1-Ty6), which have been successful in developing virus-resistant crops to some extent. Owing to the regular appearance of resistance-breaking strains of these viruses, it is important to identify genes related to resistance. In the present study, we identified a ToLCNDV resistance (R) gene, SlSw5a, in a ToLCNDV-resistant tomato cultivar, H-88-78-1, which lacks the known Ty genes. The expression of SlSw5a is controlled by the transcription factor SlMyb33, which in turn is regulated by microRNA159 (sly-miR159). Virus-induced gene silencing of either SlSw5a or SlMyb33 severely increases the disease symptoms and viral titer in leaves of resistant cultivar. Moreover, in SlMyb33-silenced plants, the relative messenger RNA level of SlSw5a was reduced, suggesting SlSw5a is downstream of the sly-miR159-SlMyb33 module. We also demonstrate that SlSw5a interacts physically with ToLCNDV-AC4 (viral suppressor of RNA silencing) to trigger a hypersensitive response (HR) and generate reactive oxygen species at infection sites to limit the spread of the virus. The "RTSK" motif in the AC4 C terminus is important for the interaction, and its mutation completely abolishes the interaction with Sw5a and HR elicitation. Overall, our research reports an R gene against ToLCNDV and establishes a connection between the upstream miR159-Myb33 module and its downstream target Sw5a to activate HR in the tomato, resulting in geminivirus resistance.
Collapse
|
37
|
Mei Y, Wang Y, Hu T, He Z, Zhou X. The C4 protein encoded by Tomato leaf curl Yunnan virus interferes with mitogen-activated protein kinase cascade-related defense responses through inhibiting the dissociation of the ERECTA/BKI1 complex. THE NEW PHYTOLOGIST 2021; 231:747-762. [PMID: 33829507 DOI: 10.1111/nph.17387] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are involved in host defense against pathogens and are often activated by upstream plasma membrane leucine-rich repeat receptor-like kinases (LRR-RLKs). ERECTA (ER) is an LRR-RLK that regulates plant developmental processes through activating MAPK cascades. Tomato leaf curl Yunnan virus (TLCYnV) C4 protein interacts with BKI1, stabilizes it at the plasma membrane and impairs ER autophosphorylation through suppressing the dissociation of the BKI1/ER complex, and then inhibits the activation of downstream MAPK cascades, which ultimately creates a favorable environment for TLCYnV infection. This study provides a novel viral strategy to impair MAPK activation.
Collapse
Affiliation(s)
- Yuzhen Mei
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Tao Hu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zifu He
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
38
|
Liu X, Huang W, Zhai Z, Ye T, Yang C, Lai J. Protein modification: A critical modulator in the interaction between geminiviruses and host plants. PLANT, CELL & ENVIRONMENT 2021; 44:1707-1715. [PMID: 33506956 DOI: 10.1111/pce.14008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/06/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Geminiviruses are a large group of single-stranded DNA viruses that infect plants and cause severe agricultural losses worldwide. Given geminiviruses only have small genomes that encode a few proteins, viral factors have to interact with host components to establish an environment suitable for virus infection, whilst the host immunity system recognizes and targets these viral components during infection. Post-translational protein modifications, such as phosphorylation, lipidation, ubiquitination, SUMOylation, acetylation and methylation, have been reported to be critical during the interplay between host plants and geminiviruses. Here we summarize the research progress, including phosphorylation and lipidation which usually control the activity and localization of viral factors; as well as ubiquitination and histone modification which are predominantly interfered with by viral components. We also discuss the dynamic competition on protein modifications between host defence and geminivirus efficient infection, as well as potential applications of protein modifications in geminivirus resistance. The summary and perspective of this topic will improve our understanding on the mechanism of geminivirus-plant interaction and contribute to further protection of plants from virus infection.
Collapse
Affiliation(s)
- Xiaoshi Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Wei Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Zhenqian Zhai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Tushu Ye
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| |
Collapse
|
39
|
Positive selection and intrinsic disorder are associated with multifunctional C4(AC4) proteins and geminivirus diversification. Sci Rep 2021; 11:11150. [PMID: 34045539 PMCID: PMC8160170 DOI: 10.1038/s41598-021-90557-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Viruses within the Geminiviridae family cause extensive agricultural losses. Members of four genera of geminiviruses contain a C4 gene (AC4 in geminiviruses with bipartite genomes). C4(AC4) genes are entirely overprinted on the C1(AC1) genes, which encode the replication-associated proteins. The C4(AC4) proteins exhibit diverse functions that may be important for geminivirus diversification. In this study, the influence of natural selection on the evolutionary diversity of 211 C4(AC4) genes relative to the C1(AC1) sequences they overlap was determined from isolates of the Begomovirus and Curtovirus genera. The ratio of nonsynonymous (dN) to synonymous (dS) nucleotide substitutions indicated that C4(AC4) genes are under positive selection, while the overlapped C1(AC1) sequences are under purifying selection. Ninety-one of 200 Begomovirus C4(AC4) genes encode elongated proteins with the extended regions being under neutral selection. C4(AC4) genes from begomoviruses isolated from tomato from native versus exotic regions were under similar levels of positive selection. Analysis of protein structure suggests that C4(AC4) proteins are entirely intrinsically disordered. Our data suggest that non-synonymous mutations and mutations that increase the length of C4(AC4) drive protein diversity that is intrinsically disordered, which could explain C4/AC4 functional variation and contribute to both geminivirus diversification and host jumping.
Collapse
|
40
|
Mao J, Li W, Liu J, Li J. Versatile Physiological Functions of Plant GSK3-Like Kinases. Genes (Basel) 2021; 12:genes12050697. [PMID: 34066668 PMCID: PMC8151121 DOI: 10.3390/genes12050697] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/26/2022] Open
Abstract
The plant glycogen synthase kinase 3 (GSK3)-like kinases are highly conserved protein serine/threonine kinases that are grouped into four subfamilies. Similar to their mammalian homologs, these kinases are constitutively active under normal growth conditions but become inactivated in response to diverse developmental and environmental signals. Since their initial discoveries in the early 1990s, many biochemical and genetic studies were performed to investigate their physiological functions in various plant species. These studies have demonstrated that the plant GSK3-like kinases are multifunctional kinases involved not only in a wide variety of plant growth and developmental processes but also in diverse plant stress responses. Here we summarize our current understanding of the versatile physiological functions of the plant GSK3-like kinases along with their confirmed and potential substrates.
Collapse
Affiliation(s)
- Juan Mao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.L.); (J.L.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (J.M.); (J.L.)
| | - Wenxin Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.L.); (J.L.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jing Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.L.); (J.L.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jianming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.L.); (J.L.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (J.M.); (J.L.)
| |
Collapse
|
41
|
Ghosh D, Chakraborty S. Molecular interplay between phytohormones and geminiviruses: a saga of a never-ending arms race. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2903-2917. [PMID: 33577676 DOI: 10.1093/jxb/erab061] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/06/2021] [Indexed: 05/14/2023]
Abstract
Geminiviruses can infect a wide range of plant hosts worldwide and have hence become an emerging global agroeconomic threat. The association of these viruses with satellite molecules and highly efficient insect vectors such as whiteflies further prime their devastating impacts. Plants elicit a strong antiviral immune response to restrict the invasion of these destructive pathogens. Phytohormones help plants to mount this response and occupy a key position in combating these biotrophs. These defense hormones not only inhibit geminiviral propagation but also hamper viral transmission by compromising the performance of their insect vectors. Nonetheless, geminiviruses have co-evolved to have a few multitasking virulence factors that readily remodel host cellular machineries to circumvent the phytohormone-mediated manifestation of the immune response. Furthermore, these obligate parasites exploit plant growth hormones to produce a cellular environment permissive for virus replication. In this review, we outline the current understanding of the roles and regulation of phytohormones in geminiviral pathogenesis.
Collapse
Affiliation(s)
- Dibyendu Ghosh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
42
|
Deom CM, Alabady MS, Yang L. Early transcriptome changes induced by the Geminivirus C4 oncoprotein: setting the stage for oncogenesis. BMC Genomics 2021; 22:147. [PMID: 33653270 PMCID: PMC7923490 DOI: 10.1186/s12864-021-07455-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The Beet curly top virus C4 oncoprotein is a pathogenic determinant capable of inducing extensive developmental abnormalities. No studies to date have investigated how the transcriptional profiles differ between plants expressing or not expressing the C4 oncoprotein. RESULTS We investigated early transcriptional changes in Arabidopsis associated with expression of the Beet curly top virus C4 protein that represent initial events in pathogenesis via a comparative transcriptional analysis of mRNAs and small RNAs. We identified 48 and 94 differentially expressed genes at 6- and 12-h post-induction versus control plants. These early time points were selected to focus on direct regulatory effects of C4 expression. Since previous evidence suggested that the C4 protein regulated the brassinosteroid (BR)-signaling pathway, differentially expressed genes could be divided into two groups: those responsive to alterations in the BR-signaling pathway and those uniquely responsive to C4. Early transcriptional changes that disrupted hormone homeostasis, 18 and 19 differentially expressed genes at both 6- and 12-hpi, respectively, were responsive to C4-induced regulation of the BR-signaling pathway. Other C4-induced differentially expressed genes appeared independent of the BR-signaling pathway at 12-hpi, including changes that could alter cell development (4 genes), cell wall homeostasis (5 genes), redox homeostasis (11 genes) and lipid transport (4 genes). Minimal effects were observed on expression of small RNAs. CONCLUSION This work identifies initial events in genetic regulation induced by a geminivirus C4 oncoprotein. We provide evidence suggesting the C4 protein regulates multiple regulatory pathways and provides valuable insights into the role of the C4 protein in regulating initial events in pathogenesis.
Collapse
Affiliation(s)
- Carl Michael Deom
- Department of Plant Pathology, University of Georgia, Athens, GA, USA.
| | - Magdy S Alabady
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | - Li Yang
- Department of Plant Pathology, University of Georgia, Athens, GA, USA
| |
Collapse
|
43
|
Li M, Li C, Jiang K, Li K, Zhang J, Sun M, Wu G, Qing L. Characterization of Pathogenicity-Associated V2 Protein of Tobacco Curly Shoot Virus. Int J Mol Sci 2021; 22:E923. [PMID: 33477652 PMCID: PMC7831499 DOI: 10.3390/ijms22020923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 11/17/2022] Open
Abstract
V2 proteins encoded by some whitefly-transmitted geminiviruses were reported to be functionally important proteins. However, the functions of the V2 protein of tobacco curly shoot virus (TbCSV), a monopartite begomovirus that causes leaf curl disease on tomato and tobacco in China, remains to be characterized. In our report, an Agrobacterium infiltration-mediated transient expression assay indicated that TbCSV V2 can suppress local and systemic RNA silencing and the deletion analyses demonstrated that the amino acid region 1-92 of V2, including the five predicted α-helices, are required for local RNA silencing suppression. Site-directed substitutions showed that the conserved basic and ring-structured amino acids in TbCSV V2 are critical for its suppressor activity. Potato virus X-mediated heteroexpression of TbCSV V2 in Nicotiana benthamiana induced hypersensitive response-like (HR-like) cell death and systemic necrosis in a manner independent of V2's suppressor activity. Furthermore, TbCSV infectious clone mutant with untranslated V2 protein (TbCSV∆V2) could not induce visual symptoms, and coinfection with betasatellite (TbCSB) could obviously elevate the viral accumulation and symptom development. Interestingly, symptom recovery occurred at 15 days postinoculation (dpi) and onward in TbCSV∆V2/TbCSB-inoculated plants. The presented work contributes to understanding the RNA silencing suppression activity of TbCSV V2 and extends our knowledge of the multifunctional role of begomovirus-encoded V2 proteins during viral infections.
Collapse
Affiliation(s)
- Mingjun Li
- Correspondence: (M.L.); (L.Q.); Tel.: +86-023-68250517 (L.Q.)
| | | | | | | | | | | | | | - Ling Qing
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400716, China; (C.L.); (K.J.); (K.L.); (J.Z.); (M.S.); (G.W.)
| |
Collapse
|
44
|
Shakir S, Jander G, Nahid N, Mubin M, Younus A, Nawaz-Ul-Rehman MS. Interaction of eukaryotic proliferating cell nuclear antigen (PCNA) with the replication-associated protein (Rep) of cotton leaf curl Multan virus and pedilanthus leaf curl virus. 3 Biotech 2021; 11:14. [PMID: 33442513 DOI: 10.1007/s13205-020-02499-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 10/19/2020] [Indexed: 11/28/2022] Open
Abstract
The replication-associated (Rep) proteins of pathogenic begomoviruses, including cotton leaf curl Multan virus (CLCuMuV) and pedilanthus leaf curl virus (PeLCV), interact with the DNA replication machinery of their eukaryotic hosts. The analysis of Rep protein sequences showed that there is 13-28% sequence variation among CLCuMuV and PeLCV isolates, with phylogenetic clusters that can separated at least in part based on the country of origin of the respective viruses. To identify specific host factors involved in the virus replication cycle, we conducted yeast two-hybrid assays to detect possible interactions between the CLCuMuV and PeLCV Rep proteins and 30 protein components of the Saccharomyces cerevisiae DNA replication machinery. This showed that the proliferating cell nuclear antigen (PCNA) protein of S. cerevisiae interacts with Rep proteins from both CLCuMuV and PeLCV. We used the yeast PCNA sequence in BLAST comparisons to identify two PCNA orthologs each in Gossypium hirsutum (cotton), Arabidopsis thaliana (Arabidopsis), and Nicotiana benthamiana (tobacco). Sequence comparisons showed 38-40% identity between the yeast and plant PCNA proteins, and > 91% identity among the plant PCNA proteins, which clustered together in one phylogenetic group. The expression of the six plant PCNA proteins in the yeast two-hybrid system confirmed interactions with the CLCuMuV and PeLCV Rep proteins. Our results demonstrate that the interaction of begomovirus Rep proteins with eukaryotic PCNA proteins is strongly conserved, despite significant evolutionary variation in the protein sequences of both of the interacting partners.
Collapse
Affiliation(s)
- Sara Shakir
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, 38000 Pakistan
- Boyce Thompson Institutute, Ithaca, NY 14853 USA
- Present Address: Plant Genetics, Lab, Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Georg Jander
- Boyce Thompson Institutute, Ithaca, NY 14853 USA
| | - Nazia Nahid
- Department of Bioinformatics and Biotechnology, GC University, Faisalabad, Pakistan
| | - Muhammad Mubin
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, 38000 Pakistan
| | - Ayesha Younus
- Laser Matter Interaction and Nano-Sciences Lab, Department of Physics, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Shah Nawaz-Ul-Rehman
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, 38000 Pakistan
| |
Collapse
|
45
|
Shen W, Hanley-Bowdoin L. SnRK1: a versatile plant protein kinase that limits geminivirus infection. Curr Opin Virol 2020; 47:18-24. [PMID: 33360933 DOI: 10.1016/j.coviro.2020.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/22/2020] [Accepted: 12/03/2020] [Indexed: 01/08/2023]
Abstract
Geminiviruses are a family of single-stranded DNA viruses that infect many plant species and cause serious diseases in important crops. The plant protein kinase, SnRK1, has been implicated in host defenses against geminiviruses. Overexpression of SnRK1 makes plants more resistant to geminivirus infection, and knock-down of SnRK1 increases susceptibility to geminivirus infection. GRIK, the SnRK1 activating kinase, is upregulated by geminivirus infection, while the viral C2 protein inhibits the SnRK1 activity. SnRK1 also directly phosphorylates geminivirus proteins to reduce infection. These data suggest that SnRK1 is involved in the co-evolution of plant hosts and geminiviruses.
Collapse
Affiliation(s)
- Wei Shen
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA.
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
46
|
Mei Y, Wang Y, Li F, Zhou X. The C4 protein encoded by tomato leaf curl Yunnan virus reverses transcriptional gene silencing by interacting with NbDRM2 and impairing its DNA-binding ability. PLoS Pathog 2020; 16:e1008829. [PMID: 33002088 PMCID: PMC7529289 DOI: 10.1371/journal.ppat.1008829] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
In plants, cytosine DNA methylation is an efficient defense mechanism against geminiviruses, since methylation of the viral genome results in transcriptional gene silencing (TGS). As a counter-defense mechanism, geminiviruses encode viral proteins to suppress viral DNA methylation and TGS. However, the molecular mechanisms by which viral proteins contribute to TGS suppression remain incompletely understood. In this study, we found that the C4 protein encoded by tomato leaf curl Yunnan virus (TLCYnV) suppresses methylation of the viral genome through interacting with and impairing the DNA-binding ability of NbDRM2, a pivotal DNA methyltransferase in the methyl cycle. We show that NbDRM2 catalyzes the addition of methyl groups on specific cytosine sites of the viral genome, hence playing an important role in anti-viral defense. Underscoring the relevance of the C4-mediated suppression of NbDRM2 activity, plants infected by TLCYnV producing C4(S43A), a point mutant version of C4 unable to interact with NbDRM2, display milder symptoms and lower virus accumulation, concomitant with enhanced viral DNA methylation, than plants infected by wild-type TLCYnV. Expression of TLCYnV C4, but not of the NbDRM2-interaction compromised C4(S43A) mutant, in 16c-TGS Nicotiana benthamiana plants results in the recovery of GFP, a proxy for suppression of TGS. This study provides new insights into the molecular mechanisms by which geminiviruses suppress TGS, and uncovers a new viral strategy based on the inactivation of the methyltransferase NbDRM2.
Collapse
Affiliation(s)
- Yuzhen Mei
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
47
|
Mei Y, Zhang F, Wang M, Li F, Wang Y, Zhou X. Divergent Symptoms Caused by Geminivirus-Encoded C4 Proteins Correlate with Their Ability To Bind NbSKη. J Virol 2020; 94:e01307-20. [PMID: 32759325 PMCID: PMC7527059 DOI: 10.1128/jvi.01307-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Geminiviruses induce severe developmental abnormalities in plants. The C4/AC4 protein encoded by geminiviruses, especially those not associated with betasatellites, functions as a symptom determinant by hijacking a shaggy-related protein kinase (SKη) and interfering with its functions. Here, we report that the symptom determinant capabilities of C4 proteins encoded by different geminiviruses are divergent and tightly correlated with their abilities to interact with SKη from Nicotiana benthamiana (NbSKη). Swap of the minidomain of tomato leaf curl Yunnan virus (TLCYnV) C4 critical for the interaction with NbSKη increases the capacities of the C4 proteins encoded by tomato yellow leaf curl China virus (TYLCCNV) or tobacco curly shoot virus (TbCSV) to induce symptoms. The severity of symptoms induced by recombinant TYLCCNV C4 or TbCSV C4 correlates with the amount of NbSKη tethered to the plasma membrane by the viral protein. Moreover, a recombinant TYLCCNV harboring the minidomain of TLCYnV C4 induces more-severe symptoms than wild-type TYLCCNV. Thus, this study provides new insights into the mechanism by which different geminivirus-encoded C4 proteins possess divergent symptom determinant capabilities.IMPORTANCE Geminiviruses constitute the largest group of known plant viruses and cause devastating diseases in many economically important crops worldwide. Geminivirus-encoded C4 protein is a multifunctional protein. In this study, we found that the C4 proteins from different geminiviruses showed differential abilities to interact with NbSKη, which correlated with their symptom determinant capabilities. Moreover, a minidomain of tomato leaf curl Yunnan virus (TLCYnV) C4 that is indispensable for interacting with NbSKη and tethering it to the plasma membrane, thus leading to symptom induction, was determined. Supporting these findings, a recombinant geminivirus carrying the minidomain of TLCYnV C4 induced more-severe symptoms than the wild type. Therefore, these findings expand the scope of the interaction of NbSKη and C4-mediated symptom induction and thus contribute to further understanding of the multiple roles of C4.
Collapse
Affiliation(s)
- Yuzhen Mei
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fanfan Zhang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mingyu Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
48
|
Vinutha T, Vanchinathan S, Bansal N, Kumar G, Permar V, Watts A, Ramesh SV, Praveen S. Tomato auxin biosynthesis/signaling is reprogrammed by the geminivirus to enhance its pathogenicity. PLANTA 2020; 252:51. [PMID: 32940767 DOI: 10.1007/s00425-020-03452-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/27/2020] [Indexed: 05/25/2023]
Abstract
Tomato leaf curl New Delhi virus-derived AC4 protein interacts with host proteins involved in auxin biosynthesis and reprograms auxin biosynthesis/signaling to help in viral replication and manifestation of the disease-associated symptoms. Perturbations of phytohormone-mediated gene regulatory network cause growth and developmental defects. Furthermore, plant viral infections cause characteristic disease symptoms similar to hormone-deficient mutants. Tomato leaf curl New Delhi Virus (ToLCNDV)-encoded AC4 is a small protein that attenuates the host transcriptional gene silencing, and aggravated disease severity in tomato is correlated with transcript abundance of AC4. Hence, investigating the role of AC4 in pathogenesis divulged that ToLCNDV-AC4 interacted with host TAR1 (tryptophan amino transferase 1)-like protein, CYP450 monooxygenase-the key enzyme of indole acetic acid (IAA) biosynthesis pathway-and with a protein encoded by senescence-associated gene involved in jasmonic acid pathway. Also, ToLCNDV infection resulted in the upregulation of host miRNAs, viz., miR164, miR167, miR393 and miR319 involved in auxin signaling and leaf morphogenesis concomitant with the decline in endogenous IAA levels. Ectopic overexpression of ToLCNDV-derived AC4 in tomato recapitulated the transcriptomic and disruption of auxin biosynthesis/signaling features of the infected leaves. Furthermore, exogenous foliar application of IAA caused remission of the characteristic disease-related symptoms in tomato. The roles of ToLCNDV-AC4 in reprogramming auxin biosynthesis, signaling and cross-talk with JA pathway to help viral replication and manifest the disease-associated symptoms during ToLCNDV infection are discussed.
Collapse
Affiliation(s)
- T Vinutha
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - S Vanchinathan
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Navita Bansal
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Gaurav Kumar
- Division of Biochemistry, ICAR-National Rice Research Institute, Cuttack, Orissa, 753006, India
| | - Vipin Permar
- Division of Plant Pathology-Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Archana Watts
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - S V Ramesh
- ICAR-Division of Physiology, Biochemistry and PHT, ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, 671124, India.
| | - Shelly Praveen
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
49
|
Huang SH, Liu YX, Deng R, Lei TT, Tian AJ, Ren HH, Wang SF, Wang XF. Genome-wide identification and expression analysis of the GSK gene family in Solanum tuberosum L. under abiotic stress and phytohormone treatments and functional characterization of StSK21 involvement in salt stress. Gene 2020; 766:145156. [PMID: 32949696 DOI: 10.1016/j.gene.2020.145156] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 01/29/2023]
Abstract
Plant Glycogen Synthase Kinase 3 (GSK3)/SHAGGY-like kinase (GSK) proteins play important roles in modulating growth, development, and stress responses in several plant species. However, little is known about the members of the potato GSK (StGSK) family. Here, nine StGSK genes were identified and phylogenetically grouped into four clades. Gene duplication analysis revealed that segmental duplication contributed to the expansion of the StGSK family. Gene structure and motif pattern analyses indicated that similar exon/intron and motif organizations were found in StGSKs from the same clade. Conserved motif and kinase activity analyses indicated that the StGSKs encode active protein kinases, and they were shown to be distributed throughout whole cells. Cis-acting regulatory element analysis revealed the presence of many growth-, hormone-, and stress-responsive elements within the promoter regions of the StGSKs, which is consistent with their expression in different organs, and their altered expression in response to hormone and stress treatments. Association network analysis indicated that various proteins, including two confirmed BES1 family transcription factors, potentially interact with StGSKs. Overexpression of StSK21 provides enhanced sensitivity to salt stress in Arabidopsis thaliana plants. Overall, these results reveal that StGSK proteins are active protein kinases with purported functions in regulating growth, development, and stress responses.
Collapse
Affiliation(s)
- Shu-Hua Huang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yu-Xiu Liu
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Rui Deng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Tian-Tian Lei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Ai-Juan Tian
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Hai-Hua Ren
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Shu-Fen Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xiao-Feng Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
50
|
Aguilar E, Garnelo Gomez B, Lozano-Duran R. Recent advances on the plant manipulation by geminiviruses. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:56-64. [PMID: 32464465 DOI: 10.1016/j.pbi.2020.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/06/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
As intracellular parasites, viruses co-opt the molecular machinery of the cells they infect in order to multiply and spread, and the extensiveness and effectiveness of this manipulation ultimately determine the outcome of the interaction between virus and host. Members of the Geminiviridae family, causal agents of devastating diseases in crops, encode only a handful of multifunctional, fast-evolving proteins, which efficiently target host proteins to re-wire plant development and physiology and enable replication and spread of the viral genome. In this review, we offer an overview of the different steps in the geminiviral invasion of the host plant, and explore the knowns and unknowns in geminivirus biology.
Collapse
Affiliation(s)
- Emmanuel Aguilar
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Borja Garnelo Gomez
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China.
| |
Collapse
|