1
|
Phipps W, Bhinder B, Towlerton A, Mooka P, Kafeero J, Fitzgibbon M, Elemento O, Cesarman E. Exome Sequencing Reveals a Sparse Genomic Landscape in Kaposi Sarcoma. Mol Cancer Res 2025; 23:438-449. [PMID: 39883059 PMCID: PMC12048277 DOI: 10.1158/1541-7786.mcr-24-0373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/13/2024] [Accepted: 01/27/2025] [Indexed: 01/31/2025]
Abstract
Kaposi sarcoma is a frequently aggressive malignancy caused by Kaposi sarcoma herpesvirus. People with immunodeficiencies, including human immunodeficiency virus (HIV), are at increased risk for developing Kaposi sarcoma, but our understanding of the contributions of the cellular genome to Kaposi sarcoma pathogenesis remains limited. To determine if there are cellular genetic alterations in Kaposi sarcoma that might provide biological or therapeutic insights, we performed whole-exome sequencing on 78 Kaposi sarcoma tumors and matched normal control skin from 59 adults with Kaposi sarcoma (46 with HIV-associated Kaposi sarcoma and 13 with HIV-negative Kaposi sarcoma) receiving treatment at the Uganda Cancer Institute in Kampala, Uganda. We found a very low mutational burden in all but one specimen (median = 11 mutations), which is the lowest number of mutations among all 33 tumor types in The Cancer Genome Atlas. No recurrent mutations were seen, and the most commonly affected oncogenic pathway was RTK/RAS. Mutational signatures included defective DNA mismatch repair and smoking. There was no evidence suggesting that multiple tumors from the same patient originated from the same original clone. The number of genome copy alterations per genome was higher in tumors from those without HIV infection and in tumors from participants with advanced stage disease, suggesting that lesions that take longer to develop may accumulate more alterations, although the number of alterations remains low compared with other cancers. Implications: Our findings indicate that the pathogenesis of Kaposi sarcoma differs from other malignancies and that the primary driver of carcinogenesis is Kaposi sarcoma-associated herpesvirus infection and expression of viral oncogenes, rather than clonal oncogenic transformation.
Collapse
Affiliation(s)
- Warren Phipps
- Fred Hutchinson Cancer Center, Seattle, WA
- University of Washington, Seattle, WA
| | | | | | - Peter Mooka
- Uganda Cancer Institute-Fred Hutch Collaboration
| | | | | | | | | |
Collapse
|
2
|
Nolan DJ, Fogel GB, DaRoza J, Rose R, Bracci PM, Lamers SL, McGrath MS. Indicators for Increased Likelihood of Epidemic Kaposi Sarcoma Progression after Antiretroviral Therapy Initiation. AIDS Res Hum Retroviruses 2025. [PMID: 40178949 DOI: 10.1089/aid.2025.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Kaposi sarcoma (KS) is a common malignancy for people living with HIV (PLWH), despite antiretroviral therapy (ART). Curiously, even with improved CD4+ T-cell counts and low viral loads following ART, some PLWH with KS may still experience KS progression or even death and require adjuvant chemotherapy to manage their KS. The factors associated with persistent or unresponsive KS after ART initiation remain poorly characterized, and biomarkers to identify patients at risk of KS progression are needed, particularly in resource-limited areas where access to chemotherapy is limited. Here we analyzed baseline KS tumor biopsies from PLWH with KS who required chemotherapy due to unresolved KS after ART initiation and those who did not require chemotherapy after ART initiation. By examining participant metadata and viral copy number for Kaposi sarcoma-associated herpesvirus (KSHV), HIV, cytomegalovirus, and Epstein-Barr virus and KSHV gene expression in the tumor biopsies prior to ART initiation, we identified a model of factors associated with KS progression after ART initiation, including biological sex, age, and the log ratio of KSHV/HIV copy number in the tumor. We believe that the ratio of KSHV/HIV may be linked to the cell types that each virus infects, and future work exploring the relationship between tumor and immune cells in the baseline tumors is planned. Innovation would be necessary to reduce costs and simplify the viral quantification assays, enabling the translation of these findings into routine clinical care, particularly in resource-limited settings.
Collapse
Affiliation(s)
| | - Gary B Fogel
- Natural Selection, Inc., San Diego, California, USA
| | | | | | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | | | - Michael S McGrath
- Department of Medicine, The University of California at San Francisco, San Francisco, California, USA
| |
Collapse
|
3
|
Rauch DA, Ramos PV, Khanfar M, Harding J, Joseph A, Fahad A, Simonson P, Risch I, Griffith O, Griffith M, Ratner L. Single-Cell Transcriptomic Analysis of Kaposi Sarcoma. PLoS Pathog 2025; 21:e1012233. [PMID: 40168402 PMCID: PMC11984749 DOI: 10.1371/journal.ppat.1012233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 04/10/2025] [Accepted: 11/25/2024] [Indexed: 04/03/2025] Open
Abstract
Kaposi Sarcoma (KS) is a complex tumor caused by KS-associated herpesvirus 8 (KSHV). Histological analysis reveals a mixture of "spindle cells", vascular-like spaces, extravasated erythrocytes, and immune cells. In order to elucidate the infected and uninfected cell types in KS tumors, we examined twenty-five skin and blood samples from sixteen subjects by single cell RNA sequence analyses. Two populations of KSHV-infected cells were identified, one of which represented a CD34-negative proliferative fraction of endothelial cells, and the second representing CD34-positive cells expressing endothelial genes found in a variety of cell types including high endothelial venules, fenestrated capillaries, and endothelial tip cells. Although both infected clusters contained cells expressing lytic and latent KSHV genes, the CD34+ cells expressed more K5 and less K12. Novel cellular biomarkers were identified in the KSHV infected cells, including the sodium channel SCN9A. The number of KSHV positive cells was found to be less than 10% of total tumor cells in all samples and correlated inversely with tumor-infiltrating immune cells. T-cell receptor clones were expanded in KS tumors and blood, although in differing magnitudes. Changes in cellular composition in KS tumors after treatment with antiretroviral therapy alone, or immunotherapy were noted. These studies demonstrate the feasibility of single cell analyses to identify prognostic and predictive biomarkers.
Collapse
Affiliation(s)
- Daniel A. Rauch
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - Paula Valiño Ramos
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - Mariam Khanfar
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - John Harding
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - Ancy Joseph
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - Anam Fahad
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Paul Simonson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Isabel Risch
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - Obi Griffith
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - Malachi Griffith
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - Lee Ratner
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America,
| |
Collapse
|
4
|
Lacunza E, Fink V, Naipauer J, Salas ME, Gun AM, Goldman MJ, Zhu J, Williams S, Figueroa MI, Cahn P, Coso O, Cesarman E, Ramos JC, Abba MC. Integrative Functional Genomics Analysis of Kaposi Sarcoma Cohorts. RESEARCH SQUARE 2025:rs.3.rs-6146471. [PMID: 40162228 PMCID: PMC11952665 DOI: 10.21203/rs.3.rs-6146471/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Kaposi sarcoma (KS) is an AIDS-defining cancer and a significant global health challenge caused by KS-associated herpesvirus (KSHV). NGS-based approaches have profiled KS lesions in a minimal number of studies compared with other neoplastic diseases. Here we present a compiled and harmonized dataset of 131 KS and non-tumor cutaneous samples in the context of their predicted pathway activities, immune infiltrate, KSHV and HIV gene expression profiles, and their associated clinical data representing patient populations from Argentina, United States (USA), and Sub-Saharan Africa cohorts. RNA-seq data from 9 Argentinian KS lesions were generated and integrated with previously published datasets derived from the USA and sub-Saharan African cohorts from Tanzania, Zambia, and Uganda. An unsupervised analysis of 131 KS-related samples allowed us to identify four KS clusters based on their host and KSHV gene expression profiles, immune infiltrate, and the activity of specific signaling pathways. The compiled RNA-seq profile is shared with the research community through the UCSC Xena browser for further visualization, download, and analysis (https://kaposi.xenahubs.net/). These resources will allow biologists without bioinformatics knowledge to explore and correlate the host and viral transcriptome in a curated dataset of different KS RNA-seq-based cohorts, which can lead to novel biological insights and biomarker discovery.
Collapse
Affiliation(s)
| | - Valeria Fink
- Dirección de Investigaciones, Fundación Huésped, Buenos Aires, Argentina
| | - Julian Naipauer
- Instituto de Fisiología (IFIBYNE), Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | | | - Ana M Gun
- Dirección de Investigaciones, Fundación Huésped, Buenos Aires, Argentina
| | - Mary J Goldman
- UC Santa Cruz Genomics Institute, University of California
| | - Jingchun Zhu
- UC Santa Cruz Genomics Institute, University of California
| | | | - María I Figueroa
- Dirección de Investigaciones, Fundación Huésped, Buenos Aires, Argentina
| | - Pedro Cahn
- Dirección de Investigaciones, Fundación Huésped, Buenos Aires, Argentina
| | - Omar Coso
- Instituto de Fisiología (IFIBYNE), Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | | | | | | |
Collapse
|
5
|
Nair A, Davis DA, Warner A, Karim B, Ramaswami R, Yarchoan R. The elevated expression of ORF75, a KSHV lytic gene, in Kaposi sarcoma lesions is driven by a GC-rich DNA cis element in its promoter region. PLoS Pathog 2025; 21:e1012984. [PMID: 40096169 PMCID: PMC11981178 DOI: 10.1371/journal.ppat.1012984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 04/09/2025] [Accepted: 02/16/2025] [Indexed: 03/19/2025] Open
Abstract
The spindle cells of Kaposi sarcoma (KS) lesions primarily express Kaposi sarcoma herpesvirus (KSHV) latent genes with minimal expression of lytic genes. However, recent transcriptome analyses of KS lesions have shown high expression of KSHV open reading frame (ORF) 75, which is considered a late lytic gene based on analyses in primary effusion lymphoma (PEL) lines. ORF75 encodes a pseudo-amidotransferase that is part of the viral tegument, acts as a suppressor of innate immunity, and is essential for viral lytic replication. We assessed a representative KS lesion by RNAscope and found that ORF75 RNA was expressed in the majority of latency-associated nuclear antigen (LANA)-expressing cells. Luciferase fusion reporter constructs of the ORF75 promoter were analyzed for factors potentially driving its expression in KS. The ORF75 promoter construct showed high basal transcriptional activity in vitro in endothelial cells, mediated by a proximal consensus specificity protein 1 (Sp1) (GGGGCGGGGC) element along with two distal CCAAT boxes. Sp proteins formed complexes with the proximal consensus Sp1 element to activate ORF75 promoter transcription. We also found evidence that a repressive factor or factors in B cells, but not endothelial or epithelial cells, interacted with more distal elements in the ORF75 promoter region to repress constitutive ORF75 expression in B cells. Alternate forms of Sp1 were found to accumulate during latency and showed substantial enrichment during viral lytic replication in PEL cells and infected endothelial cells, but their functional significance is unclear. We also found that ORF75 can in turn upregulate its own expression and that of other KSHV genes. Thus, while ORF75 acts primarily as a lytic gene in PEL cell lines, Sp proteins induce substantial constitutive ORF75 transcription in infected endothelial cells and this can account for its high expression in KS lesions.
Collapse
Affiliation(s)
- Ashwin Nair
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - David A. Davis
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Andrew Warner
- Frederick National Laboratory, National Cancer Institute, Frederick, Maryland, United States of America
| | - Baktiar Karim
- Frederick National Laboratory, National Cancer Institute, Frederick, Maryland, United States of America
| | - Ramya Ramaswami
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
6
|
Ravishankar S, Towlerton AM, Tiamiyu IL, Mooka P, Nankoma J, Kafeero J, Mubiru D, Sekitene S, Aicher LD, Miller CP, Coffey DG, Okoche L, Atwinirembabazi P, Okonye J, White J, Koelle DM, Jing L, Phipps WT, Warren EH. T-cells specific for KSHV and HIV migrate to Kaposi sarcoma tumors and persist over time. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.06.579223. [PMID: 38370623 PMCID: PMC10871354 DOI: 10.1101/2024.02.06.579223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi sarcoma (KS), which causes significant morbidity and mortality worldwide, particularly in people living with HIV (PLWH) and in sub-Saharan Africa where KSHV seroprevalence is high. Postulating that T-cells specific for KSHV and HIV would be attracted to KS tumors, we performed transcriptional profiling and T-cell receptor (TCR) repertoire analysis of tumor biopsies from 144 Ugandan adults with KS, 106 of whom were also living with HIV. We show that CD8+ T-cells and M2-polarized macrophages are the most common immune cells in KS tumors. The TCR repertoire of T-cells associated with KS tumors is shared across spatially and temporally distinct tumors from the same individual. Clusters of T-cells with predicted shared specificity for uncharacterized antigens, potentially encoded by KSHV or HIV, comprise ~25% of the T-cells in KS tumors. Single-cell RNA-sequencing of blood from a subset of 9 adults captured 4,283 unique αβ TCRs carried in 14,698 putative KSHV- or HIV-specific T-cells, which carried an antigen-experienced effector phenotype. T-cells engineered to express a representative sample of these TCRs showed high-avidity recognition of KSHV- or HIV-encoded antigens. These results suggest that a poly-specific, high-avidity KSHV- and HIV-specific T-cell response, potentially inhibited by M2 macrophages, migrates to and localizes with KS tumors. Further analysis of KSHV- and HIV-specific T-cells in KS tumors will provide insight into the pathogenesis of KS and could guide the development of specific immune therapy based on adoptive transfer or vaccination.
Collapse
Affiliation(s)
- Shashidhar Ravishankar
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Andrea M.H. Towlerton
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Hutchinson Centre Research Institute – Uganda, Kampala, Uganda
| | - Iyabode L. Tiamiyu
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Peter Mooka
- Hutchinson Centre Research Institute – Uganda, Kampala, Uganda
| | - Janet Nankoma
- Hutchinson Centre Research Institute – Uganda, Kampala, Uganda
| | - James Kafeero
- Hutchinson Centre Research Institute – Uganda, Kampala, Uganda
- Uganda Cancer Institute, Kampala, Uganda
| | - Dennis Mubiru
- Hutchinson Centre Research Institute – Uganda, Kampala, Uganda
- Uganda Cancer Institute, Kampala, Uganda
| | - Semei Sekitene
- Hutchinson Centre Research Institute – Uganda, Kampala, Uganda
- Uganda Cancer Institute, Kampala, Uganda
| | - Lauri D. Aicher
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Chris P. Miller
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - David G. Coffey
- Division of Myeloma, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, United States of America
| | - Lazarus Okoche
- Hutchinson Centre Research Institute – Uganda, Kampala, Uganda
| | | | - Joseph Okonye
- Hutchinson Centre Research Institute – Uganda, Kampala, Uganda
| | - Jessica White
- Department of Medicine, University of Washington, Seattle, Washington, United States
| | - David M. Koelle
- Department of Medicine, University of Washington, Seattle, Washington, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Warren T. Phipps
- Hutchinson Centre Research Institute – Uganda, Kampala, Uganda
- Department of Medicine, University of Washington, Seattle, Washington, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Edus H. Warren
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Hutchinson Centre Research Institute – Uganda, Kampala, Uganda
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
7
|
Lurain KA, Ramaswami R, Krug LT, Whitby D, Ziegelbauer JM, Wang HW, Yarchoan R. HIV-associated cancers and lymphoproliferative disorders caused by Kaposi sarcoma herpesvirus and Epstein-Barr virus. Clin Microbiol Rev 2024; 37:e0002223. [PMID: 38899877 PMCID: PMC11391709 DOI: 10.1128/cmr.00022-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
SUMMARYWithin weeks of the first report of acquired immunodeficiency syndrome (AIDS) in 1981, it was observed that these patients often had Kaposi sarcoma (KS), a hitherto rarely seen skin tumor in the USA. It soon became apparent that AIDS was also associated with an increased incidence of high-grade lymphomas caused by Epstein-Barr virus (EBV). The association of AIDS with KS remained a mystery for more than a decade until Kaposi sarcoma-associated herpesvirus (KSHV) was discovered and found to be the cause of KS. KSHV was subsequently found to cause several other diseases associated with AIDS and human immunodeficiency virus (HIV) infection. People living with HIV/AIDS continue to have an increased incidence of certain cancers, and many of these cancers are caused by EBV and/or KSHV. In this review, we discuss the epidemiology, virology, pathogenesis, clinical manifestations, and treatment of cancers caused by EBV and KSHV in persons living with HIV.
Collapse
Affiliation(s)
- Kathryn A Lurain
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Ramya Ramaswami
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Laurie T Krug
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Joseph M Ziegelbauer
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Hao-Wei Wang
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Robert Yarchoan
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Rauch DA, Ramos PV, Khanfar M, Harding J, Joseph A, Griffith O, Griffith M, Ratner L. Single-Cell Transcriptomic Analysis of Kaposi Sarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592010. [PMID: 38746135 PMCID: PMC11092626 DOI: 10.1101/2024.05.01.592010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Kaposi Sarcoma (KS) is a complex tumor caused by KS-associated herpesvirus 8 (KSHV). Histological analysis reveals a mixture of "spindle cells", vascular-like spaces, extravasated erythrocytes, and immune cells. In order to elucidate the infected and uninfected cell types in KS tumors, we examined skin and blood samples from twelve subjects by single cell RNA sequence analyses. Two populations of KSHV-infected cells were identified, one of which represented a proliferative fraction of lymphatic endothelial cells, and the second represented an angiogenic population of vascular endothelial tip cells. Both infected clusters contained cells expressing lytic and latent KSHV genes. Novel cellular biomarkers were identified in the KSHV infected cells, including the sodium channel SCN9A. The number of KSHV positive tumor cells was found to be in the 6% range in HIV-associated KS, correlated inversely with tumor-infiltrating immune cells, and was reduced in biopsies from HIV-negative individuals. T-cell receptor clones were expanded in KS tumors and blood, although in differing magnitudes. Changes in cellular composition in KS tumors were identified in subjects treated with antiretroviral therapy alone, or immunotherapy. These studies demonstrate the feasibility of single cell analyses to identify prognostic and predictive biomarkers. Author Summary Kaposi sarcoma (KS) is a malignancy caused by the KS-associated herpesvirus (KSHV) that causes skin lesions, and may also be found in lymph nodes, lungs, gastrointestinal tract, and other organs in immunosuppressed individuals more commonly than immunocompetent subjects. The current study examined gene expression in single cells from the tumor and blood of these subjects, and identified the characteristics of the complex mixtures of cells in the tumor. This method also identified differences in KSHV gene expression in different cell types and associated cellular genes expressed in KSHV infected cells. In addition, changes in the cellular composition could be elucidated with therapeutic interventions.
Collapse
|
9
|
Ramaswami R, Tagawa T, Mahesh G, Serquina A, Koparde V, Lurain K, Dremel S, Li X, Mungale A, Beran A, Ohler ZW, Bassel L, Warner A, Mangusan R, Widell A, Ekwede I, Krug LT, Uldrick TS, Yarchoan R, Ziegelbauer JM. Transcriptional landscape of Kaposi sarcoma tumors identifies unique immunologic signatures and key determinants of angiogenesis. J Transl Med 2023; 21:653. [PMID: 37740179 PMCID: PMC10517594 DOI: 10.1186/s12967-023-04517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Kaposi sarcoma (KS) is a multicentric tumor caused by Kaposi sarcoma herpesvirus (KSHV) that leads to morbidity and mortality among people with HIV worldwide. KS commonly involves the skin but can occur in the gastrointestinal tract (GI) in severe cases. METHODS RNA sequencing was used to compare the cellular and KSHV gene expression signatures of skin and GI KS lesions in 44 paired samples from 19 participants with KS alone or with concurrent KSHV-associated diseases. Analyses of KSHV expression from KS lesions identified transcriptionally active areas of the viral genome. RESULTS The transcript of an essential viral lytic gene, ORF75, was detected in 91% of KS lesions. Analyses of host genes identified 370 differentially expressed genes (DEGs) unique to skin KS and 58 DEGs unique to GI KS lesions as compared to normal tissue. Interleukin (IL)-6 and IL-10 gene expression were higher in skin lesions as compared to normal skin but not in GI KS lesions. Twenty-six cellular genes were differentially expressed in both skin and GI KS tissues: these included Fms-related tyrosine kinase 4 (FLT4), encoding an angiogenic receptor, and Stanniocalcin 1 (STC1), a secreted glycoprotein. FLT4 and STC1 were further investigated in functional studies using primary lymphatic endothelial cells (LECs). In these models, KSHV infection of LECs led to increased tubule formation that was impaired upon knock-down of STC1 or FLT4. CONCLUSIONS This study of transcriptional profiling of KS tissue provides novel insights into the characteristics and pathogenesis of this unique virus-driven neoplasm.
Collapse
Affiliation(s)
- Ramya Ramaswami
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Takanobu Tagawa
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Guruswamy Mahesh
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Anna Serquina
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Vishal Koparde
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kathryn Lurain
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Sarah Dremel
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Xiaofan Li
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Ameera Mungale
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Alex Beran
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Zoe Weaver Ohler
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Laura Bassel
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Andrew Warner
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ralph Mangusan
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Anaida Widell
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Irene Ekwede
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Laurie T Krug
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Thomas S Uldrick
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Joseph M Ziegelbauer
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA.
| |
Collapse
|
10
|
Doughan A, Adingo W, Salifu SP. RNA-seq research landscape in Africa: systematic review reveals disparities and opportunities. Eur J Med Res 2023; 28:244. [PMID: 37480073 PMCID: PMC10362609 DOI: 10.1186/s40001-023-01206-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/30/2023] [Indexed: 07/23/2023] Open
Abstract
RNA sequencing has emerged as the standard method for transcriptome profiling of several human diseases. We performed a systematic review detailing the state of RNA-seq analyses in Africa from its inception till February 2022. Our goal was to provide an update on the state of RNA-seq analyses in Africa, including research gaps, funding information, participants information, authorship and collaborations. Following the PRISMA guidelines, we performed an exhaustive literature search for RNA-seq studies conducted in Africa, using PubMed, Scopus and Academic Search Complete (EBSCOhost). The output was exported to Endnote X9 for analyses. The initial literature search yielded 10,369 articles spread across PubMed (4916), Scopus (4847) and EBSCOhost (580). By applying our exclusion criteria, 28 full-text articles remained and were thoroughly analyzed. Overall, 17 human diseases were studied, including cancers (10/28), infectious disease (4/28), parasitic disease (4/28), autoimmune disorders (2/28) and neglected tropical diseases (2/28). Majority of the articles were published in PLoS Pathogens, BioMed Central and Nature. The National Institutes of Health (42.4%), the Bill & Melinda Gates Foundation (7.5%) and the Wellcome Trust (7.5%) were the top funders of the research studies. Eleven African countries contributed to the participant group, with 57% located in Eastern Africa, 23.1% from Western and 16.7% from Southern Africa. The extremely low number of RNA-seq research studies in Africa is worrying and calls for an immediate investment in research by the African governments. The funding agencies and institutional review boards should also ensure that African collaborators are treated equitably in the course of the research projects.
Collapse
Affiliation(s)
- Albert Doughan
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Wisdom Adingo
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Samson Pandam Salifu
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana.
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana.
| |
Collapse
|
11
|
Vragel G, Gomez BD, Kostelecky RE, Noell KS, Tseng A, Cohen S, Dalwadi M, Medina EM, Nail EA, Goodspeed A, Clambey ET, van Dyk LF. Murine Gammaherpesvirus 68 Efficiently Infects Myeloid Cells Resulting In An Atypical, Restricted Form Of Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.21.545948. [PMID: 37425871 PMCID: PMC10327065 DOI: 10.1101/2023.06.21.545948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The gammaherpesviruses (γHVs) establish a lifelong infection in their hosts, with the cellular outcome of infection intimately regulated by target cell type. Murine gammaherpesvirus 68 (MHV68), a small animal model of γHV infection, infects macrophages in vivo, resulting in a range of outcomes, from lytic replication to latent infection. Here, we have further investigated the nature of MHV68 macrophage infection using reductionist and primary in vivo infection studies. While MHV68 readily infected the J774 macrophage cell line, viral gene expression and replication were significantly impaired relative to a fully permissive fibroblast cell line. Lytic replication only occurred in a small subset of MHV68-infected J774 cells, despite the fact that these cells were fully competent to support lytic replication following pre-treatment with interleukin-4, a known potentiator of replication in macrophages. In parallel, we harvested virally-infected macrophages at 16 hours after MHV68 infection in vivo and analyzed gene expression by single cell RNA-sequencing. Among virally infected macrophages, only rare (0.25%) cells had lytic cycle gene expression, characterized by detection of multiple lytic cycle RNAs. In contrast, ~50% of virally-infected macrophages were characterized by expression of ORF75A, ORF75B and/or ORF75C, in the absence of other detectable viral RNAs. Selective transcription of the ORF75 locus also occurred in MHV68-infected J774 cells. In total, these studies indicate that MHV68 efficiently infects macrophages, with the majority of cells characterized by an atypical state of restricted viral transcription, and only rare cells undergoing lytic replication.
Collapse
Affiliation(s)
- Gabrielle Vragel
- Department of Immunology and Microbiology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Brittany D. Gomez
- Department of Immunology and Microbiology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Rachael E. Kostelecky
- Department of Immunology and Microbiology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Kyra S. Noell
- Department of Immunology and Microbiology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
- Department of Anesthesiology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Ashley Tseng
- Department of Immunology and Microbiology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
- Department of Anesthesiology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Shirli Cohen
- Department of Immunology and Microbiology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Manaal Dalwadi
- Department of Immunology and Microbiology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Eva M. Medina
- Department of Neurology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Elizabeth A. Nail
- Department of Immunology and Microbiology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Andrew Goodspeed
- Department of Pharmacology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
- University of Colorado Cancer Center, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Eric T. Clambey
- Department of Anesthesiology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Linda F. van Dyk
- Department of Immunology and Microbiology, University of Colorado Denver | Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| |
Collapse
|
12
|
Santiago JC, Westfall DH, Adams SV, Okuku F, Phipps W, Mullins JI. Variation within major internal repeats of KSHV in vivo. Virus Evol 2023; 9:vead034. [PMID: 37325087 PMCID: PMC10266750 DOI: 10.1093/ve/vead034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS), yet the viral genetic factors that lead to the development of KS in KSHV-infected individuals have not been fully elucidated. Nearly, all previous analyses of KSHV genomic evolution and diversity have excluded the three major internal repeat regions: the two origins of lytic replication, internal repeats 1 and 2 (IR1 and IR2), and the latency-associated nuclear antigen (LANA) repeat domain (LANAr). These regions encode protein domains that are essential to the KSHV infection cycle but have been rarely sequenced due to their extended repetitive nature and high guanine and cytosine (GC) content. The limited data available suggest that their sequences and repeat lengths are more heterogeneous across individuals than in the remainder of the KSHV genome. To assess their diversity, the full-length IR1, IR2, and LANAr sequences, tagged with unique molecular identifiers (UMIs), were obtained by Pacific Biosciences' single-molecule real-time sequencing (SMRT-UMI) from twenty-four tumors and six matching oral swabs from sixteen adults in Uganda with advanced KS. Intra-host single-nucleotide variation involved an average of 0.16 per cent of base positions in the repeat regions compared to a nearly identical average of 0.17 per cent of base positions in the remainder of the genome. Tandem repeat unit (TRU) counts varied by only one from the intra-host consensus in a majority of individuals. Including the TRU indels, the average intra-host pairwise identity was 98.3 per cent for IR1, 99.6 per cent for IR2 and 98.9 per cent for LANAr. More individuals had mismatches and variable TRU counts in IR1 (twelve/sixteen) than in IR2 (two/sixteen). There were no open reading frames in the Kaposin coding sequence inside IR2 in at least fifty-five of ninety-six sequences. In summary, the KSHV major internal repeats, like the rest of the genome in individuals with KS, have low diversity. IR1 was the most variable among the repeats, and no intact Kaposin reading frames were present in IR2 of the majority of genomes sampled.
Collapse
Affiliation(s)
- Jan Clement Santiago
- Department of Microbiology, University of Washington, 960 Republican St, Seattle, WA 98109-4325, USA
| | - Dylan H Westfall
- Department of Microbiology, University of Washington, 960 Republican St, Seattle, WA 98109-4325, USA
| | - Scott V Adams
- Global Oncology and Vaccine and Infectious Diseases Division,Fred Hutchinson Cancer Center, 1100 Eastlake Ave, Seattle, 98109-4487 WA, USA
| | - Fred Okuku
- Uganda Cancer Institute, Upper Mulago Hill Road, Kampala, Uganda
| | - Warren Phipps
- Global Oncology and Vaccine and Infectious Diseases Division,Fred Hutchinson Cancer Center, 1100 Eastlake Ave, Seattle, 98109-4487 WA, USA
- Department of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA 98195-8070, USA
| | - James I Mullins
- Department of Microbiology, University of Washington, 960 Republican St, Seattle, WA 98109-4325, USA
- Department of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA 98195-8070, USA
- Department of Global Health, University of Washington, 3980 15th Ave NE, Seattle, WA 98195, USA
| |
Collapse
|
13
|
Damania B, Dittmer DP. Today's Kaposi sarcoma is not the same as it was 40 years ago, or is it? J Med Virol 2023; 95:e28773. [PMID: 37212317 PMCID: PMC10266714 DOI: 10.1002/jmv.28773] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/23/2023]
Abstract
This review will provide an overview of the notion that Kaposi sarcoma (KS) is a disease that manifests under diverse and divergent circumstances. We begin with a historical introduction of KS and KS-associated herpesvirus (KSHV), highlight the diversity of clinical presentations of KS, summarize what we know about the cell of origin for this tumor, explore KSHV viral load as a potential biomarker for acute KSHV infections and KS-associated complications, and discuss immune modulators that impact KSHV infection, KSHV persistence, and KS disease.
Collapse
Affiliation(s)
- Blossom Damania
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, 450 West Drive CB#7295, Rm 12-048, Chapel Hill, NC 27599
| | - Dirk P. Dittmer
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, 450 West Drive CB#7295, Rm 12-048, Chapel Hill, NC 27599
| |
Collapse
|
14
|
Jung KL, Choi UY, Park A, Foo SS, Kim S, Lee SA, Jung JU. Single-cell analysis of Kaposi's sarcoma-associated herpesvirus infection in three-dimensional air-liquid interface culture model. PLoS Pathog 2022; 18:e1010775. [PMID: 35976902 PMCID: PMC9385030 DOI: 10.1371/journal.ppat.1010775] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022] Open
Abstract
The oral cavity is the major site for transmission of Kaposi's sarcoma-associated herpesvirus (KSHV), but how KSHV establishes infection and replication in the oral epithelia remains unclear. Here, we report a KSHV spontaneous lytic replication model using fully differentiated, three-dimensional (3D) oral epithelial organoids at an air-liquid interface (ALI). This model revealed that KSHV infected the oral epithelia when the basal epithelial cells were exposed by damage. Unlike two-dimensional (2D) cell culture, 3D oral epithelial organoid ALI culture allowed high levels of spontaneous KSHV lytic replication, where lytically replicating cells were enriched at the superficial layer of epithelial organoid. Single cell RNA sequencing (scRNAseq) showed that KSHV infection induced drastic changes of host gene expression in infected as well as uninfected cells at the different epithelial layers, resulting in altered keratinocyte differentiation and cell death. Moreover, we identified a unique population of infected cells containing lytic gene expression at the KSHV K2-K5 gene locus and distinct host gene expression compared to latent or lytic infected cells. This study demonstrates an in vitro 3D epithelial organoid ALI culture model that recapitulates KSHV infection in the oral cavity, where KSHV undergoes the epithelial differentiation-dependent spontaneous lytic replication with a unique cell population carrying distinct viral gene expression.
Collapse
Affiliation(s)
- Kyle L. Jung
- Department of Cancer Biology and Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Un Yung Choi
- Department of Cancer Biology and Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Angela Park
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Suan-Sin Foo
- Department of Cancer Biology and Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Stephanie Kim
- Department of Cancer Biology and Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Shin-Ae Lee
- Department of Cancer Biology and Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jae U. Jung
- Department of Cancer Biology and Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
15
|
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV)-associated primary effusion lymphomas (PEL) are traditionally viewed as homogenous regarding viral transcription and lineage of origin, but so far this contention has not been explored at the single-cell level. Single-cell RNA sequencing of latently infected PEL supports the existence of multiple subpopulations even within a single cell line. At most 1% of the cells showed evidence of near-complete lytic transcription. The majority of cells only expressed the canonical viral latent transcripts: those originating from the latency locus, the viral interferon regulatory factor locus, and the viral lncRNA nut-1/Pan/T1.1; however, a significant fraction of cells showed various degrees of more permissive transcription, and some showed no evidence of KSHV transcripts whatsoever. Levels of viral interleukin-6 (IL-6)/K2 mRNA emerged as the most distinguishing feature to subset KSHV-infected PEL. One newly uncovered phenotype is the existence of BCBL-1 cells that readily adhered to fibronectin and that displayed mesenchymal lineage-like characteristics. IMPORTANCE Latency is the defining characteristic of the Herpesviridae and central to the tumorigenesis phenotype of Kaposi's sarcoma-associated herpesvirus (KSHV). KSHV-driven primary effusion lymphomas (PEL) rapidly develop resistance to therapy, suggesting tumor instability and plasticity. At any given time, a fraction of PEL cells spontaneously reactivate KSHV, suggesting transcriptional heterogeneity even within a clonal cell line under optimal growth conditions. This study employed single-cell mRNA sequencing to explore the within-population variability of KSHV transcription and how it relates to host cell transcription. Individual clonal PEL cells exhibited differing patterns of viral transcription. Most cells showed the canonical pattern of KSHV latency (LANA, vCyc, vFLIP, Kaposin, and vIRFs), but a significant fraction evidenced extended viral gene transcription, including of the viral IL-6 homolog, open reading frame K2. This study suggests new targets of intervention for PEL. It establishes a conceptual framework to design KSHV cure studies analogous to those for HIV.
Collapse
|
16
|
Casco A, Gupta A, Hayes M, Djavadian R, Ohashi M, Johannsen E. Accurate Quantification of Overlapping Herpesvirus Transcripts from RNA Sequencing Data. J Virol 2022; 96:e0163521. [PMID: 34705568 PMCID: PMC8791286 DOI: 10.1128/jvi.01635-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/21/2021] [Indexed: 01/27/2023] Open
Abstract
Herpesviruses employ extensive bidirectional transcription of overlapping genes to overcome length constraints on their gene product repertoire. As a consequence, many lytic transcripts cannot be measured individually by reverse transcription-quantitative PCR (RT-qPCR) or conventional RNA sequencing (RNA-seq) analysis. A. G. Bruce, S. Barcy, T. DiMaio, E. Gan, et al. (Pathogens 6:11, 2017, https://doi.org/10.3390/pathogens6010011) have proposed an approximation method using unique coding sequences (UCDS) to estimate lytic gene abundance from Kaposi's sarcoma-associated herpesvirus (KSHV) RNA-seq data. Although UCDS has been widely employed, its accuracy, to our knowledge, has never been rigorously validated for any herpesvirus. In this study, we use cap analysis of gene expression sequencing (CAGE-seq) as a gold-standard to determine the accuracy of UCDS for estimating Epstein-Barr virus (EBV) lytic gene expression levels from RNA-seq data. We also introduce the Unique TranScript (UTS) method, which, like UCDS, estimates transcript abundance from changes in mean RNA-seq read depth. UTS is distinguished by its use of empirically determined 5' and 3' transcript ends rather than coding sequence annotations. Compared to conventional read assignment, both UCDS and UTS improved the accuracy of quantitation of overlapping genes, with UTS giving the most-accurate results. The UTS method discards fewer reads and may be advantageous for experiments with less sequencing depth. UTS is compatible with any aligner and, unlike isoform-aware alignment methods, can be implemented on a laptop computer. Our findings demonstrate that the accuracy achieved by complex and expensive techniques such as CAGE-seq can be approximated using conventional short-read RNA-seq data when read assignment methods address transcript overlap. Although our study focuses on EBV transcription, the UTS method should be applicable across all herpesviruses as well as to other genomes with extensively overlapping transcriptomes. IMPORTANCE Many viruses employ extensively overlapping transcript structures. This complexity makes it difficult to quantify gene expression by using conventional methods, including RNA-seq. Although high-throughput techniques that overcome these limitations exist, they are complex, expensive, and scarce in the herpesvirus literature relative to short-read RNA-seq. Here, using Epstein-Barr virus (EBV) as a model, we demonstrate that conventional RNA-seq analysis methods fail to accurately quantify the abundances of many overlapping transcripts. We further show that the previously described Unique CoDing Sequence (UCDS) method and our Unique TranScript (UTS) method greatly improve the accuracy of EBV lytic gene measurements obtained from RNA-seq data. The UTS method has the advantages of discarding fewer reads and being implementable on a laptop computer. Although this study focuses on EBV, the UCDS and UTS methods should be applicable across herpesviruses and for other viruses that make extensive use of overlapping transcription.
Collapse
Affiliation(s)
- Alejandro Casco
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, USA
| | - Akansha Gupta
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, USA
| | - Mitchell Hayes
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, USA
| | - Reza Djavadian
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, USA
| | - Makoto Ohashi
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, USA
| | - Eric Johannsen
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
17
|
A panel of KSHV mutants in the polycistronic kaposin locus for precise analysis of individual protein products. J Virol 2021; 96:e0156021. [PMID: 34936820 PMCID: PMC8906436 DOI: 10.1128/jvi.01560-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the cause of several human cancers, including the endothelial cell (EC) malignancy, Kaposi’s sarcoma. Unique KSHV genes absent from other human herpesvirus genomes, the “K-genes,” are important for KSHV replication and pathogenesis. Among these, the kaposin transcript is highly expressed in all phases of infection, but its complex polycistronic nature has hindered functional analysis to date. At least three proteins are produced from the kaposin transcript: Kaposin A (KapA), B (KapB), and C (KapC). To determine the relative contributions of kaposin proteins during KSHV infection, we created a collection of mutant viruses unable to produce kaposin proteins individually or in combination. In previous work, we showed KapB alone recapitulated the elevated proinflammatory cytokine transcripts associated with KS via the disassembly of RNA granules called processing bodies (PBs). Using the new ΔKapB virus, we showed that KapB was necessary for this effect during latent KSHV infection. Moreover, we observed that despite the ability of all kaposin-deficient latent iSLK cell lines to produce virions, all displayed low viral episome copy number, a defect that became more pronounced after primary infection of naive ECs. For ΔKapB, provision of KapB in trans failed to complement the defect, suggesting a requirement for the kaposin locus in cis. These findings demonstrate that our panel of kaposin-deficient viruses enables precise analysis of the respective contributions of individual kaposin proteins to KSHV replication. Moreover, our mutagenesis approach serves as a guide for the functional analysis of other complex multicistronic viral loci. IMPORTANCE Kaposi’s sarcoma-associated herpesvirus (KSHV) expresses high levels of the kaposin transcript during both latent and lytic phases of replication. Due to its repetitive, GC-rich nature and polycistronic coding capacity, until now no reagents existed to permit a methodical analysis of the role of individual kaposin proteins in KSHV replication. We report the creation of a panel of recombinant viruses and matched producer cell lines that delete kaposin proteins individually or in combination. We demonstrate the utility of this panel by confirming the requirement of one kaposin translation product to a key KSHV latency phenotype. This study describes a new panel of molecular tools for the KSHV field to enable precise analysis of the roles of individual kaposin proteins during KSHV infection.
Collapse
|
18
|
Long WY, Zhao GH, Wu Y. Hesperetin inhibits KSHV reactivation and is reversed by HIF1α overexpression. J Gen Virol 2021; 102. [PMID: 34747688 DOI: 10.1099/jgv.0.001686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), an oncogenic virus, has two life cycle modes: the latent and lytic phases. KSHV lytic reactivation is important for both viral propagation and KSHV-induced tumorigenesis. The KSHV replication and transcription activator (RTA) protein is essential for lytic reactivation. Hesperetin, a citrus polyphenolic flavonoid, has antioxidant, anti-inflammatory, hypolipidemic, cardiovascular and anti-tumour effects. However, the effects of hesperetin on KSHV replication and KSHV-induced tumorigenesis have not yet been reported. Here, we report that hesperetin induces apoptotic cell death in BCBL-1 cells in a dose-dependent manner. Hesperetin inhibits KSHV reactivation and reduces the production of progeny virus from KSHV-harbouring cells. We also confirmed that HIF1α promotes the RTA transcriptional activities and lytic cycle-refractory state of KSHV-infected cells. Hesperetin suppresses HIF1α expression to inhibit KSHV lytic reactivation. These results suggest that hesperetin may represent a novel strategy for the treatment of KSHV infection and KSHV-associated lymphomas.
Collapse
Affiliation(s)
- Wen-Ying Long
- Central Laboratory, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, PR China
| | - Guo-Hua Zhao
- Neurology Department, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, PR China
| | - Yao Wu
- Central Laboratory, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, PR China
| |
Collapse
|
19
|
Ding M, Wu J, Sun R, Yan L, Bai L, Shi J, Feng H, Zhang Y, Lan K, Wang X. Androgen receptor transactivates KSHV noncoding RNA PAN to promote lytic replication-mediated oncogenesis: A mechanism of sex disparity in KS. PLoS Pathog 2021; 17:e1009947. [PMID: 34543357 PMCID: PMC8483343 DOI: 10.1371/journal.ppat.1009947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/30/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) preferentially infects and causes Kaposi’s sarcoma (KS) in male patients. However, the biological mechanisms are largely unknown. This study was novel in confirming the extensive nuclear distribution of the androgen receptor (AR) and its co-localization with viral oncoprotein of latency-associated nuclear antigen in KS lesions, indicating a transcription way of AR in KS pathogenesis. The endogenous AR was also remarkably higher in KSHV-positive B cells than in KSHV-negative cells and responded to the ligand treatment of 5α-dihydrotestosterone (DHT), the agonist of AR. Then, the anti-AR antibody-based chromatin immunoprecipitation (ChIP)-associated sequencing was used to identify the target viral genes of AR, revealing that the AR bound to multiple regions of lytic genes in the KSHV genome. The highest peak was enriched in the core promoter sequence of polyadenylated nuclear RNA (PAN), and the physical interaction was verified by ChIP–polymerase chain reaction (PCR) and the electrophoretic mobility shift assay (EMSA). Consistently, male steroid treatment significantly transactivated the promoter activity of PAN in luciferase reporter assay, consequently leading to extensive lytic gene expression and KSHV production as determined by real-time quantitative PCR, and the deletion of nuclear localization signals of AR resulted in the loss of nuclear transport and transcriptional activity in the presence of androgen and thus impaired the expression of PAN RNA. Oncogenically, this study identified that the AR was a functional prerequisite for cell invasion, especially under the context of KSHV reactivation, through hijacking the PAN as a critical effector. Taken together, a novel mechanism from male sex steroids to viral noncoding RNA was identified, which might provide a clue to understanding the male propensity in KS. Although the incidence of Kaposi’ sarcoma (KS) is higher in men, little is known about the mechanisms by which male sex steroids contribute to this disparity. The present study confirmed the striking expression of the androgen receptor (AR) and its concordant nuclear distribution in KS tissues. High-throughput chromatin immunoprecipitation sequencing analysis showed that the AR had extensive binding sites in the KSHV genome, in which the highest enriched gene was PAN. PAN also exhibited the strongest upregulation of promoter activity and RNA transcription among various KSHV lytic genes after the male hormone treatment. Specifically, the effect was a result of the DNA-binding capability of AR to PAN promoter. Moreover, the AR induced dramatic cell invasion, especially under KSHV lytic replication, and the effect was greatly impaired by the inhibitory effect of siRNA on PAN RNA. This study provided a unique insight into the reason why KS occurred predominantly in men.
Collapse
Affiliation(s)
- Mingzhu Ding
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, P.R. China
| | - Jinfeng Wu
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, P.R. China
| | - Rui Sun
- State Key Laboratory of Virology, College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, P.R. China
| | - Lijun Yan
- State Key Laboratory of Virology, College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, P.R. China
| | - Lei Bai
- State Key Laboratory of Virology, College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, P.R. China
| | - Jiajian Shi
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, P.R. China
| | - Hua Feng
- Omics Core, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Yuqi Zhang
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, P.R. China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, P.R. China
- * E-mail: (KL); (XW)
| | - Xing Wang
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, P.R. China
- * E-mail: (KL); (XW)
| |
Collapse
|
20
|
Ding Y, Chen W, Lu Z, Wang Y, Yuan Y. Kaposi's sarcoma-associated herpesvirus promotes mesenchymal-to-endothelial transition by resolving the bivalent chromatin of PROX1 gene. PLoS Pathog 2021; 17:e1009847. [PMID: 34492084 PMCID: PMC8448337 DOI: 10.1371/journal.ppat.1009847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/17/2021] [Accepted: 07/27/2021] [Indexed: 01/05/2023] Open
Abstract
Increasing evidence suggests that Kaposi’s sarcoma (KS) arises from Kaposi’s sarcoma-associated herpesvirus (KSHV)-infected mesenchymal stem cells (MSCs) through mesenchymal-to-endothelial transition (MEndT). KSHV infection promotes MSC differentiation of endothelial lineage and acquisition of tumorigeneic phenotypes. To understand how KSHV induces MEndT and transforms MSCs to KS cells, we investigated the mechanism underlying KSHV-mediated MSC endothelial lineage differentiation. Like embryonic stem cells, MSC differentiation and fate determination are under epigenetic control. Prospero homeobox 1 (PROX1) is a master regulator that controls lymphatic vessel development and endothelial differentiation. We found that the PROX1 gene in MSCs harbors a distinctive bivalent epigenetic signature consisting of both active marker H3K4me3 and repressive marker H3K27me3, which poises expression of the genes, allowing timely activation upon differentiation signals or environmental stimuli. KSHV infection effectively resolves the bivalent chromatin by decreasing H3K27me3 and increasing H3K4me3 to activate the PROX1 gene. vIL-6 signaling leads to the recruitment of MLL2 and SET1 complexes to the PROX1 promoter to increase H3K4me3, and the vGPCR-VEGF-A axis is responsible for removing PRC2 from the promoter to reduce H3K27me3. Therefore, through a dual signaling process, KSHV activates PROX1 gene expression and initiates MEndT, which renders MSC tumorigenic features including angiogenesis, invasion and migration. Numerous parallelisms between development and cancer led to the concept that cancer is a development problem over the past 50 years. As our knowledge of epigenetic regulation is advancing, the similarities between development and cancer are becoming more apparent, providing further support to the theory. KSHV infection of mesenchymal stem cells (MSCs) may result in Kaposi’s sarcoma (KS) through mesenchymal-to-endothelial transition (MEndT), a process resembling endothelial differentiation during development. KSHV initiates MEndT by activating the homeobox gene PROX1, a master regulator of the lymphatic endothelial cell differentiation, at the epigenetic level. Here we found that the PROX1 gene resides in bivalent domain chromatin in MSCs and KSHV infection resolves it through a dual signaling process to activates the PROX1 gene, which initiates MEndT and confers MSC KS-like phenotypes. The significance of this study is two-fold. First, the study elucidated the mechanism underlying KSHV-mediated MEndT and KS development at the transcription level. Second, KSHV uses two independent pathways to elevate activating histone modification and decrease repressive marker, respectively, to resolved bivalent chromatin, revealing a two-factor-authentication mechanism in the epigenetic regulation, which may grant a more efficient and accurate response to activate a gene in bivalent chromatin.
Collapse
Affiliation(s)
- Yao Ding
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weikang Chen
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhengzhou Lu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Wang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Yuan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Basic and Translational Sciences, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania
- * E-mail:
| |
Collapse
|
21
|
Intra-host changes in Kaposi sarcoma-associated herpesvirus genomes in Ugandan adults with Kaposi sarcoma. PLoS Pathog 2021; 17:e1008594. [PMID: 33465147 PMCID: PMC7845968 DOI: 10.1371/journal.ppat.1008594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 01/29/2021] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Intra-host tumor virus variants may influence the pathogenesis and treatment responses of some virally-associated cancers. However, the intra-host variability of Kaposi sarcoma-associated herpesvirus (KSHV), the etiologic agent of Kaposi sarcoma (KS), has to date been explored with sequencing technologies that possibly introduce more errors than that which occurs in the viral population, and these studies have only studied variable regions. Here, full-length KSHV genomes in tumors and/or oral swabs from 9 Ugandan adults with HIV-associated KS were characterized. Furthermore, we used deep, short-read sequencing using duplex unique molecular identifiers (dUMI)–random double-stranded oligonucleotides that barcode individual DNA molecules before library amplification. This allowed suppression of PCR and sequencing errors to ~10−9/base as well as afforded accurate determination of KSHV genome numbers sequenced in each sample. KSHV genomes were assembled de novo, and rearrangements observed were confirmed by PCR and Sanger sequencing. 131-kb KSHV genome sequences, excluding major repeat regions, were successfully obtained from 23 clinical specimens, averaging 2.3x104 reads/base. Strikingly, KSHV genomes were virtually identical within individuals at the point mutational level. The intra-host heterogeneity that was observed was confined to tumor-associated KSHV mutations and genome rearrangements, all impacting protein-coding sequences. Although it is unclear whether these changes were important to tumorigenesis or occurred as a result of genomic instability in tumors, similar changes were observed across individuals. These included inactivation of the K8.1 gene in tumors of 3 individuals and retention of a region around the first major internal repeat (IR1) in all instances of genomic deletions and rearrangements. Notably, the same breakpoint junctions were found in distinct tumors within single individuals, suggesting metastatic spread of rearranged KSHV genomes. These findings define KSHV intra-host heterogeneity in vivo with greater precision than has been possible in the past and suggest the possibility that aberrant KSHV genomes may contribute to aspects of KS tumorigenesis. Furthermore, study of KSHV with use of dUMI provides a proof of concept for utilizing this technique for detailed study of other virus populations in vivo. Kaposi sarcoma (KS) is a leading cancer in sub-Saharan Africa and in persons with HIV co-infection. Kaposi sarcoma-associated herpesvirus (KSHV, also referred to as human herpesvirus-8, or HHV-8) is the etiologic agent of KS, but the factors that contribute to the development of KS, which occurs in only a small subset of infected individuals, remain largely unknown. While strain differences or mutations in other tumor viruses are known to affect the risk and progression of their associated cancers, whether genetic variation in KSHV is important to the natural history of KS is unclear. Most studies of KSHV diversity have only characterized ~4% of its 165-kb genome, and the observed variation in some studies is likely to have been impacted by PCR or cloning artifacts. To precisely define genomic diversity of KSHV in vivo, we evaluated full-length viral genomes (except the internal repeat regions) using a technique that greatly lowers sequencing error rates and thus measures genomic diversity much more accurately than previous studies. In addition, we extended our analyses to look for potential tumor-specific changes in the KSHV genomes by examining viruses in both tumor and non-tumor tissues. To these ends, we performed highly sensitive, single-molecule sequencing of whole KSHV genomes in paired KS tumors and oral swabs from 9 individuals with KS. We found that KSHV genomes were virtually identical within the 9 individuals, with no evidence of quasispecies formation or multi-strain infection. However, KSHV genome aberrations and gene-inactivating mutations were found to be common in KS tumors, often impacting the same genes and genomic regions across individuals. Whether theses mutations influence KS tumorigenesis or result from genomic instability commonly found in tumors warrants further study. Lastly, aberrant KSHV genomes were found to be shared by distinct tumors within individuals, suggesting the capacity of KS tumor cells to metastasize and seed new lesions.
Collapse
|
22
|
Widespread Traces of Lytic Kaposi Sarcoma-Associated Herpesvirus in Primary Effusion Lymphoma at Single-Cell Resolution. Microbiol Resour Announc 2020; 9:9/45/e00851-20. [PMID: 33154001 PMCID: PMC7645656 DOI: 10.1128/mra.00851-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cancer cells of primary effusion lymphoma (PEL) often contain both Kaposi sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV). We measured the interplay of human, KSHV, and EBV transcription in a cell culture model of PEL using single-cell RNA sequencing. The data detect widespread trace expression of lytic KSHV genes. Cancer cells of primary effusion lymphoma (PEL) often contain both Kaposi sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV). We measured the interplay of human, KSHV, and EBV transcription in a cell culture model of PEL using single-cell RNA sequencing. The data detect widespread trace expression of lytic KSHV genes.
Collapse
|
23
|
The Oncogenic Kaposi's Sarcoma-Associated Herpesvirus Encodes a Mimic of the Tumor-Suppressive miR-15/16 miRNA Family. Cell Rep 2020; 29:2961-2969.e6. [PMID: 31801064 PMCID: PMC6939447 DOI: 10.1016/j.celrep.2019.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/07/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022] Open
Abstract
Many tumor viruses encode oncogenes of cellular origin. Here, we report an oncoviral mimic of a cellular tumor suppressor. The Kaposi’s sarcoma-associated herpesvirus (KSHV) microRNA (miRNA) miR-K6-5p shares sequence similarity to the tumor-suppressive cellular miR-15/16 miRNA family. We show that miR-K6-5p inhibits cell cycle progression, a hallmark function of miR-16. miR-K6-5p regulates conserved miR-15/16 family miRNA targets, including many cell cycle regulators. Inhibition of miR-K6-5p in KSHV-transformed B cells confers a significant growth advantage. Altogether, our data show that KSHV encodes a functional mimic of miR-15/16 family miRNAs. While it is exceedingly well established that oncogenic viruses encode oncogenes of cellular origin, this is an unusual example of an oncogenic virus that encodes a viral mimic of a cellular tumor suppressor. Encoding a tumor-suppressive miRNA could help KSHV balance viral oncogene expression and thereby avoid severe pathogenesis in the healthy host. Morrison et al. report that the tumor virus KSHV encodes a mimic of a cellular tumor suppressor. KSHV miR-K6-5p phenocopies miR-16-induced cell cycle inhibition, shares mRNA targets and binding sites with miR-16, and negatively regulates proliferation in KSHV-infected cells.
Collapse
|
24
|
Jatho A, Tran BT, Cambia JM, Nanyingi M, Mugisha NM. Cancer Risk Studies and Priority Areas for Cancer Risk Appraisal in Uganda. Ann Glob Health 2020; 86:78. [PMID: 32704483 PMCID: PMC7350938 DOI: 10.5334/aogh.2873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Research into aetiologies and prevention of the commonest cancers and implementation of primary and secondary prevention can reduce cancer risk and improve quality of life. Moreover, monitoring the prevalence of cancer risk factors in a specific population helps guide cancer prevention and early detection efforts and national cancer control programming. Objective This article aims to provide the scope and findings of cancer risk studies conducted in Uganda to guide researchers, health-care professionals, and policymakers. Methods Between November 2019 to January 2020, we searched peer-reviewed published articles in Pubmed, EMBASE and Cochrane Library (Cochrane central register of controlled trials-CENTRAL). We followed the recommendation of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses - the PRISMA. The primary focus was to identify cancer risk and prevention studies conducted in Uganda and published in peer-reviewed journals from January 2000 and January 2020. We used key Boolean search terms with their associated database strings. Results We identified 416 articles, screened 269 non-duplicate articles and obtained 77 full-text articles for review. Out of the 77 studies, we identified one (1%) randomized trial, two (2.5%) retrospective cohort studies and 14 (18%) case-control studies, 46 (60%) cross-sectional studies, five (6.4%) ecological studies, three panel studies (4%) and six (8%) qualitative studies. Cervical cancer was the most studied type of cancer in Uganda (23.4%, n = 18 studies), followed by lymphomas - both Hodgkin and Non-Hodgkin sub-types (20.7%), n = 16 studies) and breast cancer (15.6%, n = 12 studies). In lymphoma studies, Burkitt lymphoma was the most studied type of lymphoma (76%, n = 13 studies). The studies concentrated on specific cancer risk awareness, risk perceptions, attitudes, uptake of screening, uptake of human papillomavirus vaccination, the prevalence of some of the known cancer risk factors and obstacles to accessing screening services. Conclusion The unmet need for comprehensive cancer risk and prevention studies is enormous in Uganda. Future studies need to comprehensively investigate the known and putative cancer risk factors and prioritize the application of the higher-hierarchy evidence-generating epidemiological studies to guide planning of the national cancer control program.
Collapse
Affiliation(s)
- Alfred Jatho
- Department of Cancer Control and Population Health, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, KR
- Uganda Cancer Institute, Kampala, UG
| | - Binh Thang Tran
- Department of Cancer Control and Population Health, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, KR
- Institute of Research and Development, Duy Tan University, Da Nang, VN
| | - Jansen Marcos Cambia
- Department of Cancer Control and Population Health, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, KR
| | | | | |
Collapse
|
25
|
Lidenge SJ, Kossenkov AV, Tso FY, Wickramasinghe J, Privatt SR, Ngalamika O, Ngowi JR, Mwaiselage J, Lieberman PM, West JT, Wood C. Comparative transcriptome analysis of endemic and epidemic Kaposi's sarcoma (KS) lesions and the secondary role of HIV-1 in KS pathogenesis. PLoS Pathog 2020; 16:e1008681. [PMID: 32706839 PMCID: PMC7406108 DOI: 10.1371/journal.ppat.1008681] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/05/2020] [Accepted: 06/03/2020] [Indexed: 02/08/2023] Open
Abstract
In sub-Saharan Africa, endemic Kaposi's sarcoma (EnKS) is still prevalent despite high incidence of epidemic Kaposi's sarcoma (EpKS) resulting from the on-going HIV-1 epidemic. While KSHV is clearly the etiologic agent of KS, the mechanisms underlying KS development are not fully understood. For example, HIV-1 co-infection and concomitant immune dysfunction have been associated with EpKS development. However, the direct or indirect role(s) of HIV-1, and therefore of immune suppression, in EpKS remains unclear. How, or whether, EpKS is mechanistically distinct from EnKS is unknown. Thus, the absence of HIV-1 co-infection in EnKS provides a unique control for investigating and deciphering whether HIV-1 plays a direct or indirect role in the EpKS tumor microenvironment. We hypothesized that HIV-1 co-infection would induce transcriptome changes that differentiate EpKS from EnKS, thereby defining the direct intra-tumor role of HIV-1 in KS. Comparison of ART-treated and -naïve patients would further define the impact of ART on the KS transcriptome. We utilized RNA-seq followed by multiparameter bioinformatics analysis to compare transcriptomes from KS lesions to uninvolved control skin. We provide the first transcriptomic comparison of EpKS versus EnKS, ART-treated vs-naïve EpKS and male vs female EpKS to define the roles of HIV-1 co-infection, the impact of ART, and gender on KS gene expression profiles. Our findings suggest that ART-use and gender have minimal impact on transcriptome profiles of KS lesions. Gene expression profiles strongly correlated between EpKS and EnKS patients (Spearman r = 0.83, p<10-10). A subset of genes involved in tumorigenesis and inflammation/immune responses showed higher magnitude, but not unique dysregulation in EnKS compared to EpKS. While gender and ART had no detectable contribution, the trend toward higher magnitude of gene dysregulation in EnKS coupled with the absence of HIV-1 transcripts in EpKS may suggest an indirect or systemic effect of HIV-1 to promote KS tumorigenesis.
Collapse
Affiliation(s)
- Salum J. Lidenge
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | | | - For Yue Tso
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | | | - Sara R. Privatt
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Owen Ngalamika
- Dermatology and Venereology section, University Teaching Hospitals, University of Zambia School of Medicine, Lusaka, Zambia
| | - John R. Ngowi
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
| | - Julius Mwaiselage
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Paul M. Lieberman
- Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - John T. West
- Nebraska Center for Virology and the Department of Biochemistry, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Charles Wood
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
- Nebraska Center for Virology and the Department of Biochemistry, University of Nebraska, Lincoln, Nebraska, United States of America
| |
Collapse
|
26
|
Wang Y, Yang C, Liu X, Zheng J, Zhang F, Wang D, Xue Y, Li X, Shen S, Shao L, Yang Y, Liu L, Ma J, Liu Y. Transcription factor AP-4 (TFAP4)-upstream ORF coding 66 aa inhibits the malignant behaviors of glioma cells by suppressing the TFAP4/long noncoding RNA 00520/microRNA-520f-3p feedback loop. Cancer Sci 2020; 111:891-906. [PMID: 31943575 PMCID: PMC7060482 DOI: 10.1111/cas.14308] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/27/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023] Open
Abstract
Upstream ORF (uORF) is a translational initiation element located in the 5′UTR of eukaryotic mRNAs. Studies have found that uORFs play an important regulatory role in many diseases. Based on The Cancer Genome Atlas database, the results of our experiments and previous research evidence, we investigated transcription factor AP‐4 (TFAP4) and its uORF, LIM and SH3 protein 1 (LASP1), long noncoding RNA 00520 (LINC00520), and microRNA (miR)‐520f‐3p as candidates involved in glioma malignancy, which is a poorly understood process. Both TFAP4‐66aa‐uORF and miR‐520f‐3p were downregulated, and TFAP4, LASP1, and LINC00520 were highly expressed in glioma tissues and cells. TFAP4‐66aa‐uORF or miR‐520f‐3p overexpression or TFAP4, LASP1, or LINC00520 knockdown inhibited glioma cell proliferation, migration, and invasion, but promoted apoptosis. TFAP4‐66aa‐uORF inhibited the translation of TFAP4 by binding to the TFAP4 mRNA. MicroRNA‐520f‐3p inhibited TFAP4 expression by binding to its 3′UTR. However, LINC00520 could promote the expression of TFAP4 by competitively binding to miR‐520f‐3p. In addition, TFAP4 transcriptionally activated LASP1 and LINC00520 expression by binding to their promoter regions, forming a positive feedback loop of TFAP4/LINC00520/miR‐520f‐3p. Our findings together indicated that TFAP4‐66aa‐uORF inhibited the TFAP4/LINC00520/miR‐520f‐3p feedback loop by directly inhibiting TFAP4 expression, subsequently leading to inhibition of glioma malignancy. This provides a basis for developing new therapeutic approaches for glioma treatment.
Collapse
Affiliation(s)
- Yipeng Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Fangfang Zhang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Xiaozhi Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Shuyuan Shen
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Lianqi Shao
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Yang Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Jun Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| |
Collapse
|
27
|
Münz C. Tumor Microenvironment Conditioning by Abortive Lytic Replication of Oncogenic γ-Herpesviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1225:127-135. [PMID: 32030652 DOI: 10.1007/978-3-030-35727-6_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epstein Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) constitute the human γ-herpesviruses and two of the seven human tumor viruses. In addition to their viral oncogenes that primarily belong to the latent infection programs of these viruses, they encode proteins that condition the microenvironment. Many of these are early lytic gene products and are only expressed in a subset of infected cells of the tumor mass. In this chapter I will describe their function and the evidence that targeting them in addition to the latent oncogenes could be beneficial for the treatment of EBV- and KSHV-associated malignancies.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
28
|
De Leo A, Calderon A, Lieberman PM. Control of Viral Latency by Episome Maintenance Proteins. Trends Microbiol 2019; 28:150-162. [PMID: 31624007 DOI: 10.1016/j.tim.2019.09.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022]
Abstract
The human DNA tumor viruses Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV), and human papillomavirus (HPV) share the common property of persisting as multicopy episomes in the nuclei of rapidly dividing host cells. These episomes form the molecular basis for viral latency and are etiologically linked to virus-associated cancers. Episome maintenance requires epigenetic programming to ensure the proper control of viral gene expression, DNA replication, and genome copy number. For these viruses, episome maintenance requires a dedicated virus-encoded episome maintenance protein (EMP), namely LANA (KSHV), EBNA1 (EBV), and E2 (HPV). Here, we review common features of these viral EMPs and discuss recent advances in understanding how they contribute to the epigenetic control of viral episome maintenance during latency.
Collapse
|