1
|
Khandelwal P, Langenberg L, Luebbering N, Lake KE, Butcher A, Bota K, Ramos KN, Taggart C, Choe H, Vasu S, Teusink-Cross A, Koo J, Wallace G, Romick-Rosendale L, Watanabe-Chailland M, Haslam DB, Lane A, Davies SM. A randomized phase 2 trial of oral vitamin A for graft-versus-host disease in children and young adults. Blood 2024; 143:1181-1192. [PMID: 38227933 DOI: 10.1182/blood.2023022865] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/18/2024] Open
Abstract
ABSTRACT Vitamin A plays a key role in the maintenance of gastrointestinal homeostasis and promotes a tolerogenic phenotype in tissue resident macrophages. We conducted a prospective randomized double-blinded placebo-controlled clinical trial in which 80 recipients of hematopoietic stem cell transplantation (HSCT) were randomized 1:1 to receive pretransplant high-dose vitamin A or placebo. A single oral dose of vitamin A of 4000 IU/kg, maximum 250 000 IU was given before conditioning. The primary end point was incidence of acute graft-versus-host disease (GVHD) at day +100. In an intent-to-treat analysis, incidence of acute GVHD was 12.5% in the vitamin A arm and 20% in the placebo arm (P = .5). Incidence of acute gastrointestinal (GI) GVHD was 2.5% in the vitamin A arm (P = .09) and 12.5% in the placebo arm at day +180. Incidence of chronic GVHD was 5% in the vitamin A arm and 15% in the placebo arm (P = .02) at 1 year. In an "as treated" analysis, cumulative incidence of acute GI GVHD at day +180 was 0% and 12.5% in recipients of vitamin A and placebo, respectively (P = .02), and cumulative incidence of chronic GVHD was 2.7% and 15% in recipients of vitamin A and placebo, respectively (P = .01). The only possibly attributable toxicity was asymptomatic grade 3 hyperbilirubinemia in 1 recipient of vitamin A at day +30, which self-resolved. Absolute CCR9+ CD8+ effector memory T cells, reflecting gut T-cell trafficking, were lower in the vitamin A arm at day +30 after HSCT (P = .01). Levels of serum amyloid A-1, a vitamin A transport protein with proinflammatory effects, were lower in the vitamin A arm. The vitamin A arm had lower interleukin-6 (IL-6), IL-8, and suppressor of tumorigenicity 2 levels and likely a more favorable gut microbiome and short chain fatty acids. Pre-HSCT oral vitamin A is inexpensive, has low toxicity, and reduces GVHD. This trial was registered at www.ClinicalTrials.gov as NCT03202849.
Collapse
Affiliation(s)
- Pooja Khandelwal
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
| | - Lucille Langenberg
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
| | - Nathan Luebbering
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
| | - Kelly E Lake
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
| | - Abigail Butcher
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Kylie Bota
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
| | - Kristie N Ramos
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
| | - Cynthia Taggart
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
| | - Hannah Choe
- Division of Hematology, The Ohio State Comprehensive Cancer Center, Columbus OH
| | - Sumithira Vasu
- Division of Hematology, The Ohio State Comprehensive Cancer Center, Columbus OH
| | - Ashley Teusink-Cross
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
- Division of Pharmacy, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Jane Koo
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
| | - Gregory Wallace
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
| | - Lindsey Romick-Rosendale
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Miki Watanabe-Chailland
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - David B Haslam
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
- Divison of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Adam Lane
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
| | - Stella M Davies
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
| |
Collapse
|
2
|
Rohani R, Malakismail J, Njoku E. Pharmacological and Behavioral Interventions to Mitigate Premature Aging in Patients with HIV. Curr HIV/AIDS Rep 2023; 20:394-404. [PMID: 37917387 DOI: 10.1007/s11904-023-00677-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
PURPOSE OF REVIEW We sought to review pharmacological and behavioral interventions that have been publicly presented, published, or are currently ongoing to prevent or mitigate the effect of premature HIV-associated comorbidities. RECENT FINDINGS Multiple studies have been conducted in hopes of finding an effective intervention. While the choice of antiretroviral regimen influences recovery of immune function, several drugs used as adjunct treatments have proven effective to mitigate premature aging. Additionally, few behavioral interventions have exhibited some efficacy. Statins, angiotensin-receptor blockers, and anti-hyperglycemic agents as well as optimal adherence, exercise, and intermittent fasting among others have had beneficial impact on markers of immune activation and levels of inflammatory biomarkers. However, several investigations had inconclusive outcomes so further studies with larger sample sizes are warranted.
Collapse
Affiliation(s)
- Roxane Rohani
- Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road BSB 3.266, North Chicago, IL, USA.
- Department of Pharmacy, Captain James A. Lovell Federal Health Care Center, North Chicago, IL, USA.
| | - Jacob Malakismail
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Emmanuel Njoku
- Section of Infectious Disease, Captain James A. Lovell Federal Health Care Center, North Chicago, IL, USA
- Discipline of Internal Medicine, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
3
|
Chmiel JA, Stuivenberg GA, Al KF, Akouris PP, Razvi H, Burton JP, Bjazevic J. Vitamins as regulators of calcium-containing kidney stones - new perspectives on the role of the gut microbiome. Nat Rev Urol 2023; 20:615-637. [PMID: 37161031 PMCID: PMC10169205 DOI: 10.1038/s41585-023-00768-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2023] [Indexed: 05/11/2023]
Abstract
Calcium-based kidney stone disease is a highly prevalent and morbid condition, with an often complicated and multifactorial aetiology. An abundance of research on the role of specific vitamins (B6, C and D) in stone formation exists, but no consensus has been reached on how these vitamins influence stone disease. As a consequence of emerging research on the role of the gut microbiota in urolithiasis, previous notions on the contribution of these vitamins to urolithiasis are being reconsidered in the field, and investigation into previously overlooked vitamins (A, E and K) was expanded. Understanding how the microbiota influences host vitamin regulation could help to determine the role of vitamins in stone disease.
Collapse
Affiliation(s)
- John A Chmiel
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotic Research, London, Ontario, Canada
| | - Gerrit A Stuivenberg
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotic Research, London, Ontario, Canada
| | - Kait F Al
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotic Research, London, Ontario, Canada
| | - Polycronis P Akouris
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotic Research, London, Ontario, Canada
| | - Hassan Razvi
- Division of Urology, Department of Surgery, Western University, London, Ontario, Canada
| | - Jeremy P Burton
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotic Research, London, Ontario, Canada
- Division of Urology, Department of Surgery, Western University, London, Ontario, Canada
| | - Jennifer Bjazevic
- Division of Urology, Department of Surgery, Western University, London, Ontario, Canada.
| |
Collapse
|
4
|
Brecht P, Dring JC, Yanez F, Styczeń A, Mertowska P, Mertowski S, Grywalska E. How Do Minerals, Vitamins, and Intestinal Microbiota Affect the Development and Progression of Heart Disease in Adult and Pediatric Patients? Nutrients 2023; 15:3264. [PMID: 37513682 PMCID: PMC10384570 DOI: 10.3390/nu15143264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide, far ahead of cancer. Epidemiological data emphasize the participation of many risk factors that increase the incidence of CVDs, including genetic factors, age, and sex, but also lifestyle, mainly nutritional irregularities and, connected with them, overweight and obesity, as well as metabolic diseases. Despite the importance of cardiovascular problems in the whole society, the principles of prevention of CVDs are not widely disseminated, especially among the youngest. As a result, nutritional neglect, growing from childhood and adolescence, translates into the occurrence of numerous disease entities, including CVDs, in adult life. This review aimed to draw attention to the role of selected minerals and vitamins in health and the development and progression of CVDs in adults and children. Particular attention was paid to the effects of deficiency and toxicity of the analyzed compounds in the context of the cardiovascular system and to the role of intestinal microorganisms, which by interacting with nutrients, may contribute to the development of cardiovascular disorders. We hope this article will draw the attention of society and the medical community to emphasize promoting healthy eating and proper eating habits in children and adults, translating into increased awareness and a reduced risk of CVD.
Collapse
Affiliation(s)
- Peet Brecht
- Department of Cardiology, Medical University of Lublin, Jaczewskiego 8, 20-093 Lublin, Poland
| | - James Curtis Dring
- Department of Cardiology, Medical University of Lublin, Jaczewskiego 8, 20-093 Lublin, Poland
| | - Felipe Yanez
- Department of Cardiology, Medical University of Lublin, Jaczewskiego 8, 20-093 Lublin, Poland
| | - Agnieszka Styczeń
- Department of Cardiology, Medical University of Lublin, Jaczewskiego 8, 20-093 Lublin, Poland
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
5
|
Guiducci L, Nicolini G, Forini F. Dietary Patterns, Gut Microbiota Remodeling, and Cardiometabolic Disease. Metabolites 2023; 13:760. [PMID: 37367916 DOI: 10.3390/metabo13060760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
The cardiovascular and metabolic disorders, collectively known as cardiometabolic disease (CMD), are high morbidity and mortality pathologies associated with lower quality of life and increasing health-care costs. The influence of the gut microbiota (GM) in dictating the interpersonal variability in CMD susceptibility, progression and treatment response is beginning to be deciphered, as is the mutualistic relation established between the GM and diet. In particular, dietary factors emerge as pivotal determinants shaping the architecture and function of resident microorganisms in the human gut. In turn, intestinal microbes influence the absorption, metabolism, and storage of ingested nutrients, with potentially profound effects on host physiology. Herein, we present an updated overview on major effects of dietary components on the GM, highlighting the beneficial and detrimental consequences of diet-microbiota crosstalk in the setting of CMD. We also discuss the promises and challenges of integrating microbiome data in dietary planning aimed at restraining CMD onset and progression with a more personalized nutritional approach.
Collapse
Affiliation(s)
- Letizia Guiducci
- CNR Institute of Clinical Physiology, Via Moruzzi 1, 56124 Pisa, Italy
| | | | - Francesca Forini
- CNR Institute of Clinical Physiology, Via Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
6
|
Upreti D, Rouzer SK, Bowring A, Labbe E, Kumar R, Miranda RC, Mahnke AH. Microbiota and nutrition as risk and resiliency factors following prenatal alcohol exposure. Front Neurosci 2023; 17:1182635. [PMID: 37397440 PMCID: PMC10308314 DOI: 10.3389/fnins.2023.1182635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Alcohol exposure in adulthood can result in inflammation, malnutrition, and altered gastroenteric microbiota, which may disrupt efficient nutrient extraction. Clinical and preclinical studies have documented convincingly that prenatal alcohol exposure (PAE) also results in persistent inflammation and nutrition deficiencies, though research on the impact of PAE on the enteric microbiota is in its infancy. Importantly, other neurodevelopmental disorders, including autism spectrum and attention deficit/hyperactivity disorders, have been linked to gut microbiota dysbiosis. The combined evidence from alcohol exposure in adulthood and from other neurodevelopmental disorders supports the hypothesis that gut microbiota dysbiosis is likely an etiological feature that contributes to negative developmental, including neurodevelopmental, consequences of PAE and results in fetal alcohol spectrum disorders. Here, we highlight published data that support a role for gut microbiota in healthy development and explore the implication of these studies for the role of altered microbiota in the lifelong health consequences of PAE.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Amanda H. Mahnke
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, United States
| |
Collapse
|
7
|
Gong Y, Chen A, Zhang G, Shen Q, Zou L, Li J, Miao YB, Liu W. Cracking Brain Diseases from Gut Microbes-Mediated Metabolites for Precise Treatment. Int J Biol Sci 2023; 19:2974-2998. [PMID: 37416776 PMCID: PMC10321288 DOI: 10.7150/ijbs.85259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/24/2023] [Indexed: 07/08/2023] Open
Abstract
The gut-brain axis has been a subject of significant interest in recent years. Understanding the link between the gut and brain axis is crucial for the treatment of disorders. Here, the intricate components and unique relationship between gut microbiota-derived metabolites and the brain are explained in detail. Additionally, the association between gut microbiota-derived metabolites and the integrity of the blood-brain barrier and brain health is emphasized. Meanwhile, gut microbiota-derived metabolites with their recent applications, challenges and opportunities their pathways on different disease treatment are focus discussed. The prospective strategy of gut microbiota-derived metabolites potential applies to the brain disease treatments, such as Parkinson's disease and Alzheimer's disease, is proposed. This review provides a broad perspective on gut microbiota-derived metabolites characteristics facilitate understand the connection between gut and brain and pave the way for the development of a new medication delivery system for gut microbiota-derived metabolites.
Collapse
Affiliation(s)
- Ying Gong
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu 610000, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
| | - Anmei Chen
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu 610000, China
| | - Guohui Zhang
- Key Laboratory of reproductive medicine, Sichuan Provincial maternity and Child Health Care Hospital, Chengdu 610000, China
| | - Qing Shen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jiahong Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu 610000, China
| | - Weixin Liu
- Key Laboratory of reproductive medicine, Sichuan Provincial maternity and Child Health Care Hospital, Chengdu 610000, China
| |
Collapse
|
8
|
Kacimi FE, Ed-Day S, Didou L, Azzaoui FZ, Ramchoun M, Arfaoui A, Boulbaroud S. Narrative Review: The Effect of Vitamin A Deficiency on Gut Microbiota and Their Link with Autism Spectrum Disorder. J Diet Suppl 2023; 21:116-134. [PMID: 36905650 DOI: 10.1080/19390211.2023.2179154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders defined by a lack of social behaviors, repetitive behaviors and nonverbal interactions, such as limited eye contact, facial expression, and body gesturing. It is not a single condition, but rather a multi-factorial disorder caused by hereditary and non-genetic risk factors, as well as their interaction. According to several studies, the gut microbiota may have a role in the pathophysiology of autism spectrum disorder. Various studies have found differences in the composition of the gastrointestinal (GI) microbiota in children with ASD compared to unaffected siblings and/or healthy unrelated controls. The processes that relate the gut microbiota to brain dysfunctions (the gut-brain axis) in ASD are yet to be fully understood. However, the differences in the gastrointestinal composition might be due to vitamin A deficiency because vitamin A (VA) plays a role in the regulation of the intestinal microbiota. This narrative review discusses the impact of vitamin A deficiency on the gut microbiota composition and tries to understand how this may contribute for the development and severity of ASD.
Collapse
Affiliation(s)
- Fatima Ezzahra Kacimi
- Biotechnology and Sustainable Development of Natural Resources Unit, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Soumia Ed-Day
- Equip of Clinic and Cognitive Neurosciences and Health, Laboratory of Biology and Health, Department of Biology, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Latifa Didou
- Equip of Clinic and Cognitive Neurosciences and Health, Laboratory of Biology and Health, Department of Biology, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Fatima Zahra Azzaoui
- Equip of Clinic and Cognitive Neurosciences and Health, Laboratory of Biology and Health, Department of Biology, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Mhamed Ramchoun
- Biotechnology and Sustainable Development of Natural Resources Unit, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Asma Arfaoui
- Biotechnology and Sustainable Development of Natural Resources Unit, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Samira Boulbaroud
- Biotechnology and Sustainable Development of Natural Resources Unit, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal, Morocco
| |
Collapse
|
9
|
Elango J, Zamora-Ledezma C, Negrete-Bolagay D, Aza PND, Gómez-López VM, López-González I, Belén Hernández A, De Val JEMS, Wu W. Retinol-Loaded Poly(vinyl alcohol)-Based Hydrogels as Suitable Biomaterials with Antimicrobial Properties for the Proliferation of Mesenchymal Stem Cells. Int J Mol Sci 2022; 23:ijms232415623. [PMID: 36555266 PMCID: PMC9779207 DOI: 10.3390/ijms232415623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Polyvinyl alcohol (PVA) hydrogels are well-known biomimetic 3D systems for mammalian cell cultures to mimic native tissues. Recently, several biomolecules were intended for use in PVA hydrogels to improve their biological properties. However, retinol, an important biomolecule, has not been combined with a PVA hydrogel for culturing bone marrow mesenchymal stem (BMMS) cells. Thus, for the first time, the effect of retinol on the physicochemical, antimicrobial, and cell proliferative properties of a PVA hydrogel was investigated. The ability of protein (3.15 nm) and mineral adsorption (4.8 mg/mL) of a PVA hydrogel was improved by 0.5 wt.% retinol. The antimicrobial effect of hydrogel was more significant in S. aureus (39.3 mm) than in E. coli (14.6 mm), and the effect was improved by increasing the retinol concentration. The BMMS cell proliferation was more upregulated in retinol-loaded PVA hydrogel than in the control at 7 days. We demonstrate that the respective in vitro degradation rate of retinol-loaded PVA hydrogels (RPH) (75-78% degradation) may promote both antibacterial and cellular proliferation. Interestingly, the incorporation of retinol did not affect the cell-loading capacity of PVA hydrogel. Accordingly, the fabricated PVA retinol hydrogel proved its compatibility in a stem cell culture and could be a potential biomaterial for tissue regeneration.
Collapse
Affiliation(s)
- Jeevithan Elango
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
- Center of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
- Correspondence: or (J.E.); (C.Z.-L.)
| | - Camilo Zamora-Ledezma
- Green and Innovative Technologies for Food, Environment and Bioengineering Research Group (FEnBeT), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
- Correspondence: or (J.E.); (C.Z.-L.)
| | - Daniela Negrete-Bolagay
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
| | - Piedad N. De Aza
- Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - Vicente M. Gómez-López
- Green and Innovative Technologies for Food, Environment and Bioengineering Research Group (FEnBeT), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Ivan López-González
- Tissue Regeneration and Repair Group, Biomaterials and Tissue Engineering, Faculty of Health Sciences, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Ana Belén Hernández
- Tissue Regeneration and Repair Group, Biomaterials and Tissue Engineering, Faculty of Health Sciences, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - José Eduardo Maté Sánchez De Val
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Wenhui Wu
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
10
|
Fahim SM, Gazi MA, Alam MA, Hasan MM, Das S, Mahfuz M, Ahmed T. Association between Circulating Retinol Binding Protein 4, Body Mass Index, and Biomarkers of Environmental Enteric Dysfunction among Slum-Dwelling Lean Adults in Bangladesh. Am J Trop Med Hyg 2022; 107:1315-1322. [PMID: 36216318 PMCID: PMC9768260 DOI: 10.4269/ajtmh.21-0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/01/2022] [Indexed: 12/30/2022] Open
Abstract
The relationship of retinol binding protein 4 (RBP4) with biomarkers of intestinal health and gut integrity in adults is unknown. We sought to determine the correlation between plasma RBP4 level and BMI and investigate the relationship of circulating RBP4 concentration with biomarkers of environmental enteric dysfunction among lean adults (body mass index [BMI] < 25.0 kg/m2) in Bangladesh. Overall, 270 adults (135 undernourished with a BMI < 18.5 kg/m2 and 135 healthy controls with a BMI between 18.5 and 24.9 kg/m2) aged 18 to 45 years were evaluated. Multivariable linear regression was performed to test the association between RBP4 and fecal biomarkers of impaired gut health. RBP4 concentration was positively correlated (rho = 0.27, P < 0.001) with BMI and was significantly higher in healthy controls than undernourished adults (P < 0.001), in male than female (P < 0.001), and also in employed (P < 0.001), smokers (P = 0.048) and participants with low Self-Reporting Questionnaire (SRQ)-20 scores (an instrument to screen mental health disorders) (P = 0.049). Statistically significant negative correlations were observed between RBP4 and fecal biomarkers of gut enteropathy including myeloperoxidase (rho = -0.23, P < 0.001), neopterin (rho = -0.30, P < 0.001), and alpha-1 anti-trypsin (rho = -0.21, P < 0.001). Multivariable linear regression analysis showed that increased RBP4 concentration was associated with a significant reduction in fecal neopterin (coefficient = -0.95; 95% confidence interval: -1.44 to -0.45]; P < 0.001) after adjustment for age, sex, nutritional status at enrollment, education, dietary diversity score, SRQ-20 score, improved sanitation, household animal exposure, and alpha-1-acid glycoprotein. The study findings revealed an inverse relationship of plasma RBP4 concentration with fecal biomarkers of altered gut health among slum-dwelling lean adults in Bangladesh.
Collapse
Affiliation(s)
- Shah Mohammad Fahim
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh;,Address correspondence to Shah Mohammad Fahim, Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka-1212. E-mail:
| | - Md. Amran Gazi
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Md. Ashraful Alam
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Md. Mehedi Hasan
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Subhasish Das
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Mustafa Mahfuz
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh;,Faculty of Medicine and Life Sciences, University of Tampere, Finland
| | - Tahmeed Ahmed
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh;,Department of Global Health, University of Washington, Seattle, Washington;,James P Grant School of Public Health, BRAC University, Dhaka, Bangladesh
| |
Collapse
|
11
|
Nel Van Zyl K, Whitelaw AC, Hesseling AC, Seddon JA, Demers AM, Newton-Foot M. Fungal diversity in the gut microbiome of young South African children. BMC Microbiol 2022; 22:201. [PMID: 35978282 PMCID: PMC9387017 DOI: 10.1186/s12866-022-02615-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The fungal microbiome, or mycobiome, is a poorly described component of the gut ecosystem and little is known about its structure and development in children. In South Africa, there have been no culture-independent evaluations of the child gut mycobiota. This study aimed to characterise the gut mycobiota and explore the relationships between fungi and bacteria in the gut microbiome of children from Cape Town communities. METHODS Stool samples were collected from children enrolled in the TB-CHAMP clinical trial. Internal transcribed spacer 1 (ITS1) gene sequencing was performed on a total of 115 stool samples using the Illumina MiSeq platform. Differences in fungal diversity and composition in relation to demographic, clinical, and environmental factors were investigated, and correlations between fungi and previously described bacterial populations in the same samples were described. RESULTS Taxa from the genera Candida and Saccharomyces were detected in all participants. Differential abundance analysis showed that Candida spp. were significantly more abundant in children younger than 2 years compared to older children. The gut mycobiota was less diverse than the bacterial microbiota of the same participants, consistent with the findings of other human microbiome studies. The variation in richness and evenness of fungi was substantial, even between individuals of the same age. There was significant association between vitamin A supplementation and higher fungal alpha diversity (p = 0.047), and girls were shown to have lower fungal alpha diversity (p = 0.003). Co-occurrence between several bacterial taxa and Candida albicans was observed. CONCLUSIONS The dominant fungal taxa in our study population were similar to those reported in other paediatric studies; however, it remains difficult to identify the true core gut mycobiota due to the challenges set by the low abundance of gut fungi and the lack of true gut colonising species. The connection between the microbiota, vitamin A supplementation, and growth and immunity warrants exploration, especially in populations at risk for micronutrient deficiencies. While we were able to provide insight into the gut mycobiota of young South African children, further functional studies are necessary to explain the role of the mycobiota and the correlations between bacteria and fungi in human health.
Collapse
Affiliation(s)
- K Nel Van Zyl
- Division of Medical Microbiology, Department of Pathology, Stellenbosch University, Stellenbosch, South Africa.
| | - A C Whitelaw
- Division of Medical Microbiology, Department of Pathology, Stellenbosch University, Stellenbosch, South Africa
- National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
- African Microbiome Institute, Stellenbosch University, Stellenbosch, South Africa
| | - A C Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, South Africa
| | - J A Seddon
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, South Africa
- Department of Infectious Diseases, Imperial College London, London, UK
| | - A-M Demers
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, South Africa
- Service de Microbiologie, Département Clinique de Médecine de Laboratoire, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Canada
| | - M Newton-Foot
- Division of Medical Microbiology, Department of Pathology, Stellenbosch University, Stellenbosch, South Africa
- National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| |
Collapse
|
12
|
Abstract
Balanced intestinal retinoic acid concentrations are essential to maintain immune homeostasis in the gut. In this issue of Cell Host & Microbe, Bonakdar et al, sheds light on metabolic host-microbiota interactions and elegantly links diet, microbiota and host functions at the molecular level in the context of vitamin A metabolism.
Collapse
Affiliation(s)
- Amber Brauer-Nikonow
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Michael Zimmermann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
13
|
Targeting the Gut Microbiota and Host Immunity with a Bacilli-Species Probiotic during Antibiotic Exposure in Mice. Microorganisms 2022; 10:microorganisms10061178. [PMID: 35744696 PMCID: PMC9228267 DOI: 10.3390/microorganisms10061178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 12/10/2022] Open
Abstract
Antibiotic therapy is necessary for the treatment of bacterial infections; however, it can also disrupt the balance and function of commensal gut microbes and negatively affect the host. Probiotics have been tested as a means to counteract the negative effects of antibiotic therapy, but many probiotics are also likely destroyed by antibiotics when taken together. Here we aimed to test the efficacy of a non-pathogenic spore-forming Bacillus-species containing a probiotic blend provided during antibiotic therapy on host immune defenses in mice. Mice were exposed to antibiotics and supplemented with or without the probiotic blend and compared to control mice. Fecal and cecal contents were analyzed for gut microbes, and intestinal tissue was tested for the expression of key enzymes involved in vitamin A metabolism, serum amyloid A, and inflammatory markers in the intestine. The probiotic blend protected against antibiotic-induced overgrowth of gram-negative bacteria and gammaproteobacteria in the cecum which correlated with host immune responses. Regional responses in mRNA expression of enzymes involved with vitamin A metabolism occurred between antibiotic groups, and intestinal inflammatory markers were mitigated with the probiotic blend. These data suggest prophylactic supplementation with a spore-forming Bacillus-containing probiotic may protect against antibiotic-induced dysregulation of host immune responses.
Collapse
|
14
|
Constant DA, Nice TJ, Rauch I. Innate immune sensing by epithelial barriers. Curr Opin Immunol 2021; 73:1-8. [PMID: 34392232 PMCID: PMC8648961 DOI: 10.1016/j.coi.2021.07.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 02/02/2023]
Abstract
Epithelial cells in barrier tissues perform a critical immune function by detecting, restricting, and often directly eliminating extrinsic pathogens. Membrane-bound and cytosolic pattern recognition receptors in epithelial cells bind to diverse ligands, detecting pathogen components and behaviors and stimulating cell-autonomous immunity. In addition to directly acting as first-responders to pathogens, epithelial cells detect commensal-derived and diet-derived products to promote homeostasis. Recent advances have clarified the array of molecular sensors expressed by epithelial cells, and how epithelial cells responses are wired to promote homeostatic balance while simultaneously allowing elimination of pathogens. These new studies emphatically position epithelial cells as central to an effective innate immune response.
Collapse
Affiliation(s)
- David A Constant
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, United States
| | - Timothy J Nice
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, United States
| | - Isabella Rauch
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, United States.
| |
Collapse
|
15
|
Cosio T, Gaziano R, Zuccari G, Costanza G, Grelli S, Di Francesco P, Bianchi L, Campione E. Retinoids in Fungal Infections: From Bench to Bedside. Pharmaceuticals (Basel) 2021; 14:ph14100962. [PMID: 34681186 PMCID: PMC8539705 DOI: 10.3390/ph14100962] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/11/2022] Open
Abstract
Retinoids-a class of chemical compounds derived from vitamin A or chemically related to it-are used especially in dermatology, oncohematology and infectious diseases. It has been shown that retinoids-from their first generation-exert a potent antimicrobial activity against a wide range of pathogens, including bacteria, fungi and viruses. In this review, we summarize current evidence on retinoids' efficacy as antifungal agents. Studies were identified by searching electronic databases (MEDLINE, EMBASE, PubMed, Cochrane, Trials.gov) and reference lists of respective articles from 1946 to today. Only articles published in the English language were included. A total of thirty-nine articles were found according to the criteria. In this regard, to date, In vitro and In vivo studies have demonstrated the efficacy of retinoids against a broad-spectrum of human opportunistic fungal pathogens, including yeast fungi that normally colonize the skin and mucosal surfaces of humans such as Candida spp., Rhodotorula mucilaginosa and Malassezia furfur, as well as environmental moulds such as Aspergillus spp., Fonsecae monofora and many species of dermatophytes associated with fungal infections both in humans and animals. Notwithstanding a lack of double-blind clinical trials, the efficacy, tolerability and safety profile of retinoids have been demonstrated against localized and systemic fungal infections.
Collapse
Affiliation(s)
- Terenzio Cosio
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (T.C.); (L.B.)
| | - Roberta Gaziano
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.G.); (P.D.F.)
| | - Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy;
| | - Gaetana Costanza
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.C.); (S.G.)
| | - Sandro Grelli
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.C.); (S.G.)
| | - Paolo Di Francesco
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.G.); (P.D.F.)
| | - Luca Bianchi
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (T.C.); (L.B.)
| | - Elena Campione
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (T.C.); (L.B.)
- Correspondence:
| |
Collapse
|
16
|
Effects of Dietary Fishmeal Replacement by Poultry By-Product Meal and Hydrolyzed Feather Meal on Liver and Intestinal Histomorphology and on Intestinal Microbiota of Gilthead Seabream (Sparus aurata). APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11198806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The effects on liver and intestinal histomorphology and on intestinal microbiota in gilthead seabream (Sparus aurata) fed diets that contained poultry by-product meal (PBM) and hydrolyzed feather meal (HFM) as fishmeal replacements were studied. Fish fed on a series of isonitrogenous and isoenergetic diets, where fishmeal protein of the control diet (FM diet) was replaced by either PBM or by HFM at 25%, 50% and 100% without amino acid supplementation (PBM25, PBM50, PBM100, HFM25, HFM50 and HFM100 diets) or supplemented with lysine and methionine (PBM25+, PBM50+, HFM25+ and HFM50+ diets). The use of PBM and HFM at 25% fishmeal replacement generated a similar hepatic histomorphology to FM-fed fish, indicating that both land animal proteins are highly digestible at low FM replacement levels. However, 50% and 100% FM replacement levels by either PBM or HFM resulted in pronounced hepatic alterations in fish with the latter causing more severe degradation of the liver. Dietary amino acid supplementation delivered an improved tissue histology signifying their importance at high FM replacement levels. Intestinal microbiota was dominated by Proteobacteria (58.8%) and Actinobacteria (32.4%) in all dietary groups, but no specific pattern was observed among them at any taxonomic level. This finding was probably driven by the high inter-individual variability observed.
Collapse
|
17
|
Editorial overview of Pearls Microbiome Series: E pluribus unum. PLoS Pathog 2021; 17:e1009912. [PMID: 34464427 PMCID: PMC8407538 DOI: 10.1371/journal.ppat.1009912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
18
|
Identification of Indicators for Preterm Birth Using Retinoid Metabolites. Metabolites 2021; 11:metabo11070443. [PMID: 34357337 PMCID: PMC8304766 DOI: 10.3390/metabo11070443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
Metabolites reflect the biochemical dynamics for the maintenance of pregnancy and parturition. UPLC-Q/TOF-MS and LC-MS/MS metabolomics were performed to identify and validate the plasma metabolomic signatures of preterm birth (PTB). We recruited pregnant women between 16 and 40 weeks 5 days gestational age at Ewha Womans Mokdong Hospital for a nested case-control study. In untargeted UPLC-Q/TOF-MS, score plots of partial least-squares discriminant analysis clearly separated the PTB group from the term birth (TB, n = 10; PTB, n = 11). Fifteen metabolites were significantly different between the two groups, as indicated by a variable importance in projection >1 and p < 0.05. Metabolic pathways involving retinol, linoleic acid, d-arginine, and d-ornithine were associated with PTB. Verification by LC-MS/MS focused on retinol metabolism (TB, n = 39; PTB, n = 20). Retinol levels were significantly reduced in PTB compared to TB, while retinal palmitate, all-trans-retinal, and 13-cis-retinoic acid (13cis-RA) significantly increased (p < 0.05). Retinol-binding protein levels were also elevated in PTB. Additionally, all-trans-retinal (AUC 0.808, 95% CI: 0.683–0.933) and 13cis-RA (AUC 0.826, 95% CI: 0.723–0.930) showed improved predictions for PTB-related retinol metabolites. This study suggests that retinoid metabolism improves the accuracy of PTB predictions and plays an important role in maintaining pregnancy and inducing early parturition.
Collapse
|
19
|
Effect of Vitamin A Supplementation on Growth Performance, Serum Biochemical Parameters, Intestinal Immunity Response and Gut Microbiota in American Mink ( Neovison vison). Animals (Basel) 2021; 11:ani11061577. [PMID: 34071204 PMCID: PMC8229402 DOI: 10.3390/ani11061577] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Vitamin A is critical throughout life, but utilization of vitamin A often results in local and systemic toxicity. This study investigated the effect of vitamin A supplementation on mink growth and health. The results show that vitamin A deficiency decreased the ADG, villus height, villus height/crypt depth ratio and mRNA expression levels of IL-22, Occludin and ZO-1. Vitamin A supplementation increased the diversity of jejunum bacteria, decreased the ratio of Firmicutes to Bacteroidetes and increased the relative abundance of Akkermansia and Lachnospiraceae NK4A136 group. Abstract This experiment investigated the effect of vitamin A supplementation on growth, serum biochemical parameters, jejunum morphology and the microbial community in male growing-furring mink. Thirty healthy male mink were randomly assigned to three treatment groups, with 10 mink per group. Each mink was housed in an individual cage. The mink in the three groups were fed diets supplemented with vitamin A acetate at dosages of 0 (CON), 20,000 (LVitA) and 1,280,000 IU/kg (HVitA) of basal diet. A 7-day pretest period preceded a formal test period of 45 days. The results show that 20,000 IU/kg vitamin A increased the ADG, serum T-AOC and GSH-Px activities, villus height and villus height/crypt depth ratio (p < 0.05). The mRNA expression levels of IL-22, Occludin and ZO-1 in the jejunum of mink were significantly higher in the LVitA group than those in the CON and HVitA groups (p < 0.05). Vitamin A supplementation increased the diversity of jejunum bacteria, decreased the ratio of Firmicutes to Bacteroidetes and increased the relative abundance of Akkermansia, uncultured bacterium f Muribaculaceae, Allobaculum, Lachnospiraceae NK4A136 group, Rummeliibacillus and Parasutterella. The comparison of potential functions also showed enrichment of glycan biosynthesis and metabolism, transport and catabolism pathways in the vitamin A supplementation groups compared with the CON group. In conclusion, these results indicate that dietary vitamin A supplementation could mediate host growth by improving intestinal development, immunity and the relative abundance of the intestinal microbiota.
Collapse
|
20
|
Rudzki L, Stone TW, Maes M, Misiak B, Samochowiec J, Szulc A. Gut microbiota-derived vitamins - underrated powers of a multipotent ally in psychiatric health and disease. Prog Neuropsychopharmacol Biol Psychiatry 2021; 107:110240. [PMID: 33428888 DOI: 10.1016/j.pnpbp.2020.110240] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/19/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023]
Abstract
Despite the well-established roles of B-vitamins and their deficiencies in health and disease, there is growing evidence indicating a key role of those nutrients in functions of the central nervous system and in psychopathology. Clinical data indicate the substantial role of B-vitamins in various psychiatric disorders, including major depression, bipolar disorder, schizophrenia, autism, and dementia, including Alzheimer's and Parkinson's diseases. As enzymatic cofactors, B-vitamins are involved in many physiological processes such as the metabolism of glucose, fatty acids and amino acids, metabolism of tryptophan in the kynurenine pathway, homocysteine metabolism, synthesis and metabolism of various neurotransmitters and neurohormones including serotonin, dopamine, adrenaline, acetylcholine, GABA, glutamate, D-serine, glycine, histamine and melatonin. Those vitamins are highly involved in brain energetic metabolism and respiration at the cellular level. They have a broad range of anti-inflammatory, immunomodulatory, antioxidant and neuroprotective properties. Furthermore, some of those vitamins are involved in the regulation of permeability of the intestinal and blood-brain barriers. Despite the fact that a substantial amount of the above vitamins is acquired from various dietary sources, deficiencies are not uncommon, and it is estimated that micronutrient deficiencies affect about two billion people worldwide. The majority of gut-resident microbes and the broad range of bacteria available in fermented food, express genetic machinery enabling the synthesis and metabolism of B-vitamins and, consequently, intestinal microbiota and fermented food rich in probiotic bacteria are essential sources of B-vitamins for humans. All in all, there is growing evidence that intestinal bacteria-derived vitamins play a significant role in physiology and that dysregulation of the "microbiota-vitamins frontier" is related to various disorders. In this review, we will discuss the role of vitamins in mental health and explore the perspectives and potential of how gut microbiota-derived vitamins could contribute to mental health and psychiatric treatment.
Collapse
Affiliation(s)
- Leszek Rudzki
- The Charleston Centre, 49 Neilston Road, Paisley PA2 6LY, UK.
| | | | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Bulgaria; IMPACT Strategic Research Center, Deakin University, Geelong, Australia
| | - Błażej Misiak
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10 Street, 50-367 Wroclaw, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Agata Szulc
- Department of Psychiatry, Medical University of Warsaw, Poland
| |
Collapse
|
21
|
Tratnjek L, Jeruc J, Romih R, Zupančič D. Vitamin A and Retinoids in Bladder Cancer Chemoprevention and Treatment: A Narrative Review of Current Evidence, Challenges and Future Prospects. Int J Mol Sci 2021; 22:3510. [PMID: 33805295 PMCID: PMC8036787 DOI: 10.3390/ijms22073510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Bladder cancer (BC) is the tenth most common cancer worldwide with a high recurrence rate, morbidity and mortality. Therefore, chemoprevention and improved treatment of BC are of paramount importance. Epidemiological studies suggest that adequate vitamin A intake may be associated with reduced BC risk. In addition, retinoids, natural and synthetic derivatives of vitamin A, are intensively studied in cancer research due to their antioxidant properties and their ability to regulate cell growth, differentiation, and apoptosis. Findings from in vivo and in vitro models of BC show great potential for the use of retinoids in the chemoprevention and treatment of BC. However, translation to the clinical practice is limited. In this narrative review we discuss: (i) vitamin A and retinoid metabolism and retinoic acid signalling, (ii) the pathobiology of BC and the need for chemoprevention, (iii) the epidemiological evidence for the role of dietary vitamin A in BC, (iv) mechanistic insights obtained from in vivo and in vitro models, (v) clinical trials of retinoids and the limitations of retinoid use, (vi) novel systems of retinoid delivery, and (vii) components of retinoid signalling pathways as potential novel therapeutic targets.
Collapse
Affiliation(s)
- Larisa Tratnjek
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (L.T.); (R.R.)
| | - Jera Jeruc
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Rok Romih
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (L.T.); (R.R.)
| | - Daša Zupančič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (L.T.); (R.R.)
| |
Collapse
|
22
|
Schmidt KM, Haddad EN, Sugino KY, Vevang KR, Peterson LA, Koratkar R, Gross MD, Kerver JM, Comstock SS. Dietary and plasma carotenoids are positively associated with alpha diversity in the fecal microbiota of pregnant women. J Food Sci 2021; 86:602-613. [PMID: 33449409 PMCID: PMC10035785 DOI: 10.1111/1750-3841.15586] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/17/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022]
Abstract
Because microbes use carotenoids as an antioxidant for protection, dietary carotenoids could be associated with gut microbiota composition. We aimed to determine associations among reported carotenoid intake, plasma carotenoid concentrations, and fecal bacterial communities in pregnant women. Pregnant women (n = 27) were enrolled in a two-arm study designed to assess feasibility of biospecimen collection and delivery of a practical nutrition intervention. Plasma and fecal samples were collected and women were surveyed with a 24-hr dietary checklist and recalls. Plasma carotenoids were analyzed by HPLC using photodiode array detection. Fecal bacteria were analyzed by 16S rRNA DNA sequencing. Results presented are cross-sectional from the 36-week gestational study visit combined across both study arms due to lack of significant differences between intervention and usual care groups (n = 23 women with complete data). Recent intake of carotenoid-containing foods included carrots, sweet potatoes, mangos, apricots, and/or bell peppers for 48% of women; oranges/orange juice (17%); egg (39%); tomato/tomato-based sauces (52%); fruits (83%); and vegetables (65%). Average plasma carotenoid concentrations were 6.4 µg/dL α-carotene (AC), 17.7 µg/dL β-carotene (BC), 11.4 µg/dL cryptoxanthin, 39.0 µg/dL trans-lycopene, and 29.8 µg/dL zeaxanthin and lutein. AC and BC concentrations were higher in women who recently consumed foods high in carotenoids. CR concentrations were higher in women who consumed oranges/orange juice. Microbiota α-diversity positively correlated with AC and BC. Microbiota β-diversity differed significantly across reported intake of carotenoid containing foods and plasma concentrations of AC. This may reflect an effect of high fiber or improved overall dietary quality, rather than a specific effect of carotenoids. PRACTICAL APPLICATION: Little is known about the association between the gut microbiome and specific dietary microconstituents, such as carotenoids, especially during pregnancy. This research demonstrates that a carotenoid-rich diet during pregnancy supports a diverse microbiota, which could be one mechanism by which carotenoids promote health.
Collapse
Affiliation(s)
- Kristen M. Schmidt
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Eliot N. Haddad
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Kameron Y. Sugino
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Karin R. Vevang
- The Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Lisa A. Peterson
- The Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Revati Koratkar
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Myron D. Gross
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Jean M. Kerver
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Sarah S. Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
23
|
Kundra P, Rachmühl C, Lacroix C, Geirnaert A. Role of Dietary Micronutrients on Gut Microbial Dysbiosis and Modulation in Inflammatory Bowel Disease. Mol Nutr Food Res 2021. [DOI: 10.1002/mnfr.201901271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Palni Kundra
- Laboratory of Food Biotechnology Institute of Food Nutrition and Health Schmelzbergstrasse 7 Zürich 8092 Switzerland
| | - Carole Rachmühl
- Laboratory of Food Biotechnology Institute of Food Nutrition and Health Schmelzbergstrasse 7 Zürich 8092 Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology Institute of Food Nutrition and Health Schmelzbergstrasse 7 Zürich 8092 Switzerland
| | - Annelies Geirnaert
- Laboratory of Food Biotechnology Institute of Food Nutrition and Health Schmelzbergstrasse 7 Zürich 8092 Switzerland
| |
Collapse
|
24
|
Knudsen TB, Pierro JD, Baker NC. Retinoid signaling in skeletal development: Scoping the system for predictive toxicology. Reprod Toxicol 2021; 99:109-130. [PMID: 33202217 PMCID: PMC11451096 DOI: 10.1016/j.reprotox.2020.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/15/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
All-trans retinoic acid (ATRA), the biologically active form of vitamin A, is instrumental in regulating the patterning and specification of the vertebrate embryo. Various animal models demonstrate adverse developmental phenotypes following experimental retinoid depletion or excess during pregnancy. Windows of vulnerability for altered skeletal patterning coincide with early specification of the body plan (gastrulation) and regional specification of precursor cell populations forming the facial skeleton (cranial neural crest), vertebral column (somites), and limbs (lateral plate mesoderm) during organogenesis. A common theme in physiological roles of ATRA signaling is mutual antagonism with FGF signaling. Consequences of genetic errors or environmental disruption of retinoid signaling include stage- and region-specific homeotic transformations to severe deficiencies for various skeletal elements. This review derives from an annex in Detailed Review Paper (DRP) of the OECD Test Guidelines Programme (Project 4.97) to support recommendations regarding assay development for the retinoid system and the use of resulting data in a regulatory context for developmental and reproductive toxicity (DART) testing.
Collapse
Affiliation(s)
- Thomas B Knudsen
- Center for Computational Toxicology and Exposure (CCTE), Biomolecular and Computational Toxicology Division (BCTD), Computational Toxicology and Bioinformatics Branch (CTBB), Office of Research and Development (ORD), U.S. Environmental Protection Agency (USEPA), Research Triangle Park, NC, 27711, United States.
| | - Jocylin D Pierro
- Center for Computational Toxicology and Exposure (CCTE), Biomolecular and Computational Toxicology Division (BCTD), Computational Toxicology and Bioinformatics Branch (CTBB), Office of Research and Development (ORD), U.S. Environmental Protection Agency (USEPA), Research Triangle Park, NC, 27711, United States.
| | - Nancy C Baker
- Leidos, Contractor to CCTE, Research Triangle Park, NC, 27711, United States.
| |
Collapse
|
25
|
de Freitas REM, Medeiros PHQS, Rodrigues FADP, Clementino MADF, Fernandes C, da Silva AVA, Prata MDMG, Cavalcante PA, Lima AÂM, Havt A. Retinoids delay cell cycle progression and promote differentiation of intestinal epithelial cells exposed to nutrient deprivation. Nutrition 2020; 85:111087. [PMID: 33545543 DOI: 10.1016/j.nut.2020.111087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/10/2020] [Accepted: 11/12/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Vitamin A is commonly recommended as a treatment for diarrhea and undernutrition; however, little is known about the underlying cellular mechanisms. The aim of this study was to investigate the modulation of cell cycle by vitamin A derivatives (retinyl palmitate or retinol) in undernourished intestinal epithelial crypts (IEC-6). METHODS IEC-6 cells were exposed to nutrient deprivation (no serum and no glutamine) and supplemented with retinyl palmitate or retinol at a range of 2 to 20 μM. Proliferation, apoptosis/necrosis, cell cycle process, and gene transcription were assessed. RESULTS Nutrient deprivation for 6, 12, 24, or 48 h decreased cell proliferation, and retinyl palmitate further decreased it after 24 and 48 h. Apoptosis rates were reduced by undernourishment and further reduced by retinyl palmitate after 48 h; whereas necrosis rates were unaltered. Undernourishment induced overall cell quiescence, increased percentage of cells in G0/G1 phase and decreased percentage of cells in S phase after 12 h and in G2/M phases at 6, 12, and 24 h after treatment. Both retinoids also showed cell quiescence induction with less cells in G2/M phases after 48 h, whereas only retinol showed significant modulation of G0/G1 and S phases. Both retinoids also increased markers of cell differentiation Fabp and Iap gene transcriptions in about fivefold rates after 42 h. Furthermore, specific gene transcriptions related to MAP kinase signaling pathway regulation of cell differentiation and cell cycle regulation were triggered by retinoids in undernourished IEC-6, with higher levels of expression for Atf2 and C-jun genes. CONCLUSIONS These findings indicated that both vitamin A derivatives induce further survival mechanisms in undernourished intestinal epithelial crypt cells. These mechanisms include increased cell quiescence, decreased apoptosis, increased cell differentiation, and transcription of genes related to MAP kinase signaling pathway.
Collapse
Affiliation(s)
- Rosa Elayne Marques de Freitas
- Institute of Biomedicine and Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | | | | | | | - Camila Fernandes
- Institute of Biomedicine and Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Antonio Vinicios Alves da Silva
- Institute of Biomedicine and Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Mara de Moura Gondim Prata
- Institute of Biomedicine and Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | | | | | - Alexandre Havt
- Institute of Biomedicine and Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil.
| |
Collapse
|