1
|
Madrigal G, Minhas BF, Catchen J. Klumpy: A tool to evaluate the integrity of long-read genome assemblies and illusive sequence motifs. Mol Ecol Resour 2025; 25:e13982. [PMID: 38800997 PMCID: PMC11646305 DOI: 10.1111/1755-0998.13982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
The improvement and decreasing costs of third-generation sequencing technologies has widened the scope of biological questions researchers can address with de novo genome assemblies. With the increasing number of reference genomes, validating their integrity with minimal overhead is vital for establishing confident results in their applications. Here, we present Klumpy, a tool for detecting and visualizing both misassembled regions in a genome assembly and genetic elements (e.g. genes) of interest in a set of sequences. By leveraging the initial raw reads in combination with their respective genome assembly, we illustrate Klumpy's utility by investigating antifreeze glycoprotein (afgp) loci across two icefishes, by searching for a reported absent gene in the northern snakehead fish, and by scanning the reference genomes of a mudskipper and bumblebee for misassembled regions. In the two former cases, we were able to provide support for the noncanonical placement of an afgp locus in the icefishes and locate the missing snakehead gene. Furthermore, our genome scans were able identify an unmappable locus in the mudskipper reference genome and identify a putative repetitive element shared among several species of bees.
Collapse
Affiliation(s)
- Giovanni Madrigal
- Department of Evolution, Ecology, and BehaviorUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Bushra Fazal Minhas
- Informatics ProgramUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Julian Catchen
- Department of Evolution, Ecology, and BehaviorUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Informatics ProgramUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
2
|
Huang W, He W, Huang Y, Tang Y, Chen M, Sun L, Yang Z, Hou T, Liu H, Chen H, Wang T, Li N, Guo Y, Xiao L, Feng Y. Multicopy subtelomeric genes underlie animal infectivity of divergent Cryptosporidium hominis subtypes. Nat Commun 2024; 15:10774. [PMID: 39737947 PMCID: PMC11685829 DOI: 10.1038/s41467-024-54995-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
The anthroponotic Cryptosporidium hominis differs from the zoonotic C. parvum in its lack of infectivity to animals, but several divergent subtypes have recently been found in nonhuman primates and equines. Here, we sequence 17 animal C. hominis isolates and generate a new IbA12G3 genome at the chromosome level. Comparative analysis with 222 human isolates shows significant genetic divergence of the animal isolates, with genetic recombination among them. They have additional subtelomeric insulinase and MEDLE genes. In interferon-γ knockout mice, three monkey isolates show differences in infectivity and induce higher and longer oocyst shedding than a reference C. parvum isolate. Deletion of the MEDLE genes significantly reduces the growth and pathogenicity of a virulent strain in mice. Co-infection of two fluorescence-tagged C. hominis subtypes produces bicolored oocysts, supporting the conclusion that mixed subtype infections can lead to genetic recombination. These data provide insight into potential determinants of host infectivity in Cryptosporidium, and a convenient animal model for biological studies of C. hominis.
Collapse
Affiliation(s)
- Wanyi Huang
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wei He
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yue Huang
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yongping Tang
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ming Chen
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lianbei Sun
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zuwei Yang
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Tianyi Hou
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Huimin Liu
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Haoyu Chen
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Tianpeng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yaqiong Guo
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
3
|
Schäfer L, Jehle JA, Kleespies RG, Wennmann JT. A practical guide and Galaxy workflow to avoid inter-plasmidic repeat collapse and false gene loss in Unicycler's hybrid assemblies. Microb Genom 2024; 10:001173. [PMID: 38197876 PMCID: PMC10868617 DOI: 10.1099/mgen.0.001173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024] Open
Abstract
Generating complete, high-quality genome assemblies is key for any downstream analysis, such as comparative genomics. For bacterial genome assembly, various algorithms and fully automated pipelines exist, which are free-of-charge and easily accessible. However, these assembly tools often cannot unambiguously resolve a bacterial genome, for example due to the presence of sequence repeat structures on the chromosome or on plasmids. Then, a more sophisticated approach and/or manual curation is needed. Such modifications can be challenging, especially for non-bioinformaticians, because they are generally not considered as a straightforward process. In this study, we propose a standardized approach for manual genome completion focusing on the popular hybrid assembly pipeline Unicycler. The provided Galaxy workflow addresses two weaknesses in Unicycler's hybrid assemblies: (i) collapse of inter-plasmidic repeats and (ii) false loss of single-copy sequences. To demonstrate and validate how to detect and resolve these assembly errors, we use two genomes from the Bacillus cereus group. By applying the proposed pipeline following an automated assembly, the genome sequence quality can be significantly improved.
Collapse
Affiliation(s)
- Lea Schäfer
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Biological Control, Schwabenheimer Str. 101, 69221 Dossenheim, Germany
| | - Johannes A. Jehle
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Biological Control, Schwabenheimer Str. 101, 69221 Dossenheim, Germany
| | - Regina G. Kleespies
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Biological Control, Schwabenheimer Str. 101, 69221 Dossenheim, Germany
| | - Jörg T. Wennmann
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Biological Control, Schwabenheimer Str. 101, 69221 Dossenheim, Germany
| |
Collapse
|
4
|
Ruiz JL, Reimering S, Escobar-Prieto JD, Brancucci NMB, Echeverry DF, Abdi AI, Marti M, Gómez-Díaz E, Otto TD. From contigs towards chromosomes: automatic improvement of long read assemblies (ILRA). Brief Bioinform 2023; 24:bbad248. [PMID: 37406192 PMCID: PMC10359078 DOI: 10.1093/bib/bbad248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/24/2023] [Accepted: 06/16/2023] [Indexed: 07/07/2023] Open
Abstract
Recent advances in long read technologies not only enable large consortia to aim to sequence all eukaryotes on Earth, but they also allow individual laboratories to sequence their species of interest with relatively low investment. Long read technologies embody the promise of overcoming scaffolding problems associated with repeats and low complexity sequences, but the number of contigs often far exceeds the number of chromosomes and they may contain many insertion and deletion errors around homopolymer tracts. To overcome these issues, we have implemented the ILRA pipeline to correct long read-based assemblies. Contigs are first reordered, renamed, merged, circularized, or filtered if erroneous or contaminated. Illumina short reads are used subsequently to correct homopolymer errors. We successfully tested our approach by improving the genome sequences of Homo sapiens, Trypanosoma brucei, and Leptosphaeria spp., and by generating four novel Plasmodium falciparum assemblies from field samples. We found that correcting homopolymer tracts reduced the number of genes incorrectly annotated as pseudogenes, but an iterative approach seems to be required to correct more sequencing errors. In summary, we describe and benchmark the performance of our new tool, which improved the quality of novel long read assemblies up to 1 Gbp. The pipeline is available at GitHub: https://github.com/ThomasDOtto/ILRA.
Collapse
Affiliation(s)
- José Luis Ruiz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, 18016, Granada, Spain
| | - Susanne Reimering
- Department for Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Nicolas M B Brancucci
- School of Infection & Immunity, MVLS, University of Glasgow, Glasgow, UK
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Diego F Echeverry
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
- Departamento de Microbiología, Facultad de Salud, Universidad del Valle, Cali, Colombia
| | | | - Matthias Marti
- School of Infection & Immunity, MVLS, University of Glasgow, Glasgow, UK
| | - Elena Gómez-Díaz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, 18016, Granada, Spain
| | - Thomas D Otto
- School of Infection & Immunity, MVLS, University of Glasgow, Glasgow, UK
| |
Collapse
|
5
|
Baptista RDP, Xiao R, Li Y, Glenn TC, Kissinger JC. New T2T assembly of Cryptosporidium parvum IOWA annotated with reference genome gene identifiers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544219. [PMID: 37398184 PMCID: PMC10312629 DOI: 10.1101/2023.06.13.544219] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Cryptosporidium parvum is a significant pathogen causing gastrointestinal infections in humans and animals, that is spread through the ingestion of contaminated food and water. Despite its global impact on public health, generating a C. parvum genome sequence has always been challenging due to a lack of in vitro cultivation systems and challenging sub-telomeric gene families. A gapless telomere to telomere genome assembly has been created for Cryptosporidium parvum IOWA obtained from Bunch Grass Farms, named here as CpBGF. There are 8 chromosomes that total 9,259,183 bp. The new hybrid assembly which was generated with Illumina and Oxford Nanopore resolves complex sub-telomeric regions of chromosomes 1, 7 and 8. To facilitate ease of use and consistency with the literature, whenever possible, chromosomes have been oriented and genes in this annotation have been given the same gene IDs used in the current reference genome sequence generated in 2004. The annotation of this assembly utilized considerable RNA expression evidence, thus, untranslated regions, long noncoding RNAs and antisense RNAs are annotated. The CpBGF genome assembly serves as a valuable resource for understanding the biology, pathogenesis, and transmission of C. parvum, and it facilitates the development of diagnostics, drugs, and vaccines against cryptosporidiosis.
Collapse
Affiliation(s)
- Rodrigo de Paula Baptista
- Center for tropical and emerging global diseases, University of Georgia, Athens, GA 30602 USA
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602 USA
- Houston Methodist Research Institute, Houston, TX 77030 USA
| | - Rui Xiao
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602 USA
| | - Yiran Li
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602 USA
| | - Travis C. Glenn
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602 USA
- Environmental Health Science, University of Georgia, Athens, GA 30602 USA
- Department of Genetics, University of Georgia, Athens, GA 30602 USA
| | - Jessica C. Kissinger
- Center for tropical and emerging global diseases, University of Georgia, Athens, GA 30602 USA
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602 USA
- Department of Genetics, University of Georgia, Athens, GA 30602 USA
| |
Collapse
|
6
|
McCallum GE, Rossiter AE, Quraishi MN, Iqbal TH, Kuehne SA, van Schaik W. Noise reduction strategies in metagenomic chromosome confirmation capture to link antibiotic resistance genes to microbial hosts. Microb Genom 2023; 9:mgen001030. [PMID: 37272920 PMCID: PMC10327510 DOI: 10.1099/mgen.0.001030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/11/2023] [Indexed: 06/06/2023] Open
Abstract
The gut microbiota is a reservoir for antimicrobial resistance genes (ARGs). With current sequencing methods, it is difficult to assign ARGs to their microbial hosts, particularly if these ARGs are located on plasmids. Metagenomic chromosome conformation capture approaches (meta3C and Hi-C) have recently been developed to link bacterial genes to phylogenetic markers, thus potentially allowing the assignment of ARGs to their hosts on a microbiome-wide scale. Here, we generated a meta3C dataset of a human stool sample and used previously published meta3C and Hi-C datasets to investigate bacterial hosts of ARGs in the human gut microbiome. Sequence reads mapping to repetitive elements were found to cause problematic noise in, and may importantly skew interpretation of, meta3C and Hi-C data. We provide a strategy to improve the signal-to-noise ratio by discarding reads that map to insertion sequence elements and to the end of contigs. We also show the importance of using spike-in controls to quantify whether the cross-linking step in meta3C and Hi-C protocols has been successful. After filtering to remove artefactual links, 87 ARGs were assigned to their bacterial hosts across all datasets, including 27 ARGs in the meta3C dataset we generated. We show that commensal gut bacteria are an important reservoir for ARGs, with genes coding for aminoglycoside and tetracycline resistance being widespread in anaerobic commensals of the human gut.
Collapse
Affiliation(s)
- Gregory E. McCallum
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Amanda E. Rossiter
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | - Tariq H. Iqbal
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Sarah A. Kuehne
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- School of Dentistry, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Willem van Schaik
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
7
|
Nie Z, Zhao N, Zhao H, Fu Z, Ma Z, Wei J. Cloning, Expression Analysis and SNP Screening of the kiss1 Gene in Male Schizothorax biddulphi. Genes (Basel) 2023; 14:genes14040862. [PMID: 37107620 PMCID: PMC10137902 DOI: 10.3390/genes14040862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Schizothorax biddulphi is an endemic fish distributed only in southern Xinjiang, China. Due to overfishing, water conservancy facilities, and other factors, as well as inherent biological limitations, resource recovery is quite difficult. For endangered fish with slow growth, late sexual maturity, and insufficient natural population supplementation, large-scale artificial reproduction and breeding are important for restoring resources. Therefore, it is urgent to optimize the reproductive regulation methods of the fish. The kiss1 gene is a key regulator of the reproductive regulation cascade, and identifying and analyzing the role of kiss1 are important for further elucidating the reproductive mechanism of S. biddulphi. To understand the characteristics of the kiss1 of S. biddulphi, the full-length cDNA sequence of kiss1 was obtained in this study, and its tissue expression specificity and association with phenotypic traits were analyzed in male fish. The full-length cDNA sequence of kiss1 in S. biddulphi was 658 bp, with an ORF of 327 bp, and encoded a 108-amino acid, unstable protein. Homology results indicated that kiss1 was highly conserved. qPCR showed kiss1 expression in different tissues in male S. biddulphi, with the highest expression in the gonads, followed by muscle, and significantly lower expression in the swim bladder, pituitary gland, heart, hypothalamus, gill, fin, liver, eye, and mid-kidney. qPCR revealed three SNP loci in the exonic region of kiss1. The c.3G>T locus was significantly correlated (p < 0.05) with gonad mass and the maturation coefficient in S. biddulphi. These results will help uncover the reproductive endocrinology network of S. biddulphi, improve artificial breeding technology for fish, and unveil new directions for breeding excellent strains of S. biddulphi and molecular marker-assisted breeding.
Collapse
Affiliation(s)
- Zhulan Nie
- College of Life Sciences and Technology, Tarim University, Alaer 843300, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production & Construction, Alaer 843300, China
- State Kay Laboratory Breeding Base for the Protection and Utilization of Biological Resources in Tarim Basin Co-Funded by Xinjiang Corps and the Ministry of Science and Technology, Tarim University, Alaer 843300, China
| | - Nianhua Zhao
- College of Life Sciences and Technology, Tarim University, Alaer 843300, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production & Construction, Alaer 843300, China
- State Kay Laboratory Breeding Base for the Protection and Utilization of Biological Resources in Tarim Basin Co-Funded by Xinjiang Corps and the Ministry of Science and Technology, Tarim University, Alaer 843300, China
| | - He Zhao
- College of Life Sciences and Technology, Tarim University, Alaer 843300, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production & Construction, Alaer 843300, China
- State Kay Laboratory Breeding Base for the Protection and Utilization of Biological Resources in Tarim Basin Co-Funded by Xinjiang Corps and the Ministry of Science and Technology, Tarim University, Alaer 843300, China
| | - Zhengyi Fu
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
- College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia
| | - Zhenhua Ma
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
- College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia
| | - Jie Wei
- College of Life Sciences and Technology, Tarim University, Alaer 843300, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production & Construction, Alaer 843300, China
- State Kay Laboratory Breeding Base for the Protection and Utilization of Biological Resources in Tarim Basin Co-Funded by Xinjiang Corps and the Ministry of Science and Technology, Tarim University, Alaer 843300, China
| |
Collapse
|
8
|
Toh H, Bagheri A, Dewey C, Stewart R, Yan L, Clegg D, Thomson JA, Jiang P. A Nile rat transcriptomic landscape across 22 organs by ultra-deep sequencing and comparative RNA-seq pipeline (CRSP). Comput Biol Chem 2023; 102:107795. [PMID: 36436489 DOI: 10.1016/j.compbiolchem.2022.107795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
RNA sequencing (RNA-seq) has been a widely used high-throughput method to characterize transcriptomic dynamics spatiotemporally. However, RNA-seq data analysis pipelines typically depend on either a sequenced genome and/or corresponding reference transcripts. This limitation is a challenge for species lacking sequenced genomes and corresponding reference transcripts. The Nile rat (Arvicanthis niloticus) has two key features - it is daytime active, and it is prone to diet-induced diabetes, which makes it more similar to humans than regular laboratory rodents. However, at the time of this study, neither a Nile rat genome nor a reference transcript set were available, making it technically challenging to perform large-scale RNA-seq based transcriptomic studies. This genome-independent work progressed concurrently with our generation of a Nile rat genome. A well-annotated genome requires several iterations of manually reviewing curated transcripts and takes years to achieve. Here, we developed a Comparative RNA-Seq Pipeline (CRSP), integrating a comparative species strategy independent of a specific sequenced genome or species-matched reference transcripts. We performed benchmarking to validate that our CRSP tool can accurately quantify gene expression levels. In this study, we generated the first ultra-deep (2.3 billion × 2 paired-end) Nile rat RNA-seq data from 59 biopsy samples representing 22 major organs, providing a unique resource and spatial gene expression reference for Nile rat researchers. Importantly, CRSP is not limited to the Nile rat species and can be applied to any species without prior genomic knowledge. To facilitate a general use of CRSP, we also characterized the number of RNA-seq reads required for accurate estimation via simulation studies. CRSP and documents are available at: https://github.com/pjiang1105/CRSP.
Collapse
Affiliation(s)
- Huishi Toh
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Atefeh Bagheri
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA; Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH 44115, USA
| | - Colin Dewey
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Computer Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ron Stewart
- Morgridge Institute for Research, Madison, WI 53706, USA
| | - Lili Yan
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Dennis Clegg
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - James A Thomson
- Morgridge Institute for Research, Madison, WI 53706, USA; Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Peng Jiang
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA; Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH 44115, USA; Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
9
|
Accessing the Variability of Multicopy Genes in Complex Genomes using Unassembled Next-Generation Sequencing Reads: The Case of Trypanosoma cruzi Multigene Families. mBio 2022; 13:e0231922. [PMID: 36264102 PMCID: PMC9765020 DOI: 10.1128/mbio.02319-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Repetitive elements cause assembly fragmentation in complex eukaryotic genomes, limiting the study of their variability. The genome of Trypanosoma cruzi, the parasite that causes Chagas disease, has a high repetitive content, including multigene families. Although many T. cruzi multigene families encode surface proteins that play pivotal roles in host-parasite interactions, their variability is currently underestimated, as their high repetitive content results in collapsed gene variants. To estimate sequence variability and copy number variation of multigene families, we developed a read-based approach that is independent of gene-specific read mapping and de novo assembly. This methodology was used to estimate the copy number and variability of MASP, TcMUC, and Trans-Sialidase (TS), the three largest T. cruzi multigene families, in 36 strains, including members of all six parasite discrete typing units (DTUs). We found that these three families present a specific pattern of variability and copy number among the distinct parasite DTUs. Inter-DTU hybrid strains presented a higher variability of these families, suggesting that maintaining a larger content of their members could be advantageous. In addition, in a chronic murine model and chronic Chagasic human patients, the immune response was focused on TS antigens, suggesting that targeting TS conserved sequences could be a potential avenue to improve diagnosis and vaccine design against Chagas disease. Finally, the proposed approach can be applied to study multicopy genes in any organism, opening new avenues to access sequence variability in complex genomes. IMPORTANCE Sequences that have several copies in a genome, such as multicopy-gene families, mobile elements, and microsatellites, are among the most challenging genomic segments to study. They are frequently underestimated in genome assemblies, hampering the correct assessment of these important players in genome evolution and adaptation. Here, we developed a new methodology to estimate variability and copy numbers of repetitive genomic regions and employed it to characterize the T. cruzi multigene families MASP, TcMUC, and transsialidase (TS), which are important virulence factors in this parasite. We showed that multigene families vary in sequence and content among the parasite's lineages, whereas hybrid strains have a higher sequence variability that could be advantageous to the parasite's survivability. By identifying conserved sequences within multigene families, we showed that the mammalian host immune response toward these multigene families is usually focused on the TS multigene family. These TS conserved and immunogenic peptides can be explored in future works as diagnostic targets or vaccine candidates for Chagas disease. Finally, this methodology can be easily applied to any organism of interest, which will aid in our understanding of complex genomic regions.
Collapse
|
10
|
Abstract
The nematode Caenorhabditis elegans has shed light on many aspects of eukaryotic biology, including genetics, development, cell biology, and genomics. A major factor in the success of C. elegans as a model organism has been the availability, since the late 1990s, of an essentially gap-free and well-annotated nuclear genome sequence, divided among 6 chromosomes. In this review, we discuss the structure, function, and biology of C. elegans chromosomes and then provide a general perspective on chromosome biology in other diverse nematode species. We highlight malleable chromosome features including centromeres, telomeres, and repetitive elements, as well as the remarkable process of programmed DNA elimination (historically described as chromatin diminution) that induces loss of portions of the genome in somatic cells of a handful of nematode species. An exciting future prospect is that nematode species may enable experimental approaches to study chromosome features and to test models of chromosome evolution. In the long term, fundamental insights regarding how speciation is integrated with chromosome biology may be revealed.
Collapse
Affiliation(s)
- Peter M Carlton
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Richard E Davis
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Denver, CO 80045, USA.,RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Shawn Ahmed
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
11
|
Baptista RP, Li Y, Sateriale A, Sanders MJ, Brooks KL, Tracey A, Ansell BRE, Jex AR, Cooper GW, Smith ED, Xiao R, Dumaine JE, Georgeson P, Pope BJ, Berriman M, Striepen B, Cotton JA, Kissinger JC. Long-read assembly and comparative evidence-based reanalysis of Cryptosporidium genome sequences reveal expanded transporter repertoire and duplication of entire chromosome ends including subtelomeric regions. Genome Res 2022; 32:203-213. [PMID: 34764149 PMCID: PMC8744675 DOI: 10.1101/gr.275325.121] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022]
Abstract
Cryptosporidiosis is a leading cause of waterborne diarrheal disease globally and an important contributor to mortality in infants and the immunosuppressed. Despite its importance, the Cryptosporidium community has only had access to a good, but incomplete, Cryptosporidium parvum IOWA reference genome sequence. Incomplete reference sequences hamper annotation, experimental design, and interpretation. We have generated a new C. parvum IOWA genome assembly supported by Pacific Biosciences (PacBio) and Oxford Nanopore long-read technologies and a new comparative and consistent genome annotation for three closely related species: C. parvum, Cryptosporidium hominis, and Cryptosporidium tyzzeri We made 1926 C. parvum annotation updates based on experimental evidence. They include new transporters, ncRNAs, introns, and altered gene structures. The new assembly and annotation revealed a complete Dnmt2 methylase ortholog. Comparative annotation between C. parvum, C. hominis, and C. tyzzeri revealed that most "missing" orthologs are found, suggesting that the biological differences between the species must result from gene copy number variation, differences in gene regulation, and single-nucleotide variants (SNVs). Using the new assembly and annotation as reference, 190 genes are identified as evolving under positive selection, including many not detected previously. The new C. parvum IOWA reference genome assembly is larger, gap free, and lacks ambiguous bases. This chromosomal assembly recovers all 16 chromosome ends, 13 of which are contiguously assembled. The three remaining chromosome ends are provisionally placed. These ends represent duplication of entire chromosome ends including subtelomeric regions revealing a new level of genome plasticity that will both inform and impact future research.
Collapse
Affiliation(s)
- Rodrigo P Baptista
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
- Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602, USA
| | - Yiran Li
- Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602, USA
| | - Adam Sateriale
- Department of Pathology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mandy J Sanders
- The Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
| | - Karen L Brooks
- The Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
| | - Alan Tracey
- The Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
| | - Brendan R E Ansell
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne and Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Aaron R Jex
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne and Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Garrett W Cooper
- Department of Clinical Pathology, The University of Melbourne, Victorian Comprehensive Cancer Centre, Melbourne VIC 3000, Australia
| | - Ethan D Smith
- Department of Clinical Pathology, The University of Melbourne, Victorian Comprehensive Cancer Centre, Melbourne VIC 3000, Australia
| | - Rui Xiao
- Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602, USA
| | - Jennifer E Dumaine
- Department of Pathology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Peter Georgeson
- Department of Clinical Pathology, The University of Melbourne, Victorian Comprehensive Cancer Centre, Melbourne VIC 3000, Australia
- Melbourne Bioinformatics, The University of Melbourne, Parkville VIC 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Melbourne VIC 3000, Australia
| | - Bernard J Pope
- Department of Clinical Pathology, The University of Melbourne, Victorian Comprehensive Cancer Centre, Melbourne VIC 3000, Australia
- Melbourne Bioinformatics, The University of Melbourne, Parkville VIC 3010, Australia
- Department of Surgery (Royal Melbourne Hospital), Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne 3010, Australia
- Department of Medicine, Central Clinical School, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne 3004, Australia
| | - Matthew Berriman
- The Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
| | - Boris Striepen
- Department of Pathology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - James A Cotton
- The Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
| | - Jessica C Kissinger
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
- Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602, USA
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
12
|
Wang B, Mechaly AS, Somoza GM. Overview and New Insights Into the Diversity, Evolution, Role, and Regulation of Kisspeptins and Their Receptors in Teleost Fish. Front Endocrinol (Lausanne) 2022; 13:862614. [PMID: 35392133 PMCID: PMC8982144 DOI: 10.3389/fendo.2022.862614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/21/2022] [Indexed: 01/04/2023] Open
Abstract
In the last two decades, kisspeptin (Kiss) has been identified as an important player in the regulation of reproduction and other physiological functions in vertebrates, including several fish species. To date, two ligands (Kiss1, Kiss2) and three kisspeptin receptors (Kissr1, Kissr2, Kissr3) have been identified in teleosts, likely due to whole-genome duplication and loss of genes that occurred early in teleost evolution. Recent results in zebrafish and medaka mutants have challenged the notion that the kisspeptin system is essential for reproduction in fish, in marked contrast to the situation in mammals. In this context, this review focuses on the role of kisspeptins at three levels of the reproductive, brain-pituitary-gonadal (BPG) axis in fish. In addition, this review compiled information on factors controlling the Kiss/Kissr system, such as photoperiod, temperature, nutritional status, sex steroids, neuropeptides, and others. In this article, we summarize the available information on the molecular diversity and evolution, tissue expression and neuroanatomical distribution, functional significance, signaling pathways, and gene regulation of Kiss and Kissr in teleost fishes. Of particular note are recent advances in understanding flatfish kisspeptin systems, which require further study to reveal their structural and functional diversity.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- *Correspondence: Bin Wang, ; Alejandro S. Mechaly, ; Gustavo M. Somoza,
| | - Alejandro S. Mechaly
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Mar del Plata, Argentina
- Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Argentina
- *Correspondence: Bin Wang, ; Alejandro S. Mechaly, ; Gustavo M. Somoza,
| | - Gustavo M. Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
- *Correspondence: Bin Wang, ; Alejandro S. Mechaly, ; Gustavo M. Somoza,
| |
Collapse
|
13
|
Comparative Genomics across Three Ensifer Species Using a New Complete Genome Sequence of the Medicago Symbiont Sinorhizobium ( Ensifer) meliloti WSM1022. Microorganisms 2021; 9:microorganisms9122428. [PMID: 34946030 PMCID: PMC8706082 DOI: 10.3390/microorganisms9122428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Here, we report an improved and complete genome sequence of Sinorhizobium (Ensifer) meliloti strain WSM1022, a microsymbiont of Medicago species, revealing its tripartite structure. This improved genome sequence was generated combining Illumina and Oxford nanopore sequencing technologies to better understand the symbiotic properties of the bacterium. The 6.75 Mb WSM1022 genome consists of three scaffolds, corresponding to a chromosome (3.70 Mb) and the pSymA (1.38 Mb) and pSymB (1.66 Mb) megaplasmids. The assembly has an average GC content of 62.2% and a mean coverage of 77X. Genome annotation of WSM1022 predicted 6058 protein coding sequences (CDSs), 202 pseudogenes, 9 rRNAs (3 each of 5S, 16S, and 23S), 55 tRNAs, and 4 ncRNAs. We compared the genome of WSM1022 to two other rhizobial strains, closely related Sinorhizobium (Ensifer) meliloti Sm1021 and Sinorhizobium (Ensifer) medicae WSM419. Both WSM1022 and WSM419 species are high-efficiency rhizobial strains when in symbiosis with Medicago truncatula, whereas Sm1021 is ineffective. Our findings report significant genomic differences across the three strains with some similarities between the meliloti strains and some others between the high efficiency strains WSM1022 and WSM419. The addition of this high-quality rhizobial genome sequence in conjunction with comparative analyses will help to unravel the features that make a rhizobial symbiont highly efficient for nitrogen fixation.
Collapse
|
14
|
Zeng Q, Liu J, Wang C, Wang H, Zhang L, Hu J, Bao L, Wang S. High-quality reannotation of the king scallop genome reveals no 'gene-rich' feature and evolution of toxin resistance. Comput Struct Biotechnol J 2021; 19:4954-4960. [PMID: 34527199 PMCID: PMC8437780 DOI: 10.1016/j.csbj.2021.08.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/14/2021] [Accepted: 08/25/2021] [Indexed: 11/27/2022] Open
Abstract
The king scallop, Pecten maximus is a well-known, commercially important scallop species and is featured with remarkable tolerance to potent phytotoxins such as domoic acid. A high-quality genome can shed light on its biology and innovative evolution of toxin resistance. A reference genome has recently been published for P. maximus, however, it is suspicious that over 67,700 genes are annotated in this genome, which is unexpectedly larger than its close relatives of pectinids. Herein, we provide an improved high-quality chromosome-level reference genome assembly and annotation for the king scallop P. maximus. A final set of 26,995 genes is annotated after carefully checking and curation of the predicted gene models, which significantly improves the accuracy of gene structure information. The large number of gene duplicates in the previous genome is mainly distorted by the fragmented annotation. Through integrated genomic, evolutionary and transcriptomic analyses, we reveal that the Phi subfamily of ionotropic glutamate receptors (iGluRs) are well preserved in molluscs, and P. maximus experienced the rapid expansion of the Phi class of iGluR (GluF) gene family. The GluF genes exhibit ubiquitously high expression and altered sequence characteristics for ligand selectivity, which may contribute to the remarkable tolerance to neurotoxins in P. maximus. Taken together, our study disapproves the previous claim of the 'gene-rich' genome of this species and provides a high-quality genome assembly for further understanding of its biology and evolution of toxin resistance.
Collapse
Affiliation(s)
- Qifan Zeng
- MOE Key Laboratory of Marine Genetics and Breeding and Sars-Fang Centre, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jing Liu
- MOE Key Laboratory of Marine Genetics and Breeding and Sars-Fang Centre, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Chunde Wang
- Yantai Institute of Coastal Zone Research and Center for Ocean Mega-Science, Chinese Academy of Sciences, Yantai, 264003, China
- Qingdao Agricultural University, Qingdao 266109, China
| | - Hao Wang
- MOE Key Laboratory of Marine Genetics and Breeding and Sars-Fang Centre, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding and Sars-Fang Centre, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding and Sars-Fang Centre, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Lisui Bao
- MOE Key Laboratory of Marine Genetics and Breeding and Sars-Fang Centre, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding and Sars-Fang Centre, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| |
Collapse
|
15
|
Comparative genomics of Leishmania isolates from Brazil confirms the presence of Leishmania major in the Americas. Int J Parasitol 2021; 51:1047-1057. [PMID: 34329650 DOI: 10.1016/j.ijpara.2021.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/06/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
Leishmania (Leishmania) major is an important agent of cutaneous leishmaniasis, having as a vector sandflies belonging to the genus Phlebotomus. Although this species has been described as restricted to the Old World, parasites similar to L. major have been isolated from South American patients who have never travelled abroad. These parasites were named "L. major-like", and several studies have been carried out to characterise them biochemically, molecularly, and biologically. However, the phylogenetic origin of these isolates is still unknown. In the present study we characterised three L. major-like isolates, named BH49, BH121 and BH129, using comparative genomics approaches. We evaluated the presence of gene and segmental duplications/deletions and the presence of aneuploidies that could explain the differences in infectivity observed in the BH49 and BH121 isolates. All isolates presented a pattern of mosaic aneuploidy and gene copy number variation, which are common in the genus Leishmania. Virulence factors such as phosphatases and peptidases were found to have increased gene copy numbers in the infective isolate, which could explain the difference in infectivity previously observed between BH121 and BH49. Phylogenetic analyses revealed that BH49, BH121 and BH129 L. major-like grouped with L. major isolates, and suggest they were imported from the Old World in at least two independent events. We suggest that new epidemiological inquiries should also evaluate L. major infections in South America, to assess the epidemiological importance of this species in the New World.
Collapse
|
16
|
Vega FE, Emche S, Shao J, Simpkins A, Summers RM, Mock MB, Ebert D, Infante F, Aoki S, Maul JE. Cultivation and Genome Sequencing of Bacteria Isolated From the Coffee Berry Borer ( Hypothenemus hampei), With Emphasis on the Role of Caffeine Degradation. Front Microbiol 2021; 12:644768. [PMID: 33889142 PMCID: PMC8055839 DOI: 10.3389/fmicb.2021.644768] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
The coffee berry borer, the most economically important insect pest of coffee worldwide, is the only insect capable of feeding and reproducing solely on the coffee seed, a food source containing the purine alkaloid caffeine. Twenty-one bacterial species associated with coffee berry borers from Hawai’i, Mexico, or a laboratory colony in Maryland (Acinetobacter sp. S40, S54, S55, Bacillus aryabhattai, Delftia lacustris, Erwinia sp. S38, S43, S63, Klebsiella oxytoca, Ochrobactrum sp. S45, S46, Pantoea sp. S61, Pseudomonas aeruginosa, P. parafulva, and Pseudomonas sp. S30, S31, S32, S37, S44, S60, S75) were found to have at least one of five caffeine N-demethylation genes (ndmA, ndmB, ndmC, ndmD, ndmE), with Pseudomonas spp. S31, S32, S37, S60 and P. parafulva having the full complement of these genes. Some of the bacteria carrying the ndm genes were detected in eggs, suggesting possible vertical transmission, while presence of caffeine-degrading bacteria in frass, e.g., P. parafulva (ndmABCDE) and Bacillus aryabhattai (ndmA) could result in horizontal transmission to all insect life stages. Thirty-five bacterial species associated with the insect (Acinetobacter sp. S40, S54, S55, B. aryabhattai, B. cereus group, Bacillus sp. S29, S70, S71, S72, S73, D. lacustris, Erwinia sp. S38, S43, S59, S63, K. oxytoca, Kosakonia cowanii, Ochrobactrum sp. S45, S46, Paenibacillus sp. S28, Pantoea sp. S61, S62, P. aeruginosa, P. parafulva, Pseudomonas sp. S30, S31, S32, S37, S44, S60, S75, Stenotrophomonas sp. S39, S41, S48, S49) might contribute to caffeine breakdown using the C-8 oxidation pathway, based on presence of genes required for this pathway. It is possible that caffeine-degrading bacteria associated with the coffee berry borer originated as epiphytes and endophytes in the coffee plant microbiota.
Collapse
Affiliation(s)
- Fernando E Vega
- Sustainable Perennial Crops Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| | - Sarah Emche
- Sustainable Agricultural Systems Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| | - Jonathan Shao
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| | - Ann Simpkins
- Sustainable Perennial Crops Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| | - Ryan M Summers
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, United States
| | - Meredith B Mock
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, United States
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | | | - Sayaka Aoki
- Department of Plant and Environmental Protection Sciences, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Jude E Maul
- Sustainable Agricultural Systems Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| |
Collapse
|
17
|
Continuous Microevolution Accelerates Disease Progression during Sequential Episodes of Infection. Cell Rep 2021; 30:2978-2988.e3. [PMID: 32130901 PMCID: PMC7137071 DOI: 10.1016/j.celrep.2020.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/24/2020] [Accepted: 02/04/2020] [Indexed: 12/04/2022] Open
Abstract
Bacteria adapt to dynamic changes in the host during chronic and recurrent infections. Bacterial microevolution is one type of adaptation that imparts a selective advantage. We hypothesize that recurrent episodes of disease promote microevolution through genetic mutations that modulate disease severity. We use a pre-clinical model of otitis media (OM) to determine the potential role for microevolution of nontypeable Haemophilus influenzae (NTHI) during sequential episodes of disease. Whole genome sequencing reveals microevolution of hemoglobin binding and lipooligosaccharide (LOS) biosynthesis genes, suggesting that adaptation of these systems is critical for infection. These OM-adapted strains promote increased biofilm formation, inflammation, stromal fibrosis, and an increased propensity to form intracellular bacterial communities (IBCs). Remarkably, IBCs remain for at least one month following clinical resolution of infection, suggesting an intracellular reservoir as a nidus for recurrent OM. Additional approaches for therapeutic design tailored to combat this burdensome disease will arise from these studies. Harrison et al. develop a sequential model of otitis media (OM) to investigate microevolution through genetic mutations that modulate disease severity. OM-adapted strains promote increased biofilm, inflammation, stromal fibrosis, and intracellular bacterial community (IBC) development. IBCs remain one month following clinical resolution of infection, suggesting a nidus for recurrent OM.
Collapse
|