1
|
Joshi G, Décembre E, Brocard J, Montpellier C, Ferrié M, Allatif O, Mehnert AK, Pons J, Galiana D, Dao Thi VL, Jouvenet N, Cocquerel L, Dreux M. Plasmacytoid dendritic cell sensing of hepatitis E virus is shaped by both viral and host factors. Life Sci Alliance 2025; 8:e202503256. [PMID: 40175091 PMCID: PMC11966012 DOI: 10.26508/lsa.202503256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 04/04/2025] Open
Abstract
Type I and III interferons critically protect the host against viral infection. Previous studies showed that IFN responses are suppressed in cells infected by hepatitis E virus (HEV). Here, we studied the anti-HEV function of IFN secreted by plasmacytoid dendritic cells (pDCs), specialized producers of IFNs. We showed that pDCs co-cultured with HEV-replicating cells secreted IFN in a cell contact-dependent manner. This pDC response required the endosomal nucleic acid sensor TLR7 and adhesion molecules. IFNs secreted by pDCs reduced viral spread. Intriguingly, ORF2, the capsid protein of HEV, can be produced in various forms by the infected cells, and we wanted to study their role in anti-HEV immune response. During infection, a fraction of ORF2 localizes into the nucleus, and glycosylated forms of ORF2 are massively secreted by infected cells. We showed that glycosylated ORF2 potentiates the recognition of infected cells by pDCs, by regulating cell contacts. On the other hand, nuclear ORF2 triggers immune response by IRF3 activation. Together, our results suggest that pDCs may be essential to control HEV replication.
Collapse
Affiliation(s)
- Garima Joshi
- CIRI, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University Lyon, Lyon, France
| | - Elodie Décembre
- CIRI, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University Lyon, Lyon, France
| | - Jacques Brocard
- Université Claude Bernard Lyon 1, CNRS UAR3444, INSERMUS8, ENS de Lyon, SFR Biosciences, Lyon, France
| | - Claire Montpellier
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Martin Ferrié
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Omran Allatif
- CIRI, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University Lyon, Lyon, France
| | - Ann-Kathrin Mehnert
- Department of Infectious Diseases, Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany and German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Johann Pons
- Sup'biotech, École Des Ingénieurs En Biotechnologies, Villejuif, Paris
| | - Delphine Galiana
- CIRI, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University Lyon, Lyon, France
| | - Viet Loan Dao Thi
- Department of Infectious Diseases, Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany and German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Nolwenn Jouvenet
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus sensing and signaling Unit, Paris, France
| | - Laurence Cocquerel
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Marlène Dreux
- CIRI, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University Lyon, Lyon, France
| |
Collapse
|
2
|
Zhao M, Cheng Y, Gao J, Zhou F. Single-cell mass cytometry in immunological skin diseases. Front Immunol 2024; 15:1401102. [PMID: 39081313 PMCID: PMC11286489 DOI: 10.3389/fimmu.2024.1401102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Immune-related skin diseases represent a collective of dermatological disorders intricately linked to dysfunctional immune system processes. These conditions are primarily characterized by an immoderate activation of the immune system or deviant immune responses, involving diverse immune components including immune cells, antibodies, and inflammatory mediators. However, the precise molecular dysregulation underlying numerous individual cases of these diseases and unique subsets respond under disease conditions remains elusive. Comprehending the mechanisms and determinants governing the homeostasis and functionality of diseases could offer potential therapeutic opportunities for intervention. Mass cytometry enables precise and high-throughput quantitative measurement of proteins within individual cells by utilizing antibodies labeled with rare heavy metal isotopes. Imaging mass cytometry employs mass spectrometry to obtain spatial information on cell-to-cell interactions within tissue sections, simultaneously utilizing more than 40 markers. The application of single-cell mass cytometry presents a unique opportunity to conduct highly multiplexed analysis at the single-cell level, thereby revolutionizing our understanding of cell population heterogeneity and hierarchy, cellular states, multiplexed signaling pathways, proteolysis products, and mRNA transcripts specifically in the context of many autoimmune diseases. This information holds the potential to offer novel approaches for the diagnosis, prognostic assessment, and monitoring responses to treatment, thereby enriching our strategies in managing the respective conditions. This review summarizes the present-day utilization of single-cell mass cytometry in studying immune-related skin diseases, highlighting its advantages and limitations. This technique will become increasingly prevalent in conducting extensive investigations into these disorders, ultimately yielding significant contributions to their accurate diagnosis and efficacious therapeutic interventions.
Collapse
Affiliation(s)
- Mingming Zhao
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yuqi Cheng
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Jinping Gao
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Fusheng Zhou
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| |
Collapse
|
3
|
Doyle EH, Aloman C, El-Shamy A, Eng FJ, Kim-Schulze S, Rahman A, Schiano T, Heeger P, Branch AD. Imprinted immune abnormalities in liver transplant patients cured of hepatitis C with antiviral drugs. Liver Transpl 2024; 30:728-741. [PMID: 38315053 DOI: 10.1097/lvt.0000000000000342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024]
Abstract
Chronic HCV infection induces interferon and dysregulates immune responses through inflammation and chronic antigenic stimulation. Antiviral drugs can cure HCV, providing a unique opportunity to examine the immunological restoration that does and does not occur when a chronic viral infection is eradicated. We quantified blood cytokines levels and used mass cytometry to immunophenotype peripheral blood mononuclear cells before and after HCV cure in 2 groups of patients and controls. At baseline, serum interferon α and soluble CD163 (a macrophage product) were elevated in both liver transplant and nonliver transplant patients compared to controls; the frequencies of several peripheral blood mononuclear cell populations differed from controls; and programmed death protein 1-positivity was increased in nearly all T cell subsets. Many abnormalities persisted after HCV cure, including elevated programmed death protein 1 expression on CD4 naïve and central memory T cells, elevated soluble CD163, and expansion of the plasmablast/plasma cell compartment. Several myeloid-lineage subsets, including Ag-presenting dendritic cells, remained dysregulated. In mechanistic studies, interferon α treatment increased programmed death protein 1 on human T cells and increased T cell receptor signaling. The data identify immunological abnormalities that persist after curative HCV treatment. Before cure, high levels of interferon α may stimulate programmed death protein 1 expression on human T cells, causing persistent functional changes.
Collapse
MESH Headings
- Humans
- Liver Transplantation/adverse effects
- Male
- Antiviral Agents/therapeutic use
- Middle Aged
- Female
- Antigens, CD/immunology
- Antigens, CD/blood
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/blood
- Antigens, Differentiation, Myelomonocytic/immunology
- Hepatitis C, Chronic/immunology
- Hepatitis C, Chronic/drug therapy
- Hepatitis C, Chronic/blood
- Hepatitis C, Chronic/surgery
- Interferon-alpha/therapeutic use
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/immunology
- Receptors, Cell Surface/blood
- Receptors, Cell Surface/immunology
- Adult
- Case-Control Studies
- Aged
- Hepacivirus/immunology
- Hepacivirus/drug effects
- Leukocytes, Mononuclear/immunology
- Cytokines/blood
- Immunophenotyping
- Treatment Outcome
Collapse
Affiliation(s)
- Erin H Doyle
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Costica Aloman
- Department of Surgery, Westchester Medical Center, New York Medical College, Valhalla, New York, USA
| | - Ahmed El-Shamy
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- College of Graduate Studies, Master of Pharmaceutical Sciences Program
| | - Francis J Eng
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adeeb Rahman
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thomas Schiano
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Peter Heeger
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrea D Branch
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
4
|
Wang B, Yang L, Yuan X, Zhang Y. Roles and therapeutic targeting of dendritic cells in liver fibrosis. J Drug Target 2024; 32:647-654. [PMID: 38682473 DOI: 10.1080/1061186x.2024.2347365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
Liver fibrosis is a common pathological condition marked by excessive accumulation of extracellular matrix proteins, resulting in irreversible cirrhosis and cancer. Dendritic cells (DCs) act as the crucial component of hepatic immunity and are believed to affect fibrosis by regulating the proliferation and differentiation of hepatic stellate cells (HSCs), a key mediator of fibrogenesis, and by interplaying with immune cells in the liver. This review concisely describes the process of fibrogenesis, and the phenotypic and functional characteristics of DCs in the liver. Besides, it focuses on the interaction between DCs and HSCs, T cells, and natural killer (NK) cells, as well as the dual roles of DCs in liver fibrosis, for the sake of exploring the potential of targeting DCs as a therapeutic strategy for the disease.
Collapse
Affiliation(s)
- Bingyu Wang
- Heilongjiang University of Chinese Medicine, Harbin, P.R. China
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, P.R. China
| | - Liuxin Yang
- Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| | - Xingxing Yuan
- Heilongjiang University of Chinese Medicine, Harbin, P.R. China
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, P.R. China
| | - Yang Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| |
Collapse
|
5
|
Caputo F, Penitenti F, Bergonzoni B, Lungaro L, Costanzini A, Caio G, DE Giorgio R, Ambrosio MR, Zoli G, Testino G. Alcohol use disorders and liver fibrosis: an update. Minerva Med 2024; 115:354-363. [PMID: 38727709 DOI: 10.23736/s0026-4806.24.09203-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Alcoholic liver disease (ALD) is currently, worldwide, the second most common cause of human fatalities every year. Alcohol use disorders (AUDs) lead to 80% of hepatotoxic deaths, and about 40% of cases of cirrhosis are alcohol-related. An acceptable daily intake (ADI) of ethanol is hard to establish and studies somewhat controversially recommend a variety of dosages of ADI, whilst others regard any intake as dangerous. Steatohepatitis should be viewed as "the rate limiting step": generally, it can be overcome by abstinence, although in some patients, abstinence has little effect, with the risk of fibrosis, leading in some cases to hepatocellular carcinoma (HCC). Chronic alcoholism can also cause hypercortisolism, specifically pseudo-Cushing Syndrome, whose diagnosis is challenging. If fibrosis is spotted early, patients may be enrolled in detoxification programs to achieve abstinence. Treatment drugs include silybin, metadoxine and adenosyl methionine. Nutrition and the proper use of micronutrients are important, albeit often overlooked in ALD treatment. Other drugs, with promising antifibrotic effects, are now being studied. This review deals with the clinical and pathogenetic aspects of alcohol-related liver fibrosis and suggests possible future strategies to prevent cirrhosis.
Collapse
Affiliation(s)
- Fabio Caputo
- Center for the Study and Treatment of Alcohol-Related Diseases, Department of Translational Medicine, University of Ferrara, Ferrara, Italy -
- Department of Internal Medicine, SS. Annunziata Hospital, University of Ferrara, Cento, Ferrara, Italy -
| | - Francesco Penitenti
- Section of Endocrinology, Internal Medicine and Geriatrics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Barbara Bergonzoni
- Department of Internal Medicine, SS. Annunziata Hospital, University of Ferrara, Cento, Ferrara, Italy
| | - Lisa Lungaro
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Anna Costanzini
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Giacomo Caio
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Roberto DE Giorgio
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Maria R Ambrosio
- Section of Endocrinology, Internal Medicine and Geriatrics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Giorgio Zoli
- Center for the Study and Treatment of Alcohol-Related Diseases, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Department of Internal Medicine, SS. Annunziata Hospital, University of Ferrara, Cento, Ferrara, Italy
| | - Gianni Testino
- Unit of Addiction and Hepatology, ASL3, San Martino Polyclinic Hospital, Genoa, Italy
| |
Collapse
|
6
|
Liu YG, Jin SW, Zhang SS, Xia TJ, Liao YH, Pan RL, Yan MZ, Chang Q. Interferon lambda in respiratory viral infection: immunomodulatory functions and antiviral effects in epithelium. Front Immunol 2024; 15:1338096. [PMID: 38495892 PMCID: PMC10940417 DOI: 10.3389/fimmu.2024.1338096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Type III interferon (IFN-λ), a new member of the IFN family, was initially considered to possess antiviral functions similar to those of type I interferon, both of which are induced via the JAK/STAT pathway. Nevertheless, recent findings demonstrated that IFN-λ exerts a nonredundant antiviral function at the mucosal surface, preferentially produced in epithelial cells in contrast to type I interferon, and its function cannot be replaced by type I interferon. This review summarizes recent studies showing that IFN-λ inhibits the spread of viruses from the cell surface to the body. Further studies have found that the role of IFN-λ is not only limited to the abovementioned functions, but it can also can exert direct and/or indirect effects on immune cells in virus-induced inflammation. This review focuses on the antiviral activity of IFN-λ in the mucosal epithelial cells and its action on immune cells and summarizes the pathways by which IFN-λ exerts its action and differentiates it from other interferons in terms of mechanism. Finally, we conclude that IFN-λ is a potent epidermal antiviral factor that enhances the respiratory mucosal immune response and has excellent therapeutic potential in combating respiratory viral infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming-Zhu Yan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Li Q, Chen F, Wang F. The immunological mechanisms and therapeutic potential in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Cell Biosci 2022; 12:187. [PMID: 36414987 PMCID: PMC9682794 DOI: 10.1186/s13578-022-00921-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022] Open
Abstract
Acute liver failure caused by drug overdose is a significant clinical problem in developed countries. Acetaminophen (APAP), a widely used analgesic and antipyretic drug, but its overdose can cause acute liver failure. In addition to APAP-induced direct hepatotoxicity, the intracellular signaling mechanisms of APAP-induced liver injury (AILI) including metabolic activation, mitochondrial oxidant stress and proinflammatory response further affect progression and severity of AILI. Liver inflammation is a result of multiple interactions of cell death molecules, immune cell-derived cytokines and chemokines, as well as damaged cell-released signals which orchestrate hepatic immune cell infiltration. The immunoregulatory interplay of these inflammatory mediators and switching of immune responses during AILI lead to different fate of liver pathology. Thus, better understanding the complex interplay of immune cell subsets in experimental models and defining their functional involvement in disease progression are essential to identify novel therapeutic targets for the treatment of AILI. Here, this present review aims to systematically elaborate on the underlying immunological mechanisms of AILI, its relevance to immune cells and their effector molecules, and briefly discuss great therapeutic potential based on inflammatory mediators.
Collapse
Affiliation(s)
- Qianhui Li
- grid.511083.e0000 0004 7671 2506Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, No.628, Zhenyuan Road, Shenzhen, 518107 China
| | - Feng Chen
- grid.511083.e0000 0004 7671 2506Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, No.628, Zhenyuan Road, Shenzhen, 518107 China
| | - Fei Wang
- grid.511083.e0000 0004 7671 2506Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, No.628, Zhenyuan Road, Shenzhen, 518107 China
| |
Collapse
|
8
|
Doyle EH, Aloman C, El-Shamy A, Eng F, Rahman A, Klepper AL, Haydel B, Florman SS, Fiel MI, Schiano T, Branch AD. A subset of liver resident natural killer cells is expanded in hepatitis C-infected patients with better liver function. Sci Rep 2021; 11:1551. [PMID: 33452360 PMCID: PMC7810844 DOI: 10.1038/s41598-020-80819-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
Viral hepatitis leads to immune-mediated liver injury. The rate of disease progression varies between individuals. We aimed to phenotype immune cells associated with preservation of normal liver function during hepatitis C virus (HCV) infection. Clinical data and specimens were obtained from 19 HCV-infected patients undergoing liver transplantation. Liver and peripheral blood mononuclear cells were isolated and eight subsets of innate immune cells were delineated by multiparameter flow cytometry. Cytokine assays and microarrays were performed. Intrahepatic CD56Bright/CD16- natural killer (NK) cells comprised the only subset correlating with better liver function, i.e., lower bilirubin (p = 0.0002) and lower model for end stage of liver disease scores (p = 0.03). The signature of liver NK cells from HCV-infected patients included genes expressed by NK cells in normal liver and by decidual NK cells. Portal vein blood had a higher concentration of interleukin (IL)-10 than peripheral blood (p = 0.03). LMCs were less responsive to toll-like receptor (TLR) stimulation than PBMCs, with fewer pro-inflammatory gene-expression pathways up-regulated after in vitro exposure to lipopolysaccharide and a TLR-7/8 agonist. Hepatic CD56Bright/CD16- NK cells may be critical for maintaining liver homeostasis. Portal vein IL-10 may prime inhibitory pathways, attenuating TLR signaling and reducing responsiveness to pro-inflammatory stimuli.
Collapse
Affiliation(s)
- Erin H Doyle
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai School, 1425 Madison Ave., Icahn 11-23, New York, NY, 10029, USA
| | | | - Ahmed El-Shamy
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai School, 1425 Madison Ave., Icahn 11-23, New York, NY, 10029, USA
| | - Francis Eng
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai School, 1425 Madison Ave., Icahn 11-23, New York, NY, 10029, USA
| | - Adeeb Rahman
- Human Immune Monitoring Core, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arielle L Klepper
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai School, 1425 Madison Ave., Icahn 11-23, New York, NY, 10029, USA
| | - Brandy Haydel
- Recanati Miller Transplantation Institute, The Mount Sinai Hospital, New York, NY, USA
| | - Sander S Florman
- Recanati Miller Transplantation Institute, The Mount Sinai Hospital, New York, NY, USA
| | - M Isabel Fiel
- Department of Pathology, The Mount Sinai Hospital, New York, NY, USA
| | - Thomas Schiano
- Recanati Miller Transplantation Institute, The Mount Sinai Hospital, New York, NY, USA
| | - Andrea D Branch
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai School, 1425 Madison Ave., Icahn 11-23, New York, NY, 10029, USA.
| |
Collapse
|
9
|
Alharshawi K, Fey H, Vogle A, Klenk T, Kim M, Aloman C. Sex specific effect of alcohol on hepatic plasmacytoid dendritic cells. Int Immunopharmacol 2020; 90:107166. [PMID: 33199233 DOI: 10.1016/j.intimp.2020.107166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/19/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
Alcoholic liver disease includes a spectrum of clinical and histological entities. They result from the combined direct effect of alcohol and its metabolites on immune cells and resident tissue cells. In humans and mice, females are more susceptible to alcoholic liver injury than males. Despite being involved in sex specific differences of immune mediated tissue injury, plasmacytoid dendritic cells (pDCs) have not been thoroughly assessed as a cellular target of alcohol in humans or mice. Therefore, Meadows-Cook diet was used to study alcohol effect on hepatic dendritic cells. Alcohol consumption for 12 weeks increased hepatic pDCs in female mice. The expression of the C-C chemokine receptor type 2 (CCR2) increased in hepatic pDC of alcohol-fed female mice. Bone marrow transplant chimera showed CCR2 dependent bone marrow egress of pDCs. Chronic alcohol exposure has a sex specific effect on hepatic pDCs population that may explain sex differences to alcoholic liver disease.
Collapse
Affiliation(s)
- Khaled Alharshawi
- Division of Digestive Diseases and Nutrition, Section of Hepatology, Rush University, Chicago, IL 60612, United States
| | - Holger Fey
- Division of Digestive Diseases and Nutrition, Section of Hepatology, Rush University, Chicago, IL 60612, United States
| | - Alyx Vogle
- Division of Digestive Diseases and Nutrition, Section of Hepatology, Rush University, Chicago, IL 60612, United States
| | - Tori Klenk
- Division of Digestive Diseases and Nutrition, Section of Hepatology, Rush University, Chicago, IL 60612, United States
| | - Miran Kim
- Division of Digestive Diseases and Nutrition, Section of Hepatology, Rush University, Chicago, IL 60612, United States
| | - Costica Aloman
- Division of Digestive Diseases and Nutrition, Section of Hepatology, Rush University, Chicago, IL 60612, United States.
| |
Collapse
|
10
|
Immune system control of hepatitis C virus infection. Curr Opin Virol 2020; 46:36-44. [PMID: 33137689 DOI: 10.1016/j.coviro.2020.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/11/2020] [Indexed: 12/20/2022]
Abstract
Hepatitis C virus (HCV) remains a global public health problem even though more than 95% of infections can be cured by treatment with direct-acting antiviral agents. Resolution of viremia post antiviral therapy does not lead to protective immunity and therefore reinfections can occur. Immune cell detection of HCV activates signaling pathways that produce interferons and trigger the innate immune response against the virus, preventing HCV replication and spread. Cells in the innate immune system, including natural killer, dendritic, and Kupffer cells, interact with infected hepatocytes and present viral antigens to T and B cells where their effector responses contribute to infection outcome. Despite the immune activation, HCV can evade the host response and establish persistent infection. Plans to understand the correlates of protection and strategies to activate proper innate and adaptive immune responses are needed for development of an effective prophylactic vaccine that stimulates protective immunity and limits HCV transmission.
Collapse
|
11
|
Zagorulya M, Duong E, Spranger S. Impact of anatomic site on antigen-presenting cells in cancer. J Immunother Cancer 2020; 8:e001204. [PMID: 33020244 PMCID: PMC7537336 DOI: 10.1136/jitc-2020-001204] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 12/24/2022] Open
Abstract
Checkpoint blockade immunotherapy (CBT) can induce long-term clinical benefits in patients with advanced cancer; however, response rates to CBT vary by cancer type. Cancers of the skin, lung, and kidney are largely responsive to CBT, while cancers of the pancreas, ovary, breast, and metastatic lesions to the liver respond poorly. The impact of tissue-resident immune cells on antitumor immunity is an emerging area of investigation. Recent evidence indicates that antitumor immune responses and efficacy of CBT depend on the tissue site of the tumor lesion. As myeloid cells are predominantly tissue-resident and can shape tumor-reactive T cell responses, it is conceivable that tissue-specific differences in their function underlie the tissue-site-dependent variability in CBT responses. Understanding the roles of tissue-specific myeloid cells in antitumor immunity can open new avenues for treatment design. In this review, we discuss the roles of tissue-specific antigen-presenting cells (APCs) in governing antitumor immune responses, with a particular focus on the contributions of tissue-specific dendritic cells. Using the framework of the Cancer-Immunity Cycle, we examine the contributions of tissue-specific APC in CBT-sensitive and CBT-resistant carcinomas, highlight how these cells can be therapeutically modulated, and identify gaps in knowledge that remain to be addressed.
Collapse
Affiliation(s)
- Maria Zagorulya
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ellen Duong
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Stefani Spranger
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
12
|
Zhang T, Warden AR, Li Y, Ding X. Progress and applications of mass cytometry in sketching immune landscapes. Clin Transl Med 2020; 10:e206. [PMID: 33135337 PMCID: PMC7556381 DOI: 10.1002/ctm2.206] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Recently emerged mass cytometry (cytometry by time-of-flight [CyTOF]) technology permits the identification and quantification of inherently diverse cellular systems, and the simultaneous measurement of functional attributes at the single-cell resolution. By virtue of its multiplex ability with limited need for compensation, CyTOF has led a critical role in immunological research fields. Here, we present an overview of CyTOF, including the introduction of CyTOF principle and advantages that make it a standalone tool in deciphering immune mysteries. We then discuss the functional assays, introduce the bioinformatics to interpret the data yield via CyTOF, and depict the emerging clinical and research applications of CyTOF technology in sketching immune landscape in a wide variety of diseases.
Collapse
Affiliation(s)
- Ting Zhang
- State Key laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Antony R. Warden
- State Key laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Yiyang Li
- State Key laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Xianting Ding
- State Key laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
13
|
Jamali A, Kenyon B, Ortiz G, Abou-Slaybi A, Sendra VG, Harris DL, Hamrah P. Plasmacytoid dendritic cells in the eye. Prog Retin Eye Res 2020; 80:100877. [PMID: 32717378 DOI: 10.1016/j.preteyeres.2020.100877] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) are a unique subpopulation of immune cells, distinct from classical dendritic cells. pDCs are generated in the bone marrow and following development, they typically home to secondary lymphoid tissues. While peripheral tissues are generally devoid of pDCs during steady state, few tissues, including the lung, kidney, vagina, and in particular ocular tissues harbor resident pDCs. pDCs were originally appreciated for their potential to produce large quantities of type I interferons in viral immunity. Subsequent studies have now unraveled their pivotal role in mediating immune responses, in particular in the induction of tolerance. In this review, we summarize our current knowledge on pDCs in ocular tissues in both mice and humans, in particular in the cornea, limbus, conjunctiva, choroid, retina, and lacrimal gland. Further, we will review our current understanding on the significance of pDCs in ameliorating inflammatory responses during herpes simplex virus keratitis, sterile inflammation, and corneal transplantation. Moreover, we describe their novel and pivotal neuroprotective role, their key function in preserving corneal angiogenic privilege, as well as their potential application as a cell-based therapy for ocular diseases.
Collapse
Affiliation(s)
- Arsia Jamali
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Brendan Kenyon
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Gustavo Ortiz
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Abdo Abou-Slaybi
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Program in Immunology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Victor G Sendra
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Deshea L Harris
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA; Program in Immunology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA; Cornea Service, Tufts New England Eye Center, Boston, MA, USA.
| |
Collapse
|
14
|
McElroy AK, Akondy RS, Mcllwain DR, Chen H, Bjornson-Hooper Z, Mukherjee N, Mehta AK, Nolan G, Nichol ST, Spiropoulou CF. Immunologic timeline of Ebola virus disease and recovery in humans. JCI Insight 2020; 5:137260. [PMID: 32434986 PMCID: PMC7259516 DOI: 10.1172/jci.insight.137260] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
A complete understanding of human immune responses to Ebola virus infection is limited by the availability of specimens and the requirement for biosafety level 4 (BSL-4) containment. In an effort to bridge this gap, we evaluated cryopreserved PBMCs from 4 patients who survived Ebola virus disease (EVD) using an established mass cytometry antibody panel to characterize various cell populations during both the acute and convalescent phases. Acute loss of nonclassical monocytes and myeloid DCs, especially CD1c+ DCs, was noted. Classical monocyte proliferation and CD38 upregulation on plasmacytoid DCs coincided with declining viral load. Unsupervised analysis of cell abundance demonstrated acute declines in monocytic, NK, and T cell populations, but some populations, many of myeloid origin, increased in abundance during the acute phase, suggesting emergency hematopoiesis. Despite cell losses during the acute phase, upregulation of Ki-67 correlated with recovery of cell populations over time. These data provide insights into the human immune response during EVD.
Collapse
Affiliation(s)
- Anita K McElroy
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Division of Pediatric Infectious Diseases and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rama S Akondy
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David R Mcllwain
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Han Chen
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Zach Bjornson-Hooper
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Nilanjan Mukherjee
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Aneesh K Mehta
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Garry Nolan
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|