1
|
Nolan DJ, Fogel GB, DaRoza J, Rose R, Bracci PM, Lamers SL, McGrath MS. Indicators for Increased Likelihood of Epidemic Kaposi Sarcoma Progression after Antiretroviral Therapy Initiation. AIDS Res Hum Retroviruses 2025. [PMID: 40178949 DOI: 10.1089/aid.2025.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Kaposi sarcoma (KS) is a common malignancy for people living with HIV (PLWH), despite antiretroviral therapy (ART). Curiously, even with improved CD4+ T-cell counts and low viral loads following ART, some PLWH with KS may still experience KS progression or even death and require adjuvant chemotherapy to manage their KS. The factors associated with persistent or unresponsive KS after ART initiation remain poorly characterized, and biomarkers to identify patients at risk of KS progression are needed, particularly in resource-limited areas where access to chemotherapy is limited. Here we analyzed baseline KS tumor biopsies from PLWH with KS who required chemotherapy due to unresolved KS after ART initiation and those who did not require chemotherapy after ART initiation. By examining participant metadata and viral copy number for Kaposi sarcoma-associated herpesvirus (KSHV), HIV, cytomegalovirus, and Epstein-Barr virus and KSHV gene expression in the tumor biopsies prior to ART initiation, we identified a model of factors associated with KS progression after ART initiation, including biological sex, age, and the log ratio of KSHV/HIV copy number in the tumor. We believe that the ratio of KSHV/HIV may be linked to the cell types that each virus infects, and future work exploring the relationship between tumor and immune cells in the baseline tumors is planned. Innovation would be necessary to reduce costs and simplify the viral quantification assays, enabling the translation of these findings into routine clinical care, particularly in resource-limited settings.
Collapse
Affiliation(s)
| | - Gary B Fogel
- Natural Selection, Inc., San Diego, California, USA
| | | | | | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | | | - Michael S McGrath
- Department of Medicine, The University of California at San Francisco, San Francisco, California, USA
| |
Collapse
|
2
|
Rauch DA, Ramos PV, Khanfar M, Harding J, Joseph A, Fahad A, Simonson P, Risch I, Griffith O, Griffith M, Ratner L. Single-Cell Transcriptomic Analysis of Kaposi Sarcoma. PLoS Pathog 2025; 21:e1012233. [PMID: 40168402 PMCID: PMC11984749 DOI: 10.1371/journal.ppat.1012233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 04/10/2025] [Accepted: 11/25/2024] [Indexed: 04/03/2025] Open
Abstract
Kaposi Sarcoma (KS) is a complex tumor caused by KS-associated herpesvirus 8 (KSHV). Histological analysis reveals a mixture of "spindle cells", vascular-like spaces, extravasated erythrocytes, and immune cells. In order to elucidate the infected and uninfected cell types in KS tumors, we examined twenty-five skin and blood samples from sixteen subjects by single cell RNA sequence analyses. Two populations of KSHV-infected cells were identified, one of which represented a CD34-negative proliferative fraction of endothelial cells, and the second representing CD34-positive cells expressing endothelial genes found in a variety of cell types including high endothelial venules, fenestrated capillaries, and endothelial tip cells. Although both infected clusters contained cells expressing lytic and latent KSHV genes, the CD34+ cells expressed more K5 and less K12. Novel cellular biomarkers were identified in the KSHV infected cells, including the sodium channel SCN9A. The number of KSHV positive cells was found to be less than 10% of total tumor cells in all samples and correlated inversely with tumor-infiltrating immune cells. T-cell receptor clones were expanded in KS tumors and blood, although in differing magnitudes. Changes in cellular composition in KS tumors after treatment with antiretroviral therapy alone, or immunotherapy were noted. These studies demonstrate the feasibility of single cell analyses to identify prognostic and predictive biomarkers.
Collapse
Affiliation(s)
- Daniel A. Rauch
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - Paula Valiño Ramos
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - Mariam Khanfar
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - John Harding
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - Ancy Joseph
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - Anam Fahad
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Paul Simonson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Isabel Risch
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - Obi Griffith
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - Malachi Griffith
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - Lee Ratner
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America,
| |
Collapse
|
3
|
Lacunza E, Fink V, Naipauer J, Salas ME, Gun AM, Goldman MJ, Zhu J, Williams S, Figueroa MI, Cahn P, Coso O, Cesarman E, Ramos JC, Abba MC. Integrative Functional Genomics Analysis of Kaposi Sarcoma Cohorts. RESEARCH SQUARE 2025:rs.3.rs-6146471. [PMID: 40162228 PMCID: PMC11952665 DOI: 10.21203/rs.3.rs-6146471/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Kaposi sarcoma (KS) is an AIDS-defining cancer and a significant global health challenge caused by KS-associated herpesvirus (KSHV). NGS-based approaches have profiled KS lesions in a minimal number of studies compared with other neoplastic diseases. Here we present a compiled and harmonized dataset of 131 KS and non-tumor cutaneous samples in the context of their predicted pathway activities, immune infiltrate, KSHV and HIV gene expression profiles, and their associated clinical data representing patient populations from Argentina, United States (USA), and Sub-Saharan Africa cohorts. RNA-seq data from 9 Argentinian KS lesions were generated and integrated with previously published datasets derived from the USA and sub-Saharan African cohorts from Tanzania, Zambia, and Uganda. An unsupervised analysis of 131 KS-related samples allowed us to identify four KS clusters based on their host and KSHV gene expression profiles, immune infiltrate, and the activity of specific signaling pathways. The compiled RNA-seq profile is shared with the research community through the UCSC Xena browser for further visualization, download, and analysis (https://kaposi.xenahubs.net/). These resources will allow biologists without bioinformatics knowledge to explore and correlate the host and viral transcriptome in a curated dataset of different KS RNA-seq-based cohorts, which can lead to novel biological insights and biomarker discovery.
Collapse
Affiliation(s)
| | - Valeria Fink
- Dirección de Investigaciones, Fundación Huésped, Buenos Aires, Argentina
| | - Julian Naipauer
- Instituto de Fisiología (IFIBYNE), Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | | | - Ana M Gun
- Dirección de Investigaciones, Fundación Huésped, Buenos Aires, Argentina
| | - Mary J Goldman
- UC Santa Cruz Genomics Institute, University of California
| | - Jingchun Zhu
- UC Santa Cruz Genomics Institute, University of California
| | | | - María I Figueroa
- Dirección de Investigaciones, Fundación Huésped, Buenos Aires, Argentina
| | - Pedro Cahn
- Dirección de Investigaciones, Fundación Huésped, Buenos Aires, Argentina
| | - Omar Coso
- Instituto de Fisiología (IFIBYNE), Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | | | | | | |
Collapse
|
4
|
Zhang J, Wang P, Li T, Luo D, Qu Y, Ding Y, Kang X. Exploration of RNA-binding proteins identified RPS27 as a potential regulator associated with Kaposi's sarcoma development. BMC Cancer 2025; 25:362. [PMID: 40016701 PMCID: PMC11866810 DOI: 10.1186/s12885-025-13790-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/21/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Kaposi's sarcoma (KS) is a locally aggressive, multicentric tumor. RNA-binding proteins (RBPs) are pivotal for post-transcriptional regulation in various tumors. However, the aberrantly expressed RBP genes and their regulatory patterns in KS remain unclear. This study aimed to identify relevant RBP genes in KS and assess the potential functions and molecular interactions of RPS27, a dysregulated RBP in KS tissues, METHODS: Matched KS lesions and normal control tissues from ten patients were chosen for the study. Differentially expressed genes (DEGs) were first identified by RNA-sequencing, and results were validated through an independent public RNA-seq dataset (GSE147704). Among the DEGs, RBPs were selected for further analysis, with RPS27 chosen for detailed investigation due to its dysregulation in KS tissues. RT-qPCR and immunohistochemistry were employed to validate RPS27 expression. Cellular experiments were conducted for dysregulated RPS27 to explore its functions. Additionally, improved RNA immunoprecipitation (iRIP)-seq was performed to investigate potential binding interactions of RPS27 in KS. RESULTS We identified 828 DEGs through RNA-seq, with 367 overlapping DEGs confirmed by the public RNA-seq dataset. We obtained 48 RBP genes from the overlapping DEGs, including 3 upregulated (PCBP3, L1TD1, and PEG10) and 45 downregulated RBP genes in KS. Notably, downregulated RBPs included TECR, PUSL1, DQX1, MAT1A, RACK1, EEF1A2, and EEF1B2, and the remaining downregulated RBPs were all ribosomal protein genes, including RPS27, which was selected for further exploration. Cellular experiments confirmed that RPS27 inhibition could promote cellular proliferation, migration, invasion, and angiogenesis of HUVECs, consistent with its downregulation in KS. iRIP-seq and RNA-seq analyses showed RPS27's ability to selectively bind to 26 DEGs and showed correlation. The majority of RPS27-bound DEGs were ribosomal protein genes, including RPL8, RPL13, RPL13A, RPL18, RPL19, RPL23, RPLP1, RPL27A, RPL40, RPS2, RPS4X, RPS13, RPS18, RPS21, and RPS27, which were associated with viral transcription and gene expression. CONCLUSION Our results identified dysregulated RBP genes in KS and explored the cellular functions and molecular targets of RPS27, indicating its potential regulatory role in KS development.
Collapse
Affiliation(s)
- Jingzhan Zhang
- Graduate School of Xinjiang Medical University, Urumqi, 83001, China
| | - Peng Wang
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, 83001, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Urumqi, 83001, China
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 83001, China
| | - Tingting Li
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, 83001, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Urumqi, 83001, China
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 83001, China
| | - Dong Luo
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, 83001, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Urumqi, 83001, China
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 83001, China
| | - Yuanyuan Qu
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, 83001, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Urumqi, 83001, China
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 83001, China
| | - Yuan Ding
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, 83001, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Urumqi, 83001, China
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 83001, China
| | - Xiaojing Kang
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, 83001, China.
- Xinjiang Clinical Research Center for Dermatology and Venereology, Urumqi, 83001, China.
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 83001, China.
| |
Collapse
|
5
|
Ravishankar S, Towlerton AM, Tiamiyu IL, Mooka P, Nankoma J, Kafeero J, Mubiru D, Sekitene S, Aicher LD, Miller CP, Coffey DG, Okoche L, Atwinirembabazi P, Okonye J, White J, Koelle DM, Jing L, Phipps WT, Warren EH. T-cells specific for KSHV and HIV migrate to Kaposi sarcoma tumors and persist over time. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.06.579223. [PMID: 38370623 PMCID: PMC10871354 DOI: 10.1101/2024.02.06.579223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi sarcoma (KS), which causes significant morbidity and mortality worldwide, particularly in people living with HIV (PLWH) and in sub-Saharan Africa where KSHV seroprevalence is high. Postulating that T-cells specific for KSHV and HIV would be attracted to KS tumors, we performed transcriptional profiling and T-cell receptor (TCR) repertoire analysis of tumor biopsies from 144 Ugandan adults with KS, 106 of whom were also living with HIV. We show that CD8+ T-cells and M2-polarized macrophages are the most common immune cells in KS tumors. The TCR repertoire of T-cells associated with KS tumors is shared across spatially and temporally distinct tumors from the same individual. Clusters of T-cells with predicted shared specificity for uncharacterized antigens, potentially encoded by KSHV or HIV, comprise ~25% of the T-cells in KS tumors. Single-cell RNA-sequencing of blood from a subset of 9 adults captured 4,283 unique αβ TCRs carried in 14,698 putative KSHV- or HIV-specific T-cells, which carried an antigen-experienced effector phenotype. T-cells engineered to express a representative sample of these TCRs showed high-avidity recognition of KSHV- or HIV-encoded antigens. These results suggest that a poly-specific, high-avidity KSHV- and HIV-specific T-cell response, potentially inhibited by M2 macrophages, migrates to and localizes with KS tumors. Further analysis of KSHV- and HIV-specific T-cells in KS tumors will provide insight into the pathogenesis of KS and could guide the development of specific immune therapy based on adoptive transfer or vaccination.
Collapse
Affiliation(s)
- Shashidhar Ravishankar
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Andrea M.H. Towlerton
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Hutchinson Centre Research Institute – Uganda, Kampala, Uganda
| | - Iyabode L. Tiamiyu
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Peter Mooka
- Hutchinson Centre Research Institute – Uganda, Kampala, Uganda
| | - Janet Nankoma
- Hutchinson Centre Research Institute – Uganda, Kampala, Uganda
| | - James Kafeero
- Hutchinson Centre Research Institute – Uganda, Kampala, Uganda
- Uganda Cancer Institute, Kampala, Uganda
| | - Dennis Mubiru
- Hutchinson Centre Research Institute – Uganda, Kampala, Uganda
- Uganda Cancer Institute, Kampala, Uganda
| | - Semei Sekitene
- Hutchinson Centre Research Institute – Uganda, Kampala, Uganda
- Uganda Cancer Institute, Kampala, Uganda
| | - Lauri D. Aicher
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Chris P. Miller
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - David G. Coffey
- Division of Myeloma, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, United States of America
| | - Lazarus Okoche
- Hutchinson Centre Research Institute – Uganda, Kampala, Uganda
| | | | - Joseph Okonye
- Hutchinson Centre Research Institute – Uganda, Kampala, Uganda
| | - Jessica White
- Department of Medicine, University of Washington, Seattle, Washington, United States
| | - David M. Koelle
- Department of Medicine, University of Washington, Seattle, Washington, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Warren T. Phipps
- Hutchinson Centre Research Institute – Uganda, Kampala, Uganda
- Department of Medicine, University of Washington, Seattle, Washington, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Edus H. Warren
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Hutchinson Centre Research Institute – Uganda, Kampala, Uganda
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
6
|
Lee SM, Avalos CL, Miliotis C, Doh HM, Chan E, Kaye KM, Slack FJ. Host microRNA-31-5p represses oncogenic herpesvirus lytic reactivation by restricting the RNA-binding protein KHDRBS3-mediated viral gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634336. [PMID: 39896566 PMCID: PMC11785233 DOI: 10.1101/2025.01.22.634336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV), an etiological agent of Kaposi's sarcoma and primary effusion lymphoma, employs a biphasic life cycle consisting of latency and lytic replication to achieve lifelong infection. Despite its essential role in KSHV persistence and tumorigenicity, much remains unknown about how KSHV lytic reactivation is regulated. Leveraging high-throughput transcriptomics, we identify microRNA-31-5p (miR-31-5p) as a key regulator of KSHV lytic reactivation capable of restricting KSHV entry into the lytic replication cycle. Ectopic expression of miR-31-5p impairs KSHV lytic gene transcription and production of lytic viral proteins, culminating in dramatic reduction of infectious virion production during KSHV reactivation. miR-31-5p overexpression also markedly reduces the expression of critical viral early genes, including the master regulator of the latent-lytic switch, KSHV replication and transcription activator (RTA) protein. Through mechanistic studies, we demonstrate that miR-31-5p represses KSHV lytic reactivation by directly targeting the KH domain protein KHDRBS3, an RNA-binding protein known to regulate RNA processing including alternative splicing. Our study highlights KHDRBS3 as an essential proviral host factor that is key to the successful completion of KSHV lytic replication and suggests its novel function in viral lytic gene transcription during KSHV reactivation. Taken together, these findings reveal a previously unrecognized role for the miR-31-5p/KHDRBS3 axis in regulating the KSHV latency-lytic replication switch and provide insights into gene expression regulation of lytic KSHV, which may be leveraged for lytic cycle-targeted therapeutic strategies against KSHV-associated malignancies.
Collapse
|
7
|
Yang J, Cali Daylan AE, Shevkoplias A, Postovalova E, Wang M, Tyshevich A, Lee M, Narvel H, Zornikova K, Shin N, Kotlov N, Paoluzzi L, Zhu C, Halmos B, Zang X, Cheng H. Transcriptomic Profiling and Tumor Microenvironment Classification Reveal Unique and Dynamic Immune Biology in HIV-Associated Kaposi Sarcoma. Cells 2025; 14:134. [PMID: 39851562 PMCID: PMC11764145 DOI: 10.3390/cells14020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Kaposi Sarcoma (KS) is a vascular tumor originating from endothelial cells and is associated with human herpesvirus 8 (KSHV) infection. It disproportionately affects populations facing health disparities. Although antiretroviral therapy (ART) has improved KS control in people with HIV (PWH), treatment options for advanced KS remain limited. This study investigates the tumor microenvironment (TME) of KS through whole-transcriptomic profiling, analyzing changes over time and differences based on HIV status. The TME was categorized into four subtypes: immune-enriched (IE), non-fibrotic, immune-enriched/fibrotic (IE/F), fibrotic (F) and immune-depleted (D). Nine KS patients (four HIV-negative and five HIV-positive) were enrolled in the study. Longitudinally collected KS samples from three patients (one HIV-negative and two HIV-positive) allowed for the investigation of dynamic TME changes within individual patients. The immune cellular composition was determined using deconvolution and compared to a cohort of non-KS patients. Our findings revealed that all KS samples, regardless of HIV status, were enriched in endothelial cells. Compared to non-KS tissues, the KS samples contained a higher percentage of NK and CD8+ T cells. HIV-negative KS samples displayed the IE and IE/F TME subtypes, while HIV-positive samples exhibited IE, IE/F, and F subtypes. Over the course of the disease, a decrease in angiogenic signatures was observed in two HIV-positive KS patients. Notably, HIV-negative KS samples showed alterations in NK cell-mediated immunity and cytotoxic response pathways, whereas HIV-positive samples exhibited changes in growth regulation and protein kinase activity pathways at the time of initial diagnosis. The gene expression of immune checkpoints, including CD274 (PD-L1) and PDCD1LC2 (PD-L2), was comparable between HIV-positive and HIV-negative KS samples at diagnosis. Furthermore, sequencing identified a shared TCRβ chain in all patients analyzed, indicating a T-cell immune response to a common antigen. This study demonstrates unique transcriptomic features and TME subtypes in KS that differ based on HIV status. Additionally, it illustrates longitudinal dynamic changes in the gene signatures and TME subtypes in individual patients. The identification of a shared TCRβ chain suggests that immune T cells in KS patients may target a common antigen. Future studies should further explore the immune microenvironment and unique T cell clonotypes, which could pave the way for the development of novel therapeutic strategies for KS patients.
Collapse
Affiliation(s)
- Jihua Yang
- Department of Oncology (Medical Oncology), Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (J.Y.); (A.E.C.D.); (M.W.); (M.L.); (B.H.); (X.Z.)
| | - Ayse Ece Cali Daylan
- Department of Oncology (Medical Oncology), Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (J.Y.); (A.E.C.D.); (M.W.); (M.L.); (B.H.); (X.Z.)
| | - Aleksei Shevkoplias
- Research and Development, BostonGene Corporation, Waltham, MA 02453, USA; (A.S.); (E.P.); (K.Z.); (N.K.)
| | - Ekaterina Postovalova
- Research and Development, BostonGene Corporation, Waltham, MA 02453, USA; (A.S.); (E.P.); (K.Z.); (N.K.)
| | - Meng Wang
- Department of Oncology (Medical Oncology), Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (J.Y.); (A.E.C.D.); (M.W.); (M.L.); (B.H.); (X.Z.)
| | - Andrey Tyshevich
- Research and Development, BostonGene Corporation, Waltham, MA 02453, USA; (A.S.); (E.P.); (K.Z.); (N.K.)
| | - Matthew Lee
- Department of Oncology (Medical Oncology), Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (J.Y.); (A.E.C.D.); (M.W.); (M.L.); (B.H.); (X.Z.)
| | - Hiba Narvel
- Department of Medicine, Jacobi Medical Center, Bronx, NY 10461, USA;
| | - Ksenia Zornikova
- Research and Development, BostonGene Corporation, Waltham, MA 02453, USA; (A.S.); (E.P.); (K.Z.); (N.K.)
| | - Nara Shin
- Research and Development, BostonGene Corporation, Waltham, MA 02453, USA; (A.S.); (E.P.); (K.Z.); (N.K.)
| | - Nikita Kotlov
- Research and Development, BostonGene Corporation, Waltham, MA 02453, USA; (A.S.); (E.P.); (K.Z.); (N.K.)
| | - Luca Paoluzzi
- Clinical Sciences, Oncology, Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA;
| | - Changcheng Zhu
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Balazs Halmos
- Department of Oncology (Medical Oncology), Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (J.Y.); (A.E.C.D.); (M.W.); (M.L.); (B.H.); (X.Z.)
| | - Xingxing Zang
- Department of Oncology (Medical Oncology), Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (J.Y.); (A.E.C.D.); (M.W.); (M.L.); (B.H.); (X.Z.)
| | - Haiying Cheng
- Department of Oncology (Medical Oncology), Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (J.Y.); (A.E.C.D.); (M.W.); (M.L.); (B.H.); (X.Z.)
| |
Collapse
|
8
|
Li X, Ohler ZW, Day A, Bassel L, Grosskopf A, Afsari B, Tagawa T, Custer W, Mangusan R, Lurain K, Yarchoan R, Ziegelbauer J, Ramaswami R, Krug LT. Mapping herpesvirus-driven impacts on the cellular milieu and transcriptional profile of Kaposi sarcoma in patient-derived mouse models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615429. [PMID: 39386738 PMCID: PMC11463583 DOI: 10.1101/2024.09.27.615429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Kaposi sarcoma (KS) is defined by aberrant angiogenesis driven by Kaposi sarcoma herpesvirus (KSHV)-infected spindle cells with endothelial characteristics. KS research is hindered by rapid loss of KSHV infection upon explant culture of tumor cells. Here, we establish patient-derived KS xenografts (PDXs) upon orthotopic implantation of cutaneous KS biopsies in immunodeficient mice. KS tumors were maintained in 27/28 PDX until experimental endpoint, up to 272 days in the first passage of recipient mice. KSHV latency associated nuclear antigen (LANA)+ endothelial cell density increased by a mean 4.3-fold in 14/15 PDX analyzed by IHC at passage 1 compared to respective input biopsies, regardless of implantation variables and clinical features of patients. The Ki-67 proliferation marker colocalized with LANA more frequently in PDXs. Spatial transcriptome analysis revealed increased expression of viral transcripts from latent and lytic gene classes in the PDX. The expanded KSHV+ regions of the PDX maintained signature gene expression of KS tumors, with enrichment in pathways associated with angiogenesis and endothelium development. Cells with characteristics of tumor-associated fibroblasts derived from PDX were propagated for 15 passages. These fibroblast-like cells were permissive for de novo KSHV infection, and one lineage produced CXCL12, a cancer-promoting chemokine. Spatial analysis revealed that fibroblasts are a likely source of CXCL12 signaling to CXCR4 that was upregulated in KS regions. The reproducible expansion of KSHV-infected endothelial cells in PDX from multiple donors and recapitulation of a KS tumor gene signature supports the application of patient-derived KS mouse models for studies of pathogenesis and novel therapies.
Collapse
Affiliation(s)
- Xiaofan Li
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Zoë Weaver Ohler
- Center for Advanced Preclinical Research, Center for Cancer Research, National Cancer Institute; Frederick, MD
| | - Amanda Day
- Center for Advanced Preclinical Research, Center for Cancer Research, National Cancer Institute; Frederick, MD
| | - Laura Bassel
- Center for Advanced Preclinical Research, Center for Cancer Research, National Cancer Institute; Frederick, MD
| | - Anna Grosskopf
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Bahman Afsari
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Takanobu Tagawa
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Wendi Custer
- Center for Advanced Preclinical Research, Center for Cancer Research, National Cancer Institute; Frederick, MD
| | - Ralph Mangusan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Kathryn Lurain
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Joseph Ziegelbauer
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Ramya Ramaswami
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Laurie T. Krug
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| |
Collapse
|
9
|
Lurain KA, Ramaswami R, Krug LT, Whitby D, Ziegelbauer JM, Wang HW, Yarchoan R. HIV-associated cancers and lymphoproliferative disorders caused by Kaposi sarcoma herpesvirus and Epstein-Barr virus. Clin Microbiol Rev 2024; 37:e0002223. [PMID: 38899877 PMCID: PMC11391709 DOI: 10.1128/cmr.00022-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
SUMMARYWithin weeks of the first report of acquired immunodeficiency syndrome (AIDS) in 1981, it was observed that these patients often had Kaposi sarcoma (KS), a hitherto rarely seen skin tumor in the USA. It soon became apparent that AIDS was also associated with an increased incidence of high-grade lymphomas caused by Epstein-Barr virus (EBV). The association of AIDS with KS remained a mystery for more than a decade until Kaposi sarcoma-associated herpesvirus (KSHV) was discovered and found to be the cause of KS. KSHV was subsequently found to cause several other diseases associated with AIDS and human immunodeficiency virus (HIV) infection. People living with HIV/AIDS continue to have an increased incidence of certain cancers, and many of these cancers are caused by EBV and/or KSHV. In this review, we discuss the epidemiology, virology, pathogenesis, clinical manifestations, and treatment of cancers caused by EBV and KSHV in persons living with HIV.
Collapse
Affiliation(s)
- Kathryn A Lurain
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Ramya Ramaswami
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Laurie T Krug
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Joseph M Ziegelbauer
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Hao-Wei Wang
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Robert Yarchoan
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Rauch DA, Ramos PV, Khanfar M, Harding J, Joseph A, Griffith O, Griffith M, Ratner L. Single-Cell Transcriptomic Analysis of Kaposi Sarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592010. [PMID: 38746135 PMCID: PMC11092626 DOI: 10.1101/2024.05.01.592010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Kaposi Sarcoma (KS) is a complex tumor caused by KS-associated herpesvirus 8 (KSHV). Histological analysis reveals a mixture of "spindle cells", vascular-like spaces, extravasated erythrocytes, and immune cells. In order to elucidate the infected and uninfected cell types in KS tumors, we examined skin and blood samples from twelve subjects by single cell RNA sequence analyses. Two populations of KSHV-infected cells were identified, one of which represented a proliferative fraction of lymphatic endothelial cells, and the second represented an angiogenic population of vascular endothelial tip cells. Both infected clusters contained cells expressing lytic and latent KSHV genes. Novel cellular biomarkers were identified in the KSHV infected cells, including the sodium channel SCN9A. The number of KSHV positive tumor cells was found to be in the 6% range in HIV-associated KS, correlated inversely with tumor-infiltrating immune cells, and was reduced in biopsies from HIV-negative individuals. T-cell receptor clones were expanded in KS tumors and blood, although in differing magnitudes. Changes in cellular composition in KS tumors were identified in subjects treated with antiretroviral therapy alone, or immunotherapy. These studies demonstrate the feasibility of single cell analyses to identify prognostic and predictive biomarkers. Author Summary Kaposi sarcoma (KS) is a malignancy caused by the KS-associated herpesvirus (KSHV) that causes skin lesions, and may also be found in lymph nodes, lungs, gastrointestinal tract, and other organs in immunosuppressed individuals more commonly than immunocompetent subjects. The current study examined gene expression in single cells from the tumor and blood of these subjects, and identified the characteristics of the complex mixtures of cells in the tumor. This method also identified differences in KSHV gene expression in different cell types and associated cellular genes expressed in KSHV infected cells. In addition, changes in the cellular composition could be elucidated with therapeutic interventions.
Collapse
|
11
|
Lacunza E, Ahuja A, Coso OA, Abba M, Ramos JC, Cesarman E, Mesri EA, Naipauer J. Unveiling the role of KSHV-infected human mesenchymal stem cells in Kaposi's sarcoma initiation. J Med Virol 2024; 96:e29684. [PMID: 38773828 PMCID: PMC12068558 DOI: 10.1002/jmv.29684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/24/2024]
Abstract
Kaposi's sarcoma (KS) may derive from Kaposi's sarcoma herpesvirus (KSHV)-infected human mesenchymal stem cells (hMSCs) that migrate to sites characterized by inflammation and angiogenesis, promoting the initiation of KS. By analyzing the RNA sequences of KSHV-infected primary hMSCs, we have identified specific cell subpopulations, mechanisms, and conditions involved in the initial stages of KSHV-induced transformation and reprogramming of hMSCs into KS progenitor cells. Under proangiogenic environmental conditions, KSHV can reprogram hMSCs to exhibit gene expression profiles more similar to KS tumors, activating cell cycle progression, cytokine signaling pathways, endothelial differentiation, and upregulating KSHV oncogenes indicating the involvement of KSHV infection in inducing the mesenchymal-to-endothelial (MEndT) transition of hMSCs. This finding underscores the significance of this condition in facilitating KSHV-induced proliferation and reprogramming of hMSCs towards MEndT and closer to KS gene expression profiles, providing further evidence of these cell subpopulations as precursors of KS cells that thrive in a proangiogenic environment.
Collapse
Affiliation(s)
- Ezequiel Lacunza
- Centro de Investigaciones Inmunologicas Basicas y Aplicadas, Facultad de Ciencias Medicas, Universidad Nacional de La Plata, La Plata, Argentina
- University of Miami-Centre for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Anuj Ahuja
- Tumor Biology Program, Sylvester Comprehensive Cancer Center and Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Omar A. Coso
- University of Miami-Centre for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martin Abba
- Centro de Investigaciones Inmunologicas Basicas y Aplicadas, Facultad de Ciencias Medicas, Universidad Nacional de La Plata, La Plata, Argentina
- University of Miami-Centre for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Juan Carlos Ramos
- University of Miami-Centre for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Medicine, Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
- Center for AIDS Research, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Enrique A. Mesri
- University of Miami-Centre for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA
- Tumor Biology Program, Sylvester Comprehensive Cancer Center and Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Julian Naipauer
- University of Miami-Centre for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
12
|
Bennett SJ, Yalcin D, Privatt SR, Ngalamika O, Lidenge SJ, West JT, Wood C. Antibody profiling and predictive modeling discriminate between Kaposi sarcoma and asymptomatic KSHV infection. PLoS Pathog 2024; 20:e1012023. [PMID: 38381773 PMCID: PMC10911871 DOI: 10.1371/journal.ppat.1012023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/04/2024] [Accepted: 02/02/2024] [Indexed: 02/23/2024] Open
Abstract
Protein-level immunodominance patterns against Kaposi sarcoma-associated herpesvirus (KSHV), the aetiologic agent of Kaposi sarcoma (KS), have been revealed from serological probing of whole protein arrays, however, the epitopes that underlie these patterns have not been defined. We recently demonstrated the utility of phage display in high-resolution linear epitope mapping of the KSHV latency-associated nuclear antigen (LANA/ORF73). Here, a VirScan phage immunoprecipitation and sequencing approach, employing a library of 1,988 KSHV proteome-derived peptides, was used to quantify the breadth and magnitude of responses of 59 sub-Saharan African KS patients and 22 KSHV-infected asymptomatic individuals (ASY), and ultimately to support an application of machine-learning-based predictive modeling using the peptide-level responses. Comparing anti-KSHV antibody repertoire revealed that magnitude, not breadth, increased in KS. The most targeted epitopes in both KS and ASY were in the immunodominant proteins, notably, K8.129-56 and ORF65140-168, in addition to LANA. Finally, using unbiased machine-learning-based predictive models, reactivity to a subset of 25 discriminative peptides was demonstrated to successfully classify KS patients from asymptomatic individuals. Our study provides the highest resolution mapping of antigenicity across the entire KSHV proteome to date, which is vital to discern mechanisms of viral pathogenesis, to define prognostic biomarkers, and to design effective vaccine and therapeutic strategies. Future studies will investigate the diagnostic, prognostic, and therapeutic potential of the 25 discriminative peptides.
Collapse
Affiliation(s)
- Sydney J. Bennett
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Dicle Yalcin
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Sara R. Privatt
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Owen Ngalamika
- Dermatology and Venereology Section, University Teaching Hospital, University of Zambia School of Medicine, Lusaka, Zambia
| | - Salum J. Lidenge
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
- Department of Clinical Oncology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - John T. West
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Charles Wood
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| |
Collapse
|
13
|
Ramaswami R, Tagawa T, Mahesh G, Serquina A, Koparde V, Lurain K, Dremel S, Li X, Mungale A, Beran A, Ohler ZW, Bassel L, Warner A, Mangusan R, Widell A, Ekwede I, Krug LT, Uldrick TS, Yarchoan R, Ziegelbauer JM. Transcriptional landscape of Kaposi sarcoma tumors identifies unique immunologic signatures and key determinants of angiogenesis. J Transl Med 2023; 21:653. [PMID: 37740179 PMCID: PMC10517594 DOI: 10.1186/s12967-023-04517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Kaposi sarcoma (KS) is a multicentric tumor caused by Kaposi sarcoma herpesvirus (KSHV) that leads to morbidity and mortality among people with HIV worldwide. KS commonly involves the skin but can occur in the gastrointestinal tract (GI) in severe cases. METHODS RNA sequencing was used to compare the cellular and KSHV gene expression signatures of skin and GI KS lesions in 44 paired samples from 19 participants with KS alone or with concurrent KSHV-associated diseases. Analyses of KSHV expression from KS lesions identified transcriptionally active areas of the viral genome. RESULTS The transcript of an essential viral lytic gene, ORF75, was detected in 91% of KS lesions. Analyses of host genes identified 370 differentially expressed genes (DEGs) unique to skin KS and 58 DEGs unique to GI KS lesions as compared to normal tissue. Interleukin (IL)-6 and IL-10 gene expression were higher in skin lesions as compared to normal skin but not in GI KS lesions. Twenty-six cellular genes were differentially expressed in both skin and GI KS tissues: these included Fms-related tyrosine kinase 4 (FLT4), encoding an angiogenic receptor, and Stanniocalcin 1 (STC1), a secreted glycoprotein. FLT4 and STC1 were further investigated in functional studies using primary lymphatic endothelial cells (LECs). In these models, KSHV infection of LECs led to increased tubule formation that was impaired upon knock-down of STC1 or FLT4. CONCLUSIONS This study of transcriptional profiling of KS tissue provides novel insights into the characteristics and pathogenesis of this unique virus-driven neoplasm.
Collapse
Affiliation(s)
- Ramya Ramaswami
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Takanobu Tagawa
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Guruswamy Mahesh
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Anna Serquina
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Vishal Koparde
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kathryn Lurain
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Sarah Dremel
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Xiaofan Li
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Ameera Mungale
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Alex Beran
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Zoe Weaver Ohler
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Laura Bassel
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Andrew Warner
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ralph Mangusan
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Anaida Widell
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Irene Ekwede
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Laurie T Krug
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Thomas S Uldrick
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Joseph M Ziegelbauer
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA.
| |
Collapse
|
14
|
Privatt SR, Braga CP, Johnson A, Lidenge SJ, Berry L, Ngowi JR, Ngalamika O, Chapple AG, Mwaiselage J, Wood C, West JT, Adamec J. Comparative polar and lipid plasma metabolomics differentiate KSHV infection and disease states. Cancer Metab 2023; 11:13. [PMID: 37653396 PMCID: PMC10470137 DOI: 10.1186/s40170-023-00316-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Kaposi sarcoma (KS) is a neoplastic disease etiologically associated with infection by the Kaposi sarcoma-associated herpesvirus (KSHV). KS manifests primarily as cutaneous lesions in individuals due to either age (classical KS), HIV infection (epidemic KS), or tissue rejection preventatives in transplantation (iatrogenic KS) but can also occur in individuals, predominantly in sub-Saharan Africa (SSA), lacking any obvious immune suppression (endemic KS). The high endemicity of KSHV and human immunodeficiency virus-1 (HIV) co-infection in Africa results in KS being one of the top 5 cancers there. As with most viral cancers, infection with KSHV alone is insufficient to induce tumorigenesis. Indeed, KSHV infection of primary human endothelial cell cultures, even at high levels, is rarely associated with long-term culture, transformation, or growth deregulation, yet infection in vivo is sustained for life. Investigations of immune mediators that distinguish KSHV infection, KSHV/HIV co-infection, and symptomatic KS disease have yet to reveal consistent correlates of protection against or progression to KS. In addition to viral infection, it is plausible that pathogenesis also requires an immunological and metabolic environment permissive to the abnormal endothelial cell growth evident in KS tumors. In this study, we explored whether plasma metabolomes could differentiate asymptomatic KSHV-infected individuals with or without HIV co-infection and symptomatic KS from each other. METHODS To investigate how metabolic changes may correlate with co-infections and tumorigenesis, plasma samples derived from KSHV seropositive sub-Saharan African subjects in three groups, (A) asymptomatic (lacking neoplastic disease) with KSHV infection only, (B) asymptomatic co-infected with KSHV and HIV, and (C) symptomatic with clinically diagnosed KS, were subjected to analysis of lipid and polar metabolite profiles RESULTS: Polar and nonpolar plasma metabolic differentials were evident in both comparisons. Integration of the metabolic findings with our previously reported KS transcriptomics data suggests dysregulation of amino acid/urea cycle and purine metabolic pathways, in concert with viral infection in KS disease progression. CONCLUSIONS This study is, to our knowledge, the first to report human plasma metabolic differentials between in vivo KSHV infection and co-infection with HIV, as well as differentials between co-infection and epidemic KS.
Collapse
Affiliation(s)
- Sara R Privatt
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | - Alicia Johnson
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Salum J Lidenge
- Ocean Road Cancer Institute, Dar Es Salaam, Tanzania
- Muhimbili University of Health and Allied Sciences, Dar Es Salaam, Tanzania
| | - Luke Berry
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - John R Ngowi
- Ocean Road Cancer Institute, Dar Es Salaam, Tanzania
| | - Owen Ngalamika
- Dermatology and Venereology Section, Adult Hospital of the University Teaching Hospitals, University of Zambia School of Medicine, Lusaka, Zambia
| | - Andrew G Chapple
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Julius Mwaiselage
- Ocean Road Cancer Institute, Dar Es Salaam, Tanzania
- Muhimbili University of Health and Allied Sciences, Dar Es Salaam, Tanzania
| | - Charles Wood
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - John T West
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| | - Jiri Adamec
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
15
|
Doughan A, Adingo W, Salifu SP. RNA-seq research landscape in Africa: systematic review reveals disparities and opportunities. Eur J Med Res 2023; 28:244. [PMID: 37480073 PMCID: PMC10362609 DOI: 10.1186/s40001-023-01206-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/30/2023] [Indexed: 07/23/2023] Open
Abstract
RNA sequencing has emerged as the standard method for transcriptome profiling of several human diseases. We performed a systematic review detailing the state of RNA-seq analyses in Africa from its inception till February 2022. Our goal was to provide an update on the state of RNA-seq analyses in Africa, including research gaps, funding information, participants information, authorship and collaborations. Following the PRISMA guidelines, we performed an exhaustive literature search for RNA-seq studies conducted in Africa, using PubMed, Scopus and Academic Search Complete (EBSCOhost). The output was exported to Endnote X9 for analyses. The initial literature search yielded 10,369 articles spread across PubMed (4916), Scopus (4847) and EBSCOhost (580). By applying our exclusion criteria, 28 full-text articles remained and were thoroughly analyzed. Overall, 17 human diseases were studied, including cancers (10/28), infectious disease (4/28), parasitic disease (4/28), autoimmune disorders (2/28) and neglected tropical diseases (2/28). Majority of the articles were published in PLoS Pathogens, BioMed Central and Nature. The National Institutes of Health (42.4%), the Bill & Melinda Gates Foundation (7.5%) and the Wellcome Trust (7.5%) were the top funders of the research studies. Eleven African countries contributed to the participant group, with 57% located in Eastern Africa, 23.1% from Western and 16.7% from Southern Africa. The extremely low number of RNA-seq research studies in Africa is worrying and calls for an immediate investment in research by the African governments. The funding agencies and institutional review boards should also ensure that African collaborators are treated equitably in the course of the research projects.
Collapse
Affiliation(s)
- Albert Doughan
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Wisdom Adingo
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Samson Pandam Salifu
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana.
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana.
| |
Collapse
|
16
|
Vladimirova O, Soldan S, Su C, Kossenkov A, Ngalamika O, Tso FY, West JT, Wood C, Lieberman PM. Elevated iNOS and 3'-nitrotyrosine in Kaposi's Sarcoma tumors and mouse model. Tumour Virus Res 2023; 15:200259. [PMID: 36863485 PMCID: PMC10009278 DOI: 10.1016/j.tvr.2023.200259] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/24/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
Kaposi's Sarcoma (KS) is a heterogenous, multifocal vascular malignancy caused by the human herpesvirus 8 (HHV8), also known as Kaposi's Sarcoma-Associated Herpesvirus (KSHV). Here, we show that KS lesions express iNOS/NOS2 broadly throughout KS lesions, with enrichment in LANA positive spindle cells. The iNOS byproduct 3-nitrotyrosine is also enriched in LANA positive tumor cells and colocalizes with a fraction of LANA-nuclear bodies. We show that iNOS is highly expressed in the L1T3/mSLK tumor model of KS. iNOS expression correlated with KSHV lytic cycle gene expression, which was elevated in late-stage tumors (>4 weeks) but to a lesser degree in early stage (1 week) xenografts. Further, we show that L1T3/mSLK tumor growth is sensitive to an inhibitor of nitric oxide, L-NMMA. L-NMMA treatment reduced KSHV gene expression and perturbed cellular gene pathways relating to oxidative phosphorylation and mitochondrial dysfunction. These finding suggest that iNOS is expressed in KSHV infected endothelial-transformed tumor cells in KS, that iNOS expression depends on tumor microenvironment stress conditions, and that iNOS enzymatic activity contributes to KS tumor growth.
Collapse
Affiliation(s)
| | | | - Chenhe Su
- The Wistar Institute, Philadelphia, PA, 19104, USA
| | | | - Owen Ngalamika
- Dermatology and Venereology Section, University Teaching Hospitals, University of Zambia School of Medicine, Lusaka, P.O. Box 50110, Zambia
| | - For Yue Tso
- Department of Interdisciplinary Oncology, Stanley S Scott Cancer Center, State University Health Sciences Center, New Orleans, LA, USA
| | - John T West
- Department of Interdisciplinary Oncology, Stanley S Scott Cancer Center, State University Health Sciences Center, New Orleans, LA, USA
| | - Charles Wood
- Department of Interdisciplinary Oncology, Stanley S Scott Cancer Center, State University Health Sciences Center, New Orleans, LA, USA
| | | |
Collapse
|
17
|
Privatt SR, Ngalamika O, Zhang J, Li Q, Wood C, West JT. Upregulation of Cell Surface Glycoproteins in Correlation with KSHV LANA in the Kaposi Sarcoma Tumor Microenvironment. Cancers (Basel) 2023; 15:2171. [PMID: 37046832 PMCID: PMC10093722 DOI: 10.3390/cancers15072171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
HIV-associated epidemic Kaposi sarcoma (EpKS) remains one of the most prevalent cancers in sub-Saharan Africa despite the widespread uptake of anti-retroviral therapy and HIV-1 suppression. In an effort to define potential therapeutic targets against KS tumors, we analyzed previously published KS bulk tumor transcriptomics to identify cell surface biomarkers. In addition to upregulated gene expression (>6-fold) in the EpKS tumor microenvironment, biomarkers were selected for correlation with KSHV latency-associated nuclear antigen (LANA) expression. The cell surface glycoprotein genes identified were KDR, FLT4, ADAM12, UNC5A, ZP2, and OX40, as well as the endothelial lineage determinants Prox-1 and CD34. Each protein was evaluated for its expression and co-localization with KSHV LANA using multi-color immunofluorescence in KS tissues, KSHV-infected L1T2 cells, uninfected TIVE cells, and murine L1T2 tumor xenografts. Five surface glycoproteins (KDR, FLT4, UNC5A, ADAM12, and CD34) were associated with LANA-positive cells but were also detected in uninfected cells in the KS microenvironment. In vitro L1T2 cultures showed evidence of only FLT4, KDR, and UNC5A, whereas mouse L1T2 xenografts recapitulated human KS cell surface expression profiles, with the exception of CD34 and Prox-1. In KS tumors, most LANA-positive cells co-expressed markers of vascular as well as lymphatic endothelial lineages, suggesting KS-associated dedifferentiation to a more mesenchymal/progenitor phenotype.
Collapse
Affiliation(s)
- Sara R. Privatt
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University Health Sciences Center-New Orleans, New Orleans, LA 70112, USA
| | - Owen Ngalamika
- University Teaching Hospital, University of Zambia School of Medicine, Lusaka 10101, Zambia
| | - Jianshui Zhang
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Qinsheng Li
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Charles Wood
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University Health Sciences Center-New Orleans, New Orleans, LA 70112, USA
| | - John T. West
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University Health Sciences Center-New Orleans, New Orleans, LA 70112, USA
| |
Collapse
|
18
|
Bennett SJ, Yalcin D, Privatt SR, Ngalamika O, Lidenge SJ, West JT, Wood C. Antibody epitope profiling of the KSHV LANA protein using VirScan. PLoS Pathog 2022; 18:e1011033. [PMID: 36534707 PMCID: PMC9810164 DOI: 10.1371/journal.ppat.1011033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/03/2023] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
The humoral antibody response against Kaposi sarcoma-associated herpesvirus (KSHV) in infected individuals has been characterized demonstrating the latency-associated nuclear antigen (LANA) as the most antigenic KSHV protein. Despite the antigenicity of the protein, specific LANA epitopes have not been systematically characterized. Here, we utilized a bacteriophage T7 library, which displays 56-amino acid KSHV LANA peptides with 28-amino acid overlap (VirScan), to define those epitopes in LANA targeted by antibodies from a cohort of 62 sub-Saharan African Kaposi sarcoma (KS) patients and 22 KSHV-infected asymptomatic controls. Intra- and inter-patient breadth and magnitude of the anti-LANA responses were quantified at the peptide and amino acid levels. From these data, we derived a detailed epitope annotation of the entire LANA protein, with a high-resolution focus on the N- and C-termini. Overall, the central repeat region was highly antigenic, but the responses to this region could not be confidently mapped due to its high variability. The highly conserved N-terminus was targeted with low breadth and magnitude. In a minority of individuals, antibodies specific to the nuclear localization sequence and a portion of the proline-rich regions of the N-terminus were evident. In contrast, the first half of the conserved C-terminal domain was consistently targeted with high magnitude. Unfortunately, this region was not included in LANA partial C-terminal crystal structures, however, it was predicted to adopt predominantly random-coil structure. Coupled with functional and secondary structure domain predictions, VirScan revealed fine resolution epitope mapping of the N- and C-terminal domains of LANA that is consistent with previous antigenicity studies and may prove useful to correlate KSHV humoral immunity with pathogenesis.
Collapse
Affiliation(s)
- Sydney J. Bennett
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Dicle Yalcin
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Sara R. Privatt
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Owen Ngalamika
- Dermatology and Venereology Section, University Teaching Hospital, University of Zambia School of Medicine, Lusaka, Zambia
| | - Salum J. Lidenge
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
- Department of Clinical Oncology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - John T. West
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Charles Wood
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
19
|
Jung KL, Choi UY, Park A, Foo SS, Kim S, Lee SA, Jung JU. Single-cell analysis of Kaposi's sarcoma-associated herpesvirus infection in three-dimensional air-liquid interface culture model. PLoS Pathog 2022; 18:e1010775. [PMID: 35976902 PMCID: PMC9385030 DOI: 10.1371/journal.ppat.1010775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022] Open
Abstract
The oral cavity is the major site for transmission of Kaposi's sarcoma-associated herpesvirus (KSHV), but how KSHV establishes infection and replication in the oral epithelia remains unclear. Here, we report a KSHV spontaneous lytic replication model using fully differentiated, three-dimensional (3D) oral epithelial organoids at an air-liquid interface (ALI). This model revealed that KSHV infected the oral epithelia when the basal epithelial cells were exposed by damage. Unlike two-dimensional (2D) cell culture, 3D oral epithelial organoid ALI culture allowed high levels of spontaneous KSHV lytic replication, where lytically replicating cells were enriched at the superficial layer of epithelial organoid. Single cell RNA sequencing (scRNAseq) showed that KSHV infection induced drastic changes of host gene expression in infected as well as uninfected cells at the different epithelial layers, resulting in altered keratinocyte differentiation and cell death. Moreover, we identified a unique population of infected cells containing lytic gene expression at the KSHV K2-K5 gene locus and distinct host gene expression compared to latent or lytic infected cells. This study demonstrates an in vitro 3D epithelial organoid ALI culture model that recapitulates KSHV infection in the oral cavity, where KSHV undergoes the epithelial differentiation-dependent spontaneous lytic replication with a unique cell population carrying distinct viral gene expression.
Collapse
Affiliation(s)
- Kyle L. Jung
- Department of Cancer Biology and Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Un Yung Choi
- Department of Cancer Biology and Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Angela Park
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Suan-Sin Foo
- Department of Cancer Biology and Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Stephanie Kim
- Department of Cancer Biology and Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Shin-Ae Lee
- Department of Cancer Biology and Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jae U. Jung
- Department of Cancer Biology and Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
20
|
Lee SM, Kaye KM, Slack FJ. Cellular microRNA-127-3p suppresses oncogenic herpesvirus-induced transformation and tumorigenesis via down-regulation of SKP2. Proc Natl Acad Sci U S A 2021; 118:e2105428118. [PMID: 34725152 PMCID: PMC8609319 DOI: 10.1073/pnas.2105428118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) causes the endothelial tumor KS, a leading cause of morbidity and mortality in sub-Saharan Africa. KSHV-encoded microRNAs (miRNAs) are known to play an important role in viral oncogenesis; however, the role of host miRNAs in KS tumorigenesis remains largely unknown. Here, high-throughput small-RNA sequencing of the cellular transcriptome in a KS xenograft model revealed miR-127-3p as one of the most significantly down-regulated miRNAs, which we validated in KS patient tissues. We show that restoration of miR-127-3p suppresses KSHV-driven cellular transformation and proliferation and induces G1 cell cycle arrest by directly targeting the oncogene SKP2. This miR-127-3p-induced G1 arrest is rescued by disrupting the miR-127-3p target site in SKP2 messenger RNA (mRNA) using gene editing. Mechanistically, miR-127-3p-mediated SKP2 repression elevates cyclin-dependent kinase (CDK) inhibitor p21Cip1 and down-regulates cyclin E, cyclin A, and CDK2, leading to activation of the RB protein tumor suppressor pathway and suppression of the transcriptional activities of E2F and Myc, key oncoprotein transcription factors crucial for KSHV tumorigenesis. Consequently, metabolomics analysis during miR-127-3p-induced cell cycle arrest revealed significant depletion of dNTP pools, consistent with RB-mediated repression of key dNTP biosynthesis enzymes. Furthermore, miR-127-3p reconstitution in a KS xenograft mouse model suppresses KSHV-positive tumor growth by targeting SKP2 in vivo. These findings identify a previously unrecognized tumor suppressor function for miR-127-3p in KS and demonstrate that the miR-127-3p/SKP2 axis is a viable therapeutic strategy for KS.
Collapse
Affiliation(s)
- Soo Mi Lee
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
- Program in Virology, Division of Medical Sciences, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA 02138
| | - Kenneth M Kaye
- Program in Virology, Division of Medical Sciences, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA 02138
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Frank J Slack
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215;
| |
Collapse
|
21
|
Howard TR, Cristea IM. Interrogating Host Antiviral Environments Driven by Nuclear DNA Sensing: A Multiomic Perspective. Biomolecules 2020; 10:biom10121591. [PMID: 33255247 PMCID: PMC7761228 DOI: 10.3390/biom10121591] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Nuclear DNA sensors are critical components of the mammalian innate immune system, recognizing the presence of pathogens and initiating immune signaling. These proteins act in the nuclei of infected cells by binding to foreign DNA, such as the viral genomes of nuclear-replicating DNA viruses herpes simplex virus type 1 (HSV-1) and human cytomegalovirus (HCMV). Upon binding to pathogenic DNA, the nuclear DNA sensors were shown to initiate antiviral cytokines, as well as to suppress viral gene expression. These host defense responses involve complex signaling processes that, through protein–protein interactions (PPIs) and post-translational modifications (PTMs), drive extensive remodeling of the cellular transcriptome, proteome, and secretome to generate an antiviral environment. As such, a holistic understanding of these changes is required to understand the mechanisms through which nuclear DNA sensors act. The advent of omics techniques has revolutionized the speed and scale at which biological research is conducted and has been used to make great strides in uncovering the molecular underpinnings of DNA sensing. Here, we review the contribution of proteomics approaches to characterizing nuclear DNA sensors via the discovery of functional PPIs and PTMs, as well as proteome and secretome changes that define a host antiviral environment. We also highlight the value of and future need for integrative multiomic efforts to gain a systems-level understanding of DNA sensors and their influence on epigenetic and transcriptomic alterations during infection.
Collapse
|