1
|
Chang WS, Harvey E, Mahar JE, Firth C, Shi M, Simon-Loriere E, Geoghegan JL, Wille M. Improving the reporting of metagenomic virome-scale data. Commun Biol 2024; 7:1687. [PMID: 39706917 DOI: 10.1038/s42003-024-07212-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/04/2024] [Indexed: 12/23/2024] Open
Abstract
Over the last decade metagenomic sequencing has facilitated an increasing number of virome-scale studies, leading to an exponential expansion in understanding of virus diversity. This is partially driven by the decreasing costs of metagenomic sequencing, improvements in computational tools for revealing novel viruses, and an increased understanding of the key role that viruses play in human and animal health. A central concern associated with this remarkable increase in the number of virome-scale studies is the lack of broadly accepted "gold standards" for reporting the data and results generated. This is of particular importance for animal virome studies as there are a multitude of nuanced approaches for both data presentation and analysis, all of which impact the resulting outcomes. As such, the results of published studies can be difficult to contextualise and may be of reduced utility due to reporting deficiencies. Herein, we aim to address these reporting issues by outlining recommendations for the presentation of virome data, encouraging a transparent communication of findings that can be interpreted in evolutionary and ecological contexts.
Collapse
Affiliation(s)
- Wei-Shan Chang
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| | - Erin Harvey
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Jackie E Mahar
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Australian Animal Health Laboratory and Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Cadhla Firth
- College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Australia
| | - Mang Shi
- Sun Yat-Sen University, Shenzhen campus of Sun Yat-Sen University, Shenzhen, China
| | - Etienne Simon-Loriere
- Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France
| | - Jemma L Geoghegan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Michelle Wille
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.
- Centre for Pathogen Genomics, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Xu L, Song M, Tian X, Sun J, Wang Y, Bie M, Bi Y, Holmes EC, Guan Y, Chen J, Li J, Shi W. Five-year longitudinal surveillance reveals the continual circulation of both alpha- and beta-coronaviruses in Plateau and Gansu pikas ( Ochotona spp.) at Qinghai Lake, China 1. Emerg Microbes Infect 2024; 13:2392693. [PMID: 39137298 PMCID: PMC11346322 DOI: 10.1080/22221751.2024.2392693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/03/2024] [Accepted: 08/11/2024] [Indexed: 08/15/2024]
Abstract
The discovery of alphacoronaviruses and betacoronaviruses in plateau pikas (Ochotona curzoniae) expanded the host range of mammalian coronavirus (CoV) to a new order - Lagomorpha. However, the diversity and evolutionary relationships of CoVs in these plateau-region-specific animal population remains uncertain. We conducted a five-year longitudinal surveillance of CoVs harboured by pikas around Qinghai Lake, China. CoVs were identified in 33 of 236 plateau pikas and 2 of 6 Gansu pikas (Ochotona cansus), with a total positivity rate of 14.5%, and exhibiting a wide spatiotemporal distribution across seven sampling sites and six time points. Through meta-transcriptomic sequencing and RT-PCR, we recovered 16 near-complete viral genome sequences. Phylogenetic analyses classified the viruses as variants of either pika alphacoronaviruses or betacoronaviruses endemic to plateau pikas from the Qinghai-Tibet Plateau region. Of particular note, the pika-associated betacoronaviruses may represent a novel subgenus within the genus Betacoronavirus. Tissue tropism, evaluated using quantitative real-time PCR, revealed the presence of CoV in the rectal and/or lung tissues, with the highest viral loads at 103.55 or 102.80 RNA copies/μL. Surface plasmon resonance (SPR) assays indicated that the newly identified betacoronavirus did not bind to human or pika Angiotensin-converting enzyme 2 (ACE2) or Dipeptidyl peptidase 4 (DPP4). The findings highlight the ongoing circulation and broadening host spectrum of CoVs among pikas, emphasizing the necessity for further investigation to evaluate their potential public health risks.
Collapse
Affiliation(s)
- Lin Xu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, People’s Republic of China
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, People’s Republic of China
| | - Meiqing Song
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, People’s Republic of China
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, People’s Republic of China
| | - Xianzhi Tian
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, People’s Republic of China
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, People’s Republic of China
| | - Ju Sun
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences (CAS), Beijing, People’s Republic of China
| | - Yanjun Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences (CAS), Beijing, People’s Republic of China
| | - Mengyu Bie
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, People’s Republic of China
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, People’s Republic of China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences (CAS), Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Edward C. Holmes
- School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Yi Guan
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jianjun Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Juan Li
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, People’s Republic of China
| | - Weifeng Shi
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
3
|
Moming A, Bai Y, Wang J, Zhang Y, Tang S, Fan Z, Deng F, Shen S. The Known and Unknown of Global Tick-Borne Viruses. Viruses 2024; 16:1807. [PMID: 39772118 PMCID: PMC11680321 DOI: 10.3390/v16121807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 01/11/2025] Open
Abstract
Ticks are crucial vectors for various pathogens associated with human and animal diseases, including viruses. Nevertheless, significant knowledge gaps prevail in our understanding of tick-borne viruses (TBVs). We here examined existing studies on TBVs, uncovering 870 documented virus species across 28 orders, 55 families, and 66 genera. The discovery history, vector ticks, and hosts of TBVs, as well as the clinical characteristics of TBV-induced diseases, are summarized. In total, 176 tick species from nine tick genera were confirmed as vectors for TBVs. Overall, 105 TBVs were associated with infection or exposure to humans and animals. Of them, at least 40 were identified to cause human or animal diseases. This review addresses the current challenges associated with TBV research, including the lack of knowledge about the identification of novel and emerging TBVs, the spillover potentials from ticks to hosts, and the pathogenicity and infection mechanisms of TBVs. It is expected to provide crucial insights and references for future studies in this field, while specifically focusing on expanding surveys, improving TBV identification and isolation, and enhancing the understanding of TBV-vector-host interactions. All of these findings will facilitate the preparation for preventing and treating diseases caused by emerging and novel TBVs.
Collapse
Grants
- 2022YFC2302700, 2023YFC2305900, 2022YFC2305100, U21A20180, U22A20363, U20A20135), NBSDC-DB-13, 088GJHZ2022022FN, KFJ-BRP-017-74, 2018ZX1010004 National Key R&D Program of China the National Natural Science Foundation of China the National Basic Science Data Sharing Service Platform, the International Partnership Program of Chinese Academy of Sciences, the Biological Resources Program, Chinese Ac
Collapse
Affiliation(s)
- Abulimiti Moming
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (A.M.); (Y.B.); (J.W.); (Y.Z.); (S.T.); (Z.F.)
- Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi 830002, China
- Xinjiang Key Laboratory of Vector-Borne Infectious Diseases, Urumqi 830002, China
| | - Yuan Bai
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (A.M.); (Y.B.); (J.W.); (Y.Z.); (S.T.); (Z.F.)
| | - Jun Wang
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (A.M.); (Y.B.); (J.W.); (Y.Z.); (S.T.); (Z.F.)
| | - Yanfang Zhang
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (A.M.); (Y.B.); (J.W.); (Y.Z.); (S.T.); (Z.F.)
| | - Shuang Tang
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (A.M.); (Y.B.); (J.W.); (Y.Z.); (S.T.); (Z.F.)
| | - Zhaojun Fan
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (A.M.); (Y.B.); (J.W.); (Y.Z.); (S.T.); (Z.F.)
| | - Fei Deng
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (A.M.); (Y.B.); (J.W.); (Y.Z.); (S.T.); (Z.F.)
| | - Shu Shen
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (A.M.); (Y.B.); (J.W.); (Y.Z.); (S.T.); (Z.F.)
- Xinjiang Key Laboratory of Vector-Borne Infectious Diseases, Urumqi 830002, China
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| |
Collapse
|
4
|
Yang Z, Shan Y, Liu X, Chen G, Pan Y, Gou Q, Zou J, Chang Z, Zeng Q, Yang C, Kong J, Sun Y, Li S, Zhang X, Wu WC, Li C, Peng H, Holmes EC, Guo D, Shi M. VirID: Beyond Virus Discovery-An Integrated Platform for Comprehensive RNA Virus Characterization. Mol Biol Evol 2024; 41:msae202. [PMID: 39331699 PMCID: PMC11523140 DOI: 10.1093/molbev/msae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024] Open
Abstract
RNA viruses exhibit vast phylogenetic diversity and can significantly impact public health and agriculture. However, current bioinformatics tools for viral discovery from metagenomic data frequently generate false positive virus results, overestimate viral diversity, and misclassify virus sequences. Additionally, current tools often fail to determine virus-host associations, which hampers investigation of the potential threat posed by a newly detected virus. To address these issues we developed VirID, a software tool specifically designed for the discovery and characterization of RNA viruses from metagenomic data. The basis of VirID is a comprehensive RNA-dependent RNA polymerase database to enhance a workflow that includes RNA virus discovery, phylogenetic analysis, and phylogeny-based virus characterization. Benchmark tests on a simulated data set demonstrated that VirID had high accuracy in profiling viruses and estimating viral richness. In evaluations with real-world samples, VirID was able to identify RNA viruses of all types, but also provided accurate estimations of viral genetic diversity and virus classification, as well as comprehensive insights into virus associations with humans, animals, and plants. VirID therefore offers a robust tool for virus discovery and serves as a valuable resource in basic virological studies, pathogen surveillance, and early warning systems for infectious disease outbreaks.
Collapse
Affiliation(s)
- Ziyue Yang
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yongtao Shan
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xue Liu
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Guowei Chen
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong (SAR), China
| | - Yuanfei Pan
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Qinyu Gou
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Jie Zou
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Zilong Chang
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Qiang Zeng
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Chunhui Yang
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Jianbin Kong
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yanni Sun
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong (SAR), China
| | - Shaochuan Li
- Goodwill Institute of Life Sciences, Guangzhou, China
| | - Xu Zhang
- Goodwill Institute of Life Sciences, Guangzhou, China
| | - Wei-chen Wu
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Chunmei Li
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Hong Peng
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Edward C Holmes
- School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Laboratory of Data Discovery for Health Limited, Hong Kong (SAR), China
| | - Deyin Guo
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mang Shi
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| |
Collapse
|
5
|
Xu L, Bie M, Li J, Zhou H, Hu T, Carr MJ, Lu L, Shi W. Isolation and characterization of a novel rodent hepevirus in long-tailed dwarf hamsters ( Cricetulus longicaudatus) in China. J Gen Virol 2024; 105. [PMID: 38767609 DOI: 10.1099/jgv.0.001989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Hepeviruses have been identified in a broad range of animal hosts, including mammals, birds, and fish. In this study, rodents (n=91) from seven different species and ten pikas (Ochotona curzoniae) were collected in Qinghai Province, China. Using transcriptomic sequencing and confirmatory molecular testing, hepeviruses were detected in 27 of 45 (60 %) long-tailed dwarf hamsters (Cricetulus longicaudatus) and were undetected in other rodents and pika. The complete genome sequences from 14 representative strains were subsequently obtained, and phylogenetic analyses suggested that they represent a novel species within the genus Rocahepevirus, which we tentatively designated as Cl-2018QH. The virus was successfully isolated in human hepatoma (Huh-7) and murine fibroblast (17 Cl-1) cell lines, though both exhibited limited replication as assayed by detection of negative-sense RNA intermediates. A129 immunodeficient mice were inoculated with Cl-2018QH and the virus was consistently detected in multiple organs, despite relatively low viral loads. In summary, this study has described a novel rodent hepevirus, which enhances our knowledge of the genetic diversity of rodent hepeviruses and highlights its potential for cross-species transmission.
Collapse
Affiliation(s)
- Lin Xu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, PR China
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, PR China
| | - Mengyu Bie
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, PR China
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, PR China
| | - Juan Li
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, PR China
| | - Hong Zhou
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, PR China
| | - Tao Hu
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, PR China
| | - Michael J Carr
- National Virus Reference Laboratory, School of Medicine, University College Dublin, Dublin, D04 E1W1, Ireland
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Liang Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Weifeng Shi
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| |
Collapse
|
6
|
Lin Y, Pascall DJ. Characterisation of putative novel tick viruses and zoonotic risk prediction. Ecol Evol 2024; 14:e10814. [PMID: 38259958 PMCID: PMC10800298 DOI: 10.1002/ece3.10814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/02/2023] [Accepted: 11/24/2023] [Indexed: 01/24/2024] Open
Abstract
Tick-associated viruses remain a substantial zoonotic risk worldwide, so knowledge of the diversity of tick viruses has potential health consequences. Despite their importance, large amounts of sequences in public data sets from tick meta-genomic and -transcriptomic projects remain unannotated, sequence data that could contain undocumented viruses. Through data mining and bioinformatic analysis of more than 37,800 public meta-genomic and -transcriptomic data sets, we found 83 unannotated contigs exhibiting high identity with known tick viruses. These putative viral contigs were classified into three RNA viral families (Alphatetraviridae, Orthomyxoviridae and Chuviridae) and one DNA viral family (Asfarviridae). After manual checking of quality and dissimilarity towards other sequences in the data set, these 83 contigs were reduced to five contigs in the Alphatetraviridae from four putative viruses, four in the Orthomyxoviridae from two putative viruses and one in the Chuviridae which clustered with known tick-associated viruses, forming a separate clade within the viral families. We further attempted to assess which previously known tick viruses likely represent zoonotic risks and thus deserve further investigation. We ranked the human infection potential of 133 known tick-associated viruses using a genome composition-based machine learning model. We found five high-risk tick-associated viruses (Langat virus, Lonestar tick chuvirus 1, Grotenhout virus, Taggert virus and Johnston Atoll virus) that have not been known to infect human and two viral families (Nairoviridae and Phenuiviridae) that contain a large proportion of potential zoonotic tick-associated viruses. This adds to the knowledge of tick virus diversity and highlights the importance of surveillance of newly emerging tick-associated diseases.
Collapse
Affiliation(s)
- Yuting Lin
- MRC Biostatistics UnitUniversity of CambridgeCambridgeUK
- Royal Veterinary CollegeUniversity of LondonLondonUK
| | | |
Collapse
|
7
|
Ortiz-Baez AS, Jaenson TGT, Holmes EC, Pettersson JHO, Wilhelmsson P. Substantial viral and bacterial diversity at the bat-tick interface. Microb Genom 2023; 9. [PMID: 36862584 PMCID: PMC10132063 DOI: 10.1099/mgen.0.000942] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Ticks harbour a high diversity of viruses, bacteria and protozoa. The soft tick Carios vespertilionis (Argasidae) is a common ectoparasite of bats in the Palearctic region and is suspected to be vector and reservoir of viruses and other microbial species in bat populations, some of which may act as zoonotic agents for human disease. The Soprano pipistrelle (Pipistrellus pygmaeus, Vespertilionidae) is widely distributed in Europe, where it can be found inside or close to human habitation. We used meta-transcriptomic sequencing to determine the RNA virome and common microbiota in blood-fed C. vespertilionis ticks collected from a Soprano pipistrelle bat roosting site in south-central Sweden. Our analyses identified 16 viruses from 11 virus families, of which 15 viruses were novel. For the first time in Sweden we identified Issuk-Kul virus, a zoonotic arthropod-borne virus previously associated with outbreaks of acute febrile illness in humans. Probable bat-associated and tick-borne viruses were classified within the families Nairoviridae, Caliciviridae and Hepeviridae, while other invertebrate-associated viruses included members of the Dicistroviridae, Iflaviridae, Nodaviridae, Partitiviridae, Permutotetraviridae, Polycipiviridae and Solemoviridae. Similarly, we found abundant bacteria in C. vespertilionis, including genera with known tick-borne bacteria, such as Coxiella spp. and Rickettsia spp. These findings demonstrate the remarkable diversity of RNA viruses and bacteria present in C. vespertilionis and highlight the importance of bat-associated ectoparasite surveillance as an effective and non-invasive means to track viruses and bacteria circulating in bats and ticks.
Collapse
Affiliation(s)
- Ayda Susana Ortiz-Baez
- Sydney Institute for Infectious Diseases, School of Medical Sciences, the University of Sydney, Sydney, New South Wales 2006, Australia
| | - Thomas G T Jaenson
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36, Uppsala, Sweden
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, the University of Sydney, Sydney, New South Wales 2006, Australia
| | - John H-O Pettersson
- Sydney Institute for Infectious Diseases, School of Medical Sciences, the University of Sydney, Sydney, New South Wales 2006, Australia.,Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, University of Uppsala, SE-751 23 Uppsala, Sweden.,Clinical Microbiology and Hospital Hygiene, Uppsala University Hospital, 75237 Uppsala, Sweden
| | - Peter Wilhelmsson
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linköping University, SE-581 83 Linköping, Sweden.,Department of Clinical Microbiology, Region Jönköping County, SE-553 05 Jönköping, Sweden
| |
Collapse
|
8
|
Perveen N, Kundu B, Sudalaimuthuasari N, Al-Maskari RS, Muzaffar SB, Al-Deeb MA. Virome diversity of Hyalomma dromedarii ticks collected from camels in the United Arab Emirates. Vet World 2023; 16:439-448. [PMID: 37041826 PMCID: PMC10082741 DOI: 10.14202/vetworld.2023.439-448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/30/2023] [Indexed: 03/18/2023] Open
Abstract
Background and Aim: Viruses are important components of the microbiome of ticks. Ticks are capable of transmitting several serious viral diseases to humans and animals. Hitherto, the composition of viral communities in Hyalomma dromedarii ticks associated with camels in the United Arab Emirates (UAE) remains unexplored. This study aimed to characterize the RNA virome diversity in male and female H. dromedarii ticks collected from camels in Al Ain, UAE.
Materials and Methods: We collected ticks, extracted, and sequenced RNA, using Illumina (NovaSeq 6000) and Oxford Nanopore (MinION).
Results: From the total generated sequencing reads, 180,559 (~0.35%) and 197,801 (~0.34%) reads were identified as virus-related reads in male and female tick samples, respectively. Taxonomic assignment of the viral sequencing reads was accomplished based on bioinformatic analyses. Further, viral reads were classified into 39 viral families. Poxiviridae, Phycodnaviridae, Phenuiviridae, Mimiviridae, and Polydnaviridae were the most abundant families in the tick viromes. Notably, we assembled the genomes of three RNA viruses, which were placed by phylogenetic analyses in clades that included the Bole tick virus.
Conclusion: Overall, this study attempts to elucidate the RNA virome of ticks associated with camels in the UAE and the results obtained from this study improve the knowledge of the diversity of viruses in H. dromedarii ticks.
Keywords: camels, Hyalomma dromedarii, nanopore technology, UAE, viral diversity, virome analysis, whole genome sequencing.
Collapse
Affiliation(s)
- Nighat Perveen
- Department of Biology, United Arab Emirates University, Al-Ain, P.O. Box 15551, UAE
| | - Biduth Kundu
- Department of Biology, United Arab Emirates University, Al-Ain, P.O. Box 15551, UAE
| | | | | | - Sabir Bin Muzaffar
- Department of Biology, United Arab Emirates University, Al-Ain, P.O. Box 15551, UAE
| | - Mohammad Ali Al-Deeb
- Department of Biology, United Arab Emirates University, Al-Ain, P.O. Box 15551, UAE
| |
Collapse
|
9
|
Qin T, Shi M, Zhang M, Liu Z, Feng H, Sun Y. Diversity of RNA viruses of three dominant tick species in North China. Front Vet Sci 2023; 9:1057977. [PMID: 36713863 PMCID: PMC9880493 DOI: 10.3389/fvets.2022.1057977] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
Background A wide range of bacterial pathogens have been identified in ticks, yet the diversity of viruses in ticks is largely unexplored. Methods Here, we used metagenomic sequencing to characterize the diverse viromes in three principal tick species associated with pathogens, Haemaphysalis concinna, Dermacentor silvarum, and Ixodes persulcatus, in North China. Results A total of 28 RNA viruses were identified and belonged to more than 12 viral families, including single-stranded positive-sense RNA viruses (Flaviviridae, Picornaviridae, Luteoviridae, Solemoviridae, and Tetraviridae), negative-sense RNA viruses (Mononegavirales, Bunyavirales, and others) and double-stranded RNA viruses (Totiviridae and Partitiviridae). Of these, Dermacentor pestivirus-likevirus, Chimay-like rhabdovirus, taiga tick nigecruvirus, and Mukawa virus are presented as novel viral species, while Nuomin virus, Scapularis ixovirus, Sara tick-borne phlebovirus, Tacheng uukuvirus, and Beiji orthonairovirus had been established as human pathogens with undetermined natural circulation and pathogenicity. Other viruses include Norway mononegavirus 1, Jilin partitivirus, tick-borne tetravirus, Pico-like virus, Luteo-like virus 2, Luteo-likevirus 3, Vovk virus, Levivirus, Toti-like virus, and Solemo-like virus as well as others with unknown pathogenicity to humans and wild animals. Conclusion In conclusion, extensive virus diversity frequently occurs in Mononegavirales and Bunyavirales among the three tick species. Comparatively, I. persulcatus ticks had been demonstrated as such a kind of host with a significantly higher diversity of viral species than those of H. concinna and D. silvarum ticks. Our analysis supported that ticks are reservoirs for a wide range of viruses and suggested that the discovery and characterization of tick-borne viruses would have implications for viral taxonomy and provide insights into tick-transmitted viral zoonotic diseases.
Collapse
Affiliation(s)
- Tong Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China,Medical Corps, Naval Logistics Academy, PLA, Beijing, China
| | - Mingjie Shi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Meina Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Zhitong Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Hao Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yi Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China,*Correspondence: Yi Sun ✉
| |
Collapse
|
10
|
Bai Y, Li Y, Liu W, Li J, Tian F, Liu L, Han X, Tong Y. Analysis of the diversity of tick-borne viruses at the border areas in Liaoning Province, China. Front Microbiol 2023; 14:1179156. [PMID: 37200913 PMCID: PMC10187663 DOI: 10.3389/fmicb.2023.1179156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/05/2023] [Indexed: 05/20/2023] Open
Abstract
Ticks play a significant role in transmitting arboviruses, which pose a risk to human and animal health. The region of Liaoning Province, China, with abundant plant resources with multiple tick populations, has reported several tick-borne diseases. However, there remains a scarcity of research on the composition and evolution of the tick virome. In this study, we conducted the metagenomic analysis of 561 ticks in the border area of Liaoning Province in China and identified viruses related to known diseases in humans and animals, including severe fever with thrombocytopenia syndrome virus (SFTSV) and nairobi sheep disease virus (NSDV). Moreover, the groups of tick viruses were also closely related to the families of Flaviviridae, Parvoviridae, Phenuiviridae, and Rhabdoviridae. Notably, the Dabieshan tick virus (DBTV) of the family Phenuiviridae was prevalent in these ticks, with the minimum infection rate (MIR) of 9.09%, higher than previously reported in numerous provinces in China. In addition, sequences of tick-borne viruses of the family Rhabdoviridae have first been reported from the border area of Liaoning Province, China, after being described from Hubei Province, China. This research furthered the insight into pathogens carried by ticks in the northeastern border areas of China, offering epidemiological information for possible forthcoming outbreaks of infectious diseases. Meanwhile, we provided an essential reference for assessing the risk of tick bite infection in humans and animals, as well as for exploring into the evolution of the virus and the mechanisms of species transmission.
Collapse
Affiliation(s)
- Yu Bai
- Jiamusi University School of Basic Medicine, Jiamusi, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yang Li
- Jiamusi University School of Basic Medicine, Jiamusi, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Wenli Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jing Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Fengjuan Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lei Liu
- Jiamusi University School of Basic Medicine, Jiamusi, China
- *Correspondence: Lei Liu,
| | - Xiaohu Han
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, China
- Xiaohu Han,
| | - Yigang Tong
- Jiamusi University School of Basic Medicine, Jiamusi, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- Yigang Tong,
| |
Collapse
|
11
|
Metavirome of 31 tick species provides a compendium of 1,801 RNA virus genomes. Nat Microbiol 2023; 8:162-173. [PMID: 36604510 PMCID: PMC9816062 DOI: 10.1038/s41564-022-01275-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/20/2022] [Indexed: 01/07/2023]
Abstract
The increasing prevalence and expanding distribution of tick-borne viruses globally have raised health concerns, but the full repertoire of the tick virome has not been assessed. We sequenced the meta-transcriptomes of 31 different tick species in the Ixodidae and Argasidae families from across mainland China, and identified 724 RNA viruses with distinctive virome compositions among genera. A total of 1,801 assembled and complete or nearly complete viral genomes revealed an extensive diversity of genome architectures of tick-associated viruses, highlighting ticks as a reservoir of RNA viruses. We examined the phylogenies of different virus families to investigate virome evolution and found that the most diverse tick-associated viruses are positive-strand RNA virus families that demonstrate more ancient divergence than other arboviruses. Tick-specific viruses are often associated with only a few tick species, whereas virus clades that can infect vertebrates are found in a wider range of tick species. We hypothesize that tick viruses can exhibit both 'specialist' and 'generalist' evolutionary trends. We hope that our virome dataset will enable much-needed research on vertebrate-pathogenic tick-associated viruses.
Collapse
|
12
|
Liu Z, Li L, Xu W, Yuan Y, Liang X, Zhang L, Wei Z, Sui L, Zhao Y, Cui Y, Yin Q, Li D, Li Q, Hou Z, Wei F, Liu Q, Wang Z. Extensive diversity of RNA viruses in ticks revealed by metagenomics in northeastern China. PLoS Negl Trop Dis 2022; 16:e0011017. [PMID: 36542659 PMCID: PMC9836300 DOI: 10.1371/journal.pntd.0011017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 01/12/2023] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Ticks act as important vectors of infectious agents, and several emerging tick-borne viruses have recently been identified to be associated with human diseases in northeastern China. However, little is known about the tick virome in northeastern China. METHODS Ticks collected from April 2020 to July 2021 were pooled for metagenomic analysis to investigate the virome diversity in northeastern China. RESULTS In total, 22 RNA viruses were identified, including four each in the Nairoviridae and Phenuiviridae families, three each in the Flaviviridae, Rhabdoviridae, and Solemoviridae families, two in the Chuviridae family, and one each in the Partitiviridae, Tombusviridae families and an unclassified virus. Of these, eight viruses were of novel species, belonging to the Nairoviridae (Ji'an nairovirus and Yichun nairovirus), Phenuiviridae (Mudanjiang phlebovirus), Rhabdoviridae (Tahe rhabdovirus 1-3), Chuviridae (Yichun mivirus), and Tombusviridae (Yichun tombus-like virus) families, and five members were established human pathogens, including Alongshan virus, tick-borne encephalitis virus, Songling virus, Beiji nairovirus, and Nuomin virus. I. persulcatus ticks had significant higher number of viral species than H. japonica, H. concinna, and D. silvarum ticks. Significant differences in tick viromes were observed among Daxing'an, Xiaoxing'an and Changbai mountains. CONCLUSIONS These findings showed an extensive diversity of RNA viruses in ticks in northeastern China, revealing potential public health threats from the emerging tick-borne viruses. Further studies are needed to explain the natural circulation and pathogenicity of these viruses.
Collapse
Affiliation(s)
- Ziyan Liu
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin Province, People’s Republic of China
- Laboratory of Pathogen Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, Jilin Province, People’s Republic of China
| | - Liang Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, People’s Republic of China
| | - Wenbo Xu
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin Province, People’s Republic of China
| | - Yongxu Yuan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province, People’s Republic of China
| | - Xiaojie Liang
- Laboratory of Pathogen Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, Jilin Province, People’s Republic of China
| | - Li Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, People’s Republic of China
| | - Zhengkai Wei
- School of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, People’s Republic of China
| | - Liyan Sui
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin Province, People’s Republic of China
| | - Yinghua Zhao
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin Province, People’s Republic of China
| | - Yanyan Cui
- College of Food Science and Engineering, Tonghua Normal University, Tonghua, Jilin Province, People’s Republic of China
| | - Qing Yin
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin Province, People’s Republic of China
| | - Dajun Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province, People’s Republic of China
| | - Qianxue Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, People’s Republic of China
| | - Zhijun Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province, People’s Republic of China
| | - Feng Wei
- Laboratory of Pathogen Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, Jilin Province, People’s Republic of China
| | - Quan Liu
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin Province, People’s Republic of China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, People’s Republic of China
- School of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, People’s Republic of China
| | - Zedong Wang
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin Province, People’s Republic of China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, People’s Republic of China
| |
Collapse
|
13
|
Abstract
Blood-sucking ticks are obligate parasites and vectors of a variety of human and animal viruses. Some tick-borne viruses have been identified as pathogens of infectious diseases in humans or animals, potentially imposing significant public health burdens and threats to the husbandry industry. Therefore, identifying the profiles of tick-borne viruses will provide valuable information about the evolution and pathogen ecology of tick-borne viruses. In this study, we investigated the viromes of parasitic ticks collected from the body surfaces of herbivores in Xinjiang Uyghur Autonomous Region and Inner Mongolia Autonomous Region of China, two regions in northwest China. By using a metatranscriptomic approach, 17 RNA viruses with high diversity in genomic organization and evolution were identified. Among them, nine are proposed to be novel species. The classified viruses belonged to six viral families, including Phenuiviridae, Rhabdoviridae, Peribunyaviridae, Lispiviridae, Chuviridae, and Reoviridae, and unclassified viruses were also identified. In addition, although some viruses from different sampling locations shared significant similarities, the abundance and diversity of viruses notably varied among the different collection locations. This study demonstrates the diversity of tick-borne viruses in Xinjiang and Inner Mongolia and provides informative data for further study of the evolution and pathogenicity of these RNA viruses. IMPORTANCE Ticks are widely distributed in pastoral areas in northwestern China and act as vectors that carry and transmit a variety of pathogens, especially viruses. Our study revealed the diversity of tick viruses in Xinjiang and Inner Mongolia and uncovered the phylogenetic relationships of some RNA viruses, especially the important zoonotic tick-borne severe fever with thrombocytopenia syndrome virus in Inner Mongolia. These data suggest a complex and diverse evolutionary history and potential ecological factors associated with pathogenic viruses. The pathogenicity of these tick-borne viruses currently remains unclear. Therefore, future research should focus on evaluating the transmissability and pathogenicity of these tick-borne viruses.
Collapse
|
14
|
Bratuleanu BE, Temmam S, Munier S, Chrétien D, Bigot T, van der Werf S, Savuta G, Eloit M. Detection of Phenuiviridae, Chuviridae Members, and a Novel Quaranjavirus in Hard Ticks From Danube Delta. Front Vet Sci 2022; 9:863814. [PMID: 35498749 PMCID: PMC9044029 DOI: 10.3389/fvets.2022.863814] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Ticks are involved in the transmission of various pathogens and several tick-borne diseases cause significant problems for the health of humans and livestock. The members of the Quaranjavirus genus are mainly associated with argas ticks but recent studies demonstrated the presence of novel quaranjaviruses-like in ixodid ticks. In 2020, 169 Rhipicephalus sanguineus ticks were collected in Southern Romania from small ruminants and analyzed by high-throughput transcriptome sequencing. Among the viral families that infect Romanian ticks, we have identified sequences from Phenuiviridae (Brown dog tick phlebovirus 1 [BDTPV1] and Brown dog tick phlebovirus 2 [BDTPV2]) and Chuviridae families (Cataloi mivirus [CTMV]), and numerous sequences from a new quaranjavirus-like, tentatively named Cataloi tick quaranjavirus (CTQV). Phylogenetic analyses performed on the five segments show that CTQV is phylogenetically positioned within a clade that encompasses Ixodidae-borne viruses associated with iguanas, small ruminants, seabirds, and penguins distributed across different geographical areas. Furthermore, CTQV is positioned differently depending on the segment considered. This is the first report on the detection of a quaranjavirus-like in Eastern Europe. Further investigations are needed to discern its infectivity and pathogenicity against vertebrates.
Collapse
Affiliation(s)
- Bianca Elena Bratuleanu
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety (ROVETEMERG), “Ion Ionescu de la Brad”, University of Life Sciences, Iasi, Romania
| | - Sarah Temmam
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
- Institut Pasteur, OIE Collaborating Centre for Detection and Identification in Humans of Emerging Animal Pathogens, Paris, France
| | - Sandie Munier
- Institut Pasteur, Molecular Genetics of RNA Viruses Unit, CNRS UMR 3569, Université de Paris, Paris, France
| | - Delphine Chrétien
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
- Institut Pasteur, OIE Collaborating Centre for Detection and Identification in Humans of Emerging Animal Pathogens, Paris, France
| | - Thomas Bigot
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
| | - Sylvie van der Werf
- Institut Pasteur, Molecular Genetics of RNA Viruses Unit, CNRS UMR 3569, Université de Paris, Paris, France
- Institut Pasteur, National Reference Center for Respiratory Viruses, Paris, France
| | - Gheorghe Savuta
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety (ROVETEMERG), “Ion Ionescu de la Brad”, University of Life Sciences, Iasi, Romania
| | - Marc Eloit
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
- Institut Pasteur, OIE Collaborating Centre for Detection and Identification in Humans of Emerging Animal Pathogens, Paris, France
- Alfort National Veterinary School, Maisons-Alfort, France
- *Correspondence: Marc Eloit
| |
Collapse
|
15
|
O'Brien CA, Huang B, Warrilow D, Hazlewood JE, Bielefeldt-Ohmann H, Hall-Mendelin S, Pegg CL, Harrison JJ, Paramitha D, Newton ND, Schulz BL, Suhrbier A, Hobson-Peters J, Hall RA. Extended characterisation of five archival tick-borne viruses provides insights for virus discovery in Australian ticks. Parasit Vectors 2022; 15:59. [PMID: 35180893 PMCID: PMC8857802 DOI: 10.1186/s13071-022-05176-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background A subset of Australians who have been bitten by ticks experience a complex of chronic and debilitating symptoms which cannot be attributed to the known pathogenic species of bacteria present in Australia. As a result, there has been a renewed effort to identify and characterise viruses in Australian terrestrial ticks. Recent transcriptome sequencing of Ixodes and Amblyomma ticks has revealed the presence of multiple virus sequences. However, without virus isolates our ability to understand the host range and pathogenesis of newly identified viruses is limited. We have established a successful method for high-throughput virus discovery and isolation in mosquitoes using antibodies to double-stranded RNA. In this study we sought to characterise five archival tick-borne viruses to adapt our virus discovery protocol for Australian ticks. Methods We performed virus characterisation using a combination of bioinformatic sequence analysis and in vitro techniques including replication kinetics, antigenic profiling, virus purification and mass spectrometry. Results Our sequence analysis of Nugget virus, Catch-me-Cave virus and Finch Creek virus revealed marked genetic stability in isolates collected from the same location approximately 30 years apart. We demonstrate that the Ixodes scapularis-derived ISE6 cell line supports replication of Australian members of the Flaviviridae, Nairoviridae, Phenuiviridae and Reoviridae families, including Saumarez Reef virus (SREV), a flavivirus isolated from the soft tick Ornithodoros capensis. While antibodies against double-stranded RNA could be used to detect replication of a tick-borne reovirus and mosquito-borne flavivirus, the tick-borne flaviviruses Gadgets Gully virus and SREV could not be detected using this method. Finally, four novel virus-like sequences were identified in transcriptome sequencing of the Australian native tick Ixodes holocyclus. Conclusions Genetic and antigenic characterisations of archival viruses in this study confirm that three viruses described in 2002 represent contemporary isolates of virus species first identified 30 years prior. Our findings with antibodies to double-stranded RNA highlight an unusual characteristic shared by two Australian tick-borne flaviviruses. Finally, comparative growth kinetics analyses of Australian tick-borne members of the Flaviviridae, Nairoviridae, Phenuiviridae and Reoviridae families in ISE6 and BSR cells will provide a useful resource for isolation of Australian tick-borne viruses using existing cell lines. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05176-z.
Collapse
Affiliation(s)
- Caitlin A O'Brien
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia
| | - Bixing Huang
- Public Health Virology, Forensic and Scientific Services, Department of Health, P.O. Box 594, Archerfield, QLD, Australia
| | - David Warrilow
- Public Health Virology, Forensic and Scientific Services, Department of Health, P.O. Box 594, Archerfield, QLD, Australia
| | - Jessamine E Hazlewood
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia.,School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Sonja Hall-Mendelin
- Public Health Virology, Forensic and Scientific Services, Department of Health, P.O. Box 594, Archerfield, QLD, Australia
| | - Cassandra L Pegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia
| | - Jessica J Harrison
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia
| | - Devina Paramitha
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia
| | - Natalee D Newton
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia
| | - Andreas Suhrbier
- Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia.,Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia
| | - Roy A Hall
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia. .,Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia.
| |
Collapse
|
16
|
Abstract
The COVID-19 pandemic has given the study of virus evolution and ecology new relevance. Although viruses were first identified more than a century ago, we likely know less about their diversity than that of any other biological entity. Most documented animal viruses have been sampled from just two phyla - the Chordata and the Arthropoda - with a strong bias towards viruses that infect humans or animals of economic and social importance, often in association with strong disease phenotypes. Fortunately, the recent development of unbiased metagenomic next-generation sequencing is providing a richer view of the animal virome and shedding new light on virus evolution. In this Review, we explore our changing understanding of the diversity, composition and evolution of the animal virome. We outline the factors that determine the phylogenetic diversity and genomic structure of animal viruses on evolutionary timescales and show how this impacts assessment of the risk of disease emergence in the short term. We also describe the ongoing challenges in metagenomic analysis and outline key themes for future research. A central question is how major events in the evolutionary history of animals, such as the origin of the vertebrates and periodic mass extinction events, have shaped the diversity and evolution of the viruses they carry.
Collapse
|
17
|
Xu L, Guo M, Hu B, Zhou H, Yang W, Hui L, Huang R, Zhan J, Shi W, Wu Y. Tick virome diversity in Hubei Province, China, and the influence of host ecology. Virus Evol 2021; 7:veab089. [PMID: 34804590 PMCID: PMC8599308 DOI: 10.1093/ve/veab089] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/14/2021] [Accepted: 11/02/2021] [Indexed: 12/16/2022] Open
Abstract
Ticks are important vector hosts of pathogens which cause human and animal
diseases worldwide. Diverse viruses have been discovered in ticks; however,
little is known about the ecological factors that affect the tick virome
composition and evolution. Herein, we employed RNA sequencing to study the
virome diversity of the Haemaphysalis longicornis and
Rhipicephalus microplus ticks sampled in Hubei Province in
China. Twelve RNA viruses with complete genomes were identified, which belonged
to six viral families: Flaviviridae, Matonaviridae, Peribunyaviridae,
Nairoviridae, Phenuiviridae, and Rhabdoviridae.
These viruses showed great diversity in their genome organization and evolution,
four of which were proposed to be novel species. The virome diversity and
abundance of R. microplus ticks fed on cattle were evidently
high. Further ecological analyses suggested that host species and feeding status
may be key factors affecting the tick virome structure. This study described a
number of novel viral species and variants from ticks and, more importantly,
provided insights into the ecological factors shaping the virome structures of
ticks, although it clearly warrants further investigation.
Collapse
Affiliation(s)
- Lin Xu
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271016, China
| | - Moujian Guo
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Bing Hu
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Hong Zhou
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271000, China
| | - Wei Yang
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Lixia Hui
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Rui Huang
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jianbo Zhan
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Weifeng Shi
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271016, China
| | - Ying Wu
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
18
|
Kobayashi D, Kuwata R, Kimura T, Faizah AN, Higa Y, Hayashi T, Sawabe K, Isawa H. Detection of quaranjavirus-like sequences from Haemaphysalis hystricis ticks collected in Japan. Jpn J Infect Dis 2021; 75:195-198. [PMID: 34470960 DOI: 10.7883/yoken.jjid.2021.129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Viruses belonging to the genus Quaranjavirus in the family Orthomyxoviridae are known as argasid tick-borne viruses. Some viruses in this genus or an unassigned quaranjavirus-like virus have the ability to infect humans although little is known about their pathogenicity. During the surveillance of tick-borne viruses in ixodid ticks in Ehime Prefecture, Japan, novel quaranjavirus-like sequences were detected in three pooled samples of Haemaphysalis histricis nymphs. Phylogenetic analysis revealed that the detected viruses formed a cluster with quaranjaviruses and other related viruses. Specifically, the viruses were closely related to Zambezi tick virus 1 and Uumaja virus, which are quaranjavirus-like viruses recently discovered in ixodid ticks in Africa and Europe, respectively. These findings indicate that the viruses detected in this study were probably a new member of the Quaranjavirus genus or a related group. The viruses were tentatively named Ohshima virus even though only limited sequences of their genome were available. This is the first report on the detection of a quaranjavirus-like virus in the East Asian region. Further investigations are needed to discern its infectivity and pathogenicity against humans or other animals and to determine the potential risk of an emerging tick-borne viral disease.
Collapse
Affiliation(s)
- Daisuke Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, Japan
| | - Ryusei Kuwata
- Faculty of Veterinary Medicine, Okayama University of Science, Japan
| | | | - Astri Nur Faizah
- Department of Medical Entomology, National Institute of Infectious Diseases, Japan
| | - Yukiko Higa
- Department of Medical Entomology, National Institute of Infectious Diseases, Japan
| | - Toshihiko Hayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, Japan
| | - Kyoko Sawabe
- Department of Medical Entomology, National Institute of Infectious Diseases, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, Japan
| |
Collapse
|
19
|
Charon J, Murray S, Holmes EC. Revealing RNA virus diversity and evolution in unicellular algae transcriptomes. Virus Evol 2021; 7:veab070. [PMID: 36819971 PMCID: PMC9927876 DOI: 10.1093/ve/veab070] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 12/15/2022] Open
Abstract
Remarkably little is known about the diversity and evolution of RNA viruses in unicellular eukaryotes. We screened a total of 570 transcriptomes from the Marine Microbial Eukaryote Transcriptome Sequencing Project that encompasses a wide diversity of microbial eukaryotes, including most major photosynthetic lineages (i.e. the microalgae). From this, we identified thirty new and divergent RNA virus species, occupying a range of phylogenetic positions within the overall diversity of RNA viruses. Approximately one-third of the newly described viruses comprised single-stranded positive-sense RNA viruses from the order Lenarviricota associated with fungi, plants, and protists, while another third were related to the order Ghabrivirales, including members of the protist and fungi-associated Totiviridae. Other viral species showed sequence similarity to positive-sense RNA viruses from the algae-associated Marnaviridae, the double-stranded RNA (ds-RNA) Partitiviridae, as well as tentative evidence for one negative-sense RNA virus related to the Qinviridae. Importantly, we were able to identify divergent RNA viruses from distant host taxa, revealing the ancestry of these viral families and greatly extending our knowledge of the RNA viromes of microalgal cultures. Both the limited number of viruses detected per sample and the low sequence identity to known RNA viruses imply that additional microalgal viruses exist that could not be detected at the current sequencing depth or were too divergent to be identified using sequence similarity. Together, these results highlight the need for further investigation of algal-associated RNA viruses as well as the development of new tools to identify RNA viruses that exhibit very high levels of sequence divergence.
Collapse
Affiliation(s)
- Justine Charon
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shauna Murray
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | | |
Collapse
|
20
|
Zhang YY, Chen Y, Wei X, Cui J. Viromes in marine ecosystems reveal remarkable invertebrate RNA virus diversity. SCIENCE CHINA-LIFE SCIENCES 2021; 65:426-437. [PMID: 34156600 DOI: 10.1007/s11427-020-1936-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/19/2021] [Indexed: 12/28/2022]
Abstract
Little is known about ocean viromes and the ecological drivers of the evolution of aquatic RNA viruses. This study employed a meta-transcriptomic approach to characterize the viromes of 58 marine invertebrate species across three seas. This revealed the presence of 315 newly identified RNA viruses in nine viral families or orders (Durnavirales, Totiviridae, Bunyavirales, Hantaviridae, Picornavirales, Flaviviridae, Hepelivirales, Solemoviridae, and Tombusviridae), with most of them being sufficiently divergent to the already documented viruses. Notably, this study revealed three marine invertebrate hantaviruses that are rooted to vertebrate hantaviruses, further supporting that hantaviruses may have a marine origin. We have also found evidence for possible host sharing and switch events during virus evolution. Overall, we have revealed the hidden diversity of marine invertebrate RNA viruses.
Collapse
Affiliation(s)
- Yu-Yi Zhang
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yicong Chen
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaoman Wei
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Cui
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, 200031, China. .,Laboatory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| |
Collapse
|
21
|
He W, Gao Y, Wen Y, Ke X, Ou Z, Li Y, He H, Chen Q. Detection of Virus-Related Sequences Associated With Potential Etiologies of Hepatitis in Liver Tissue Samples From Rats, Mice, Shrews, and Bats. Front Microbiol 2021; 12:653873. [PMID: 34177835 PMCID: PMC8221242 DOI: 10.3389/fmicb.2021.653873] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/10/2021] [Indexed: 01/08/2023] Open
Abstract
Hepatitis is a major global health concern. However, the etiology of 10-20% hepatitis cases remains unclear. Some hepatitis-associated viruses, like the hepatitis E virus, are zoonotic pathogens. Rats, shrews, and bats are reservoirs for many zoonotic pathogens. Therefore, understanding the virome in the liver of these animals is important for the investigation of the etiologies of hepatitis and monitoring the emerging zoonotic viruses. In this study, viral metagenomics and PCR methods were used to investigate viral communities in rats, mice, house shrews, and bats livers. Viral metagenomic analysis showed a diverse set of sequences in liver samples, comprising: sequences related to herpesviruses, orthomyxoviruses, anelloviruses, hepeviruses, hepadnaviruses, flaviviruses, parvoviruses, and picornaviruses. Using PCR methods, we first detected hepatovirus sequences in Hipposideros larvatus (3.85%). We also reported the first detection of Zika virus-related sequences in rats and house shrews. Sequences related to influenza A virus and herpesviruses were detected in liver. Higher detection rates of pegivirus sequences were found in liver tissue and serum samples from rats (7.85% and 15.79%, respectively) than from house shrews. Torque teno virus sequences had higher detection rates in the serum samples of rats and house shrews (52.72% and 5.26%, respectively) than in the liver. Near-full length genomes of pegivirus and torque teno virus were amplified. This study is the first to compare the viral communities in the liver of bats, rats, mice, and house shrews. Its findings expand our understanding of the virome in the liver of these animals and provide an insight into hepatitis-related viruses.
Collapse
Affiliation(s)
- Wenqiao He
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| | - Yuhan Gao
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| | - Yuqi Wen
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| | - Xuemei Ke
- Xiamen Center for Disease Control and Prevention, Xiamen, China
| | - Zejin Ou
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| | - Yongzhi Li
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| | - Huan He
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| | - Qing Chen
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
Sameroff S, Tokarz R, Jain K, Oleynik A, Carrington CVF, Lipkin WI, Oura CAL. Novel quaranjavirus and other viral sequences identified from ticks parasitizing hunted wildlife in Trinidad and Tobago. Ticks Tick Borne Dis 2021; 12:101730. [PMID: 33957484 DOI: 10.1016/j.ttbdis.2021.101730] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023]
Abstract
Hunters are at a higher risk for exposure to zoonotic pathogens due to their close interactions with wildlife and arthropod vectors. In this study, high throughput sequencing was used to explore the viromes of two tick species, Amblyomma dissimile and Haemaphysalis juxtakochi, removed from hunted wildlife in Trinidad and Tobago. We identified sequences from 3 new viral species, from the viral families Orthomyxoviridae, Chuviridae and Tetraviridae in A. dissimile.
Collapse
Affiliation(s)
- Stephen Sameroff
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, United States; School of Veterinary Medicine, The University of the West Indies, St. Augustine, Trinidad and Tobago.
| | - Rafal Tokarz
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, United States; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Komal Jain
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, United States
| | - Alexandra Oleynik
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, United States
| | - Christine V F Carrington
- Department of Preclinical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, United States
| | - Christopher A L Oura
- School of Veterinary Medicine, The University of the West Indies, St. Augustine, Trinidad and Tobago
| |
Collapse
|
23
|
Sequence diversity and evolution of a group of iflaviruses associated with ticks. Arch Virol 2021; 166:1843-1852. [PMID: 33870470 PMCID: PMC8195936 DOI: 10.1007/s00705-021-05060-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/15/2021] [Indexed: 11/21/2022]
Abstract
We studied a group of tick-associated viruses with characteristics of members of the family Iflaviridae, a family of viruses frequently found in arthropods. Our aim was to gain insight into the evolutionary dynamics of this group of viruses, which may be linked to the biology of ticks. We explored assembled RNA-Seq data sets for different species of ticks. We identified members of five different iflavirus species, four of them novel, and discovered nine new genome sequences, including variants. Five variants represented a virus species associated with Ixodes ricinus. Unexpectedly, a sequence found in the Ixodes scapularis cell line ISE6 was nearly identical to the sequences of I. ricinus variants, suggesting a contamination of this cell line by I. ricinus material. Analysing patterns of substitutions between these variants, we detected a strong excess of synonymous mutations, suggesting evolution under strong positive selection. The phylogenies of the viruses and of their tick hosts were not congruent, suggesting recurrent host changes across tick genera during their evolution. Overall, our work constitutes a step in the understanding of the interactions between this family of viruses and ticks.
Collapse
|