1
|
Rodriguez-Valverde D, Leon-Montes N, Belmont-Monroy L, Ruiz-Perez F, Santiago AE. Lipoprotein Lpp and L, D-transpeptidases regulate the master regulator of virulence AggR in EAEC. Sci Rep 2025; 15:13988. [PMID: 40263412 PMCID: PMC12015436 DOI: 10.1038/s41598-025-96373-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/27/2025] [Indexed: 04/24/2025] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is a diarrheagenic pathotype associated with traveler's diarrhea, foodborne outbreaks, and sporadic diarrhea in industrialized and developing countries. Regulation of virulence factors in EAEC is mediated by the master regulator AggR, an AraC/XylS family member controlling the expression of more than 44 genes associated with metabolism and virulence. Although the AggR regulon is well-characterized, the mechanism and upstream signaling cascades that regulate its activation are poorly understood. This study demonstrates that Lpp (Braun's lipoprotein) and L, D-transpeptidases are required for AggR activation. We found that deletion lpp in EAEC resulted in the downregulation of more than 100 genes involved in transport, metabolism, and virulence. Among the genes, fourteen transcriptional factors, including AggR, were differentially expressed in 042Δlpp. Our findings also showed that Lpp anchoring to the peptidoglycan is a requisite for AggR-activation. Hence, chemical inhibition or genetic deletion of L, D-transpeptidases encoding genes involved in the crosslink of Lpp to the peptidoglycan abolished AggR activation. Moreover, the 042Δlpp mutant exhibited reduced biofilm formation on abiotic surfaces and reduced colonization of human intestinal colonoids. This is the first study to demonstrate the tight regulation of the AraC/XylS transcriptional regulator AggR, essential in EAEC virulence and intestinal colonization by components of the bacterial cell envelope.
Collapse
Affiliation(s)
- Diana Rodriguez-Valverde
- University of Virginia, School of Medicine, Department of Pediatrics, Child Health Research Center, 409 Lane Road, MR-4 Building, P.O Box 801326, Charlottesville, VA, 22908, USA
| | - Nancy Leon-Montes
- University of Virginia, School of Medicine, Department of Pediatrics, Child Health Research Center, 409 Lane Road, MR-4 Building, P.O Box 801326, Charlottesville, VA, 22908, USA
| | - Laura Belmont-Monroy
- Laboratorio de Microbiología Molecular, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Fernando Ruiz-Perez
- University of Virginia, School of Medicine, Department of Pediatrics, Child Health Research Center, 409 Lane Road, MR-4 Building, P.O Box 801326, Charlottesville, VA, 22908, USA
| | - Araceli E Santiago
- University of Virginia, School of Medicine, Department of Pediatrics, Child Health Research Center, 409 Lane Road, MR-4 Building, P.O Box 801326, Charlottesville, VA, 22908, USA.
| |
Collapse
|
2
|
Labarre C, Zhang Y, Lesur E, Ley M, Sago L, Dietrich C, de Sousa-d'Auria C, Constantinesco-Becker F, Baron A, Doisneau G, Urban D, Chevreux G, Guianvarc'h D, Bourdreux Y, Bayan N. Bioorthogonal Monomycolate of Trehalose Disclosed the O-Mycoloylation of Mycoloyltransferases and Other Cell Envelope Proteins in C. glutamicum. ACS Chem Biol 2024; 19:2359-2371. [PMID: 39480191 DOI: 10.1021/acschembio.4c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Protein mycoloylation is a recently identified unusual post-translational modification (PTM) exclusively observed in Mycobacteriales, an order of bacteria that includes several human pathogens. These bacteria possess a distinctive outer membrane, known as the mycomembrane, composed of very long-chain fatty acids called mycolic acids. It has been demonstrated that a few mycomembrane proteins undergo covalent modification with mycolic acids in the model organism Corynebacterium glutamicum through the action of mycoloyltransferase MytC. This PTM represents the first example of protein O-acylation in prokaryotes and also the first example of protein modification by mycolic acid. Many questions about the specificity of protein O-mycoloylation remain crucial for understanding its evolutionary significance in Mycobacteriales and its role in cell physiology. We have developed the first bioorthogonal mycolate donor featuring the natural mycolic acid pattern, enabling direct, unambiguous transfer of the lipid moiety to its acceptors and efficient metabolic labeling and enrichment of MytC protein substrates. Mass spectrometry analysis of the labeled proteins and comparative proteomic analysis of the cell envelope proteome between wild-type and ΔmytC strains identified an unbiased list of 21 proteins likely mycoloylated in the cell. The robustness of our approach is demonstrated by the successful biological validation of mycoloylation in 6 candidate proteins within wild-type cells, revealing the characteristic profile of proteins modified with natural mycolates. These findings provide interesting insights into the significance of this new lipidation pathway and pave the way for understanding their function, especially concerning the mycoloyltransferase family that includes the essential Antigen85 enzymes in Mycobacteria.
Collapse
Affiliation(s)
- Cécile Labarre
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Yijie Zhang
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Emilie Lesur
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182, F-91405 Orsay, France
| | - Marie Ley
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Laila Sago
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Christiane Dietrich
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Célia de Sousa-d'Auria
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | | - Aurélie Baron
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Gilles Doisneau
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182, F-91405 Orsay, France
| | - Dominique Urban
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182, F-91405 Orsay, France
| | - Guillaume Chevreux
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Dominique Guianvarc'h
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182, F-91405 Orsay, France
| | - Yann Bourdreux
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182, F-91405 Orsay, France
| | - Nicolas Bayan
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
3
|
Izquierdo-Vega JA, Castillo-Juarez RJ, Sánchez-Gutiérrez M, Ares MA, De La Cruz MA. A Mini-Review of Enteroaggregative Escherichia coli with a Specific Target on the Virulence Factors Controlled by the AggR Master Regulator. Pol J Microbiol 2023; 72:347-354. [PMID: 37875068 PMCID: PMC10725161 DOI: 10.33073/pjm-2023-037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/08/2023] [Indexed: 10/26/2023] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) strains have been linked to several outbreaks of severe diarrhea around the world, and this bacterium is now commonly resistant to antibiotics. As part of the pathophysiology of EAEC, the characteristic pattern of adherence looks like stacked bricks on the intestinal epithelium. This phenotype depends on an aggregative adhesion plasmid (pAA), which codes for a regulatory protein named AggR. The AggR protein is a master regulator that transcriptionally actives the main virulence genes in this E. coli pathotype, such as those that encode the aggregative adhesion fimbriae, dispersin and its secretion apparatus, Aar regulatory protein, and type VI secretion system. Several reports have shown that AggR positively affects most EAEC virulence genes, functioning as a classic transcriptional activator in the promoter region of these genes, interacting with the RNA polymerase. This minireview article integrates the information about virulence determinants of EAEC controlled by the AggR regulator.
Collapse
Affiliation(s)
| | | | | | - Miguel A. Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México City, México
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, México
| | | |
Collapse
|
4
|
Rodriguez-Valverde D, Giron JA, Hu Y, Nataro JP, Ruiz-Perez F, Santiago AE. Highly-conserved regulatory activity of the ANR family in the virulence of diarrheagenic bacteria through interaction with master and global regulators. Sci Rep 2023; 13:7024. [PMID: 37120613 PMCID: PMC10148876 DOI: 10.1038/s41598-023-33997-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2023] Open
Abstract
ANR (AraC negative regulators) are a novel class of small regulatory proteins commonly found in enteric pathogens. Aar (AggR-activated regulator), the best-characterized member of the ANR family, regulates the master transcriptional regulator of virulence AggR and the global regulator HNS in enteroaggregative Escherichia coli (EAEC) by protein-protein interactions. On the other hand, Rnr (RegA-negative regulator) is an ANR homolog identified in attaching and effacing (AE) pathogens, including Citrobacter rodentium and enteropathogenic Escherichia coli (EPEC), sharing only 25% identity with Aar. We previously found that C. rodentium lacking Rnr exhibits prolonged shedding and increased gut colonization in mice compared to the parental strain. To gain mechanistic insights into this phenomenon, we characterized the regulatory role of Rnr in the virulence of prototype EPEC strain E2348/69 by genetic, biochemical, and human organoid-based approaches. Accordingly, RNA-seq analysis revealed more than 500 genes differentially regulated by Rnr, including the type-3 secretion system (T3SS). The abundance of EspA and EspB in whole cells and bacterial supernatants confirmed the negative regulatory activity of Rnr on T3SS effectors. We found that besides HNS and Ler, twenty-six other transcriptional regulators were also under Rnr control. Most importantly, the deletion of aar in EAEC or rnr in EPEC increases the adherence of these pathogens to human intestinal organoids. In contrast, the overexpression of ANR drastically reduces bacterial adherence and the formation of AE lesions in the intestine. Our study suggests a conserved regulatory mechanism and a central role of ANR in modulating intestinal colonization by these enteropathogens despite the fact that EAEC and EPEC evolved with utterly different virulence programs.
Collapse
Affiliation(s)
- Diana Rodriguez-Valverde
- Child Health Research Center, Department of Pediatrics, University of Virginia School of Medicine, 409 Lane Road, MR-4 Building, P.O. Box 801326, Charlottesville, VA, 22908, USA
| | - Jorge A Giron
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- Translational Genomics Research Institute, 445 N. 5th St, Phoenix, AZ, 85004, USA
| | - Yang Hu
- CD Genomics, Shirley, NY, USA
| | - James P Nataro
- Child Health Research Center, Department of Pediatrics, University of Virginia School of Medicine, 409 Lane Road, MR-4 Building, P.O. Box 801326, Charlottesville, VA, 22908, USA
| | - Fernando Ruiz-Perez
- Child Health Research Center, Department of Pediatrics, University of Virginia School of Medicine, 409 Lane Road, MR-4 Building, P.O. Box 801326, Charlottesville, VA, 22908, USA
| | - Araceli E Santiago
- Child Health Research Center, Department of Pediatrics, University of Virginia School of Medicine, 409 Lane Road, MR-4 Building, P.O. Box 801326, Charlottesville, VA, 22908, USA.
| |
Collapse
|
5
|
Hodges FJ, Torres VVL, Cunningham AF, Henderson IR, Icke C. Redefining the bacterial Type I protein secretion system. Adv Microb Physiol 2023; 82:155-204. [PMID: 36948654 DOI: 10.1016/bs.ampbs.2022.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type I secretion systems (T1SS) are versatile molecular machines for protein transport across the Gram-negative cell envelope. The archetypal Type I system mediates secretion of the Escherichia coli hemolysin, HlyA. This system has remained the pre-eminent model of T1SS research since its discovery. The classic description of a T1SS is composed of three proteins: an inner membrane ABC transporter, a periplasmic adaptor protein and an outer membrane factor. According to this model, these components assemble to form a continuous channel across the cell envelope, an unfolded substrate molecule is then transported in a one-step mechanism, directly from the cytosol to the extracellular milieu. However, this model does not encapsulate the diversity of T1SS that have been characterized to date. In this review, we provide an updated definition of a T1SS, and propose the subdivision of this system into five subgroups. These subgroups are categorized as T1SSa for RTX proteins, T1SSb for non-RTX Ca2+-binding proteins, T1SSc for non-RTX proteins, T1SSd for class II microcins, and T1SSe for lipoprotein secretion. Although often overlooked in the literature, these alternative mechanisms of Type I protein secretion offer many avenues for biotechnological discovery and application.
Collapse
Affiliation(s)
- Freya J Hodges
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Von Vergel L Torres
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ian R Henderson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| | - Christopher Icke
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
6
|
Li J, Nina MRH, Zhang X, Bai Y. Engineering Transcription Factor XylS for Sensing Phthalic Acid and Terephthalic Acid: An Application for Enzyme Evolution. ACS Synth Biol 2022; 11:1106-1113. [PMID: 35192317 DOI: 10.1021/acssynbio.1c00275] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Poly(ethylene terephthalate) (PET) and phthalate esters (PAEs) are used extensively as plastics and plasticizers. Enzymatic degradation of PET and PAEs has drawn great attention in recent years; however, evolution of PET- and PAE-degrading enzymes is still a big challenge, partly because of the lack of an effective screening method to detect phthalic acid (PA) and terephthalic acid (TPA), which are the main hydrolysis products of PAEs and PET. Here, by directed evolution of a promiscuous transcription factor, XylS from Pseudomonas putida, we created two novel variants, XylS-K38R-L224Q and XylS-W88C-L224Q, that are able to bind PA and TPA and activate the downstream expression of a fluorescent reporter protein. Based on these elements, whole-cell biosensors were constructed, which enabled the fluorimetric detection of as little as 10 μM PA or TPA. A PAE hydrolase, GoEst15, was preliminarily engineered using this new biosensor, yielding a mutant GoEst15-V3 whose activity toward dibutyl phthalate (DBP) and p-nitrophenyl butyrate was enhanced 2.0- and 2.5-fold, respectively. It was shown that 96.5% DBP (5 mM) was degraded by GoEst15-V3 in 60 min, while the wild-type enzyme degraded only 55% DBP. This study provides an effective screening tool for directed evolution of PAE-/PET-degrading enzymes.
Collapse
Affiliation(s)
- Jiawei Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Mario Roque Huanca Nina
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiaoyan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yunpeng Bai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
7
|
Smithers L, Olatunji S, Caffrey M. Bacterial Lipoprotein Posttranslational Modifications. New Insights and Opportunities for Antibiotic and Vaccine Development. Front Microbiol 2021; 12:788445. [PMID: 34950121 PMCID: PMC8689077 DOI: 10.3389/fmicb.2021.788445] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022] Open
Abstract
Lipoproteins are some of the most abundant proteins in bacteria. With a lipid anchor to the cell membrane, they function as enzymes, inhibitors, transporters, structural proteins, and as virulence factors. Lipoproteins activate the innate immune system and have biotechnological applications. The first lipoprotein was described by Braun and Rehn in 1969. Up until recently, however, work on lipoproteins has been sluggish, in part due to the challenges of handling proteins that are anchored to membranes by covalently linked lipids or are membrane integral. Activity in the area has quickened of late. In the past 5 years, high-resolution structures of the membrane enzymes of the canonical lipoprotein synthesis pathway have been determined, new lipoprotein types have been discovered and the enzymes responsible for their synthesis have been characterized biochemically. This has led to a flurry of activity aimed at developing novel antibiotics targeting these enzymes. In addition, surface exposed bacterial lipoproteins have been utilized as candidate vaccine antigens, and their potential to act as self-adjuvanting antigens is increasingly recognized. A summary of the latest developments in lipoproteins and their synthesis, as well as how this information is being exploited for therapeutic purposes is presented here.
Collapse
Affiliation(s)
- Luke Smithers
- School of Medicine, Trinity College Dublin, Dublin, Ireland
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Samir Olatunji
- School of Medicine, Trinity College Dublin, Dublin, Ireland
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Martin Caffrey
- School of Medicine, Trinity College Dublin, Dublin, Ireland
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Prieto A, Bernabeu M, Sánchez-Herrero JF, Pérez-Bosque A, Miró L, Bäuerl C, Collado C, Hüttener M, Juárez A. Modulation of AggR levels reveals features of virulence regulation in enteroaggregative E. coli. Commun Biol 2021; 4:1295. [PMID: 34785760 PMCID: PMC8595720 DOI: 10.1038/s42003-021-02820-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) strains are one of the diarrheagenic pathotypes. EAEC strains harbor a virulence plasmid (pAA2) that encodes, among other virulence determinants, the aggR gene. The expression of the AggR protein leads to the expression of several virulence determinants in both plasmids and chromosomes. In this work, we describe a novel mechanism that influences AggR expression. Because of the absence of a Rho-independent terminator in the 3'UTR, aggR transcripts extend far beyond the aggR ORF. These transcripts are prone to PNPase-mediated degradation. Structural alterations in the 3'UTR result in increased aggR transcript stability, leading to increased AggR levels. We therefore investigated the effect of increased AggR levels on EAEC virulence. Upon finding the previously described AggR-dependent virulence factors, we detected novel AggR-regulated genes that may play relevant roles in EAEC virulence. Mutants exhibiting high AggR levels because of structural alterations in the aggR 3'UTR show increased mobility and increased pAA2 conjugation frequency. Furthermore, among the genes exhibiting increased fold change values, we could identify those of metabolic pathways that promote increased degradation of arginine, fatty acids and gamma-aminobutyric acid (GABA), respectively. In this paper, we discuss how the AggR-dependent increase in specific metabolic pathways activity may contribute to EAEC virulence.
Collapse
Affiliation(s)
- Alejandro Prieto
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain
| | - Manuel Bernabeu
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain
| | | | - Anna Pérez-Bosque
- Department of Biochemistry and Physiology, Universitat de Barcelona, Barcelona, Spain
- Institut de Nutrició i Seguretat Alimentària, Universitat de Barcelona, Barcelona, Spain
| | - Lluïsa Miró
- Department of Biochemistry and Physiology, Universitat de Barcelona, Barcelona, Spain
- Institut de Nutrició i Seguretat Alimentària, Universitat de Barcelona, Barcelona, Spain
| | - Christine Bäuerl
- Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Carmen Collado
- Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Mário Hüttener
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain.
| | - Antonio Juárez
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain.
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| |
Collapse
|
9
|
Giglione C, Meinnel T. Mapping the myristoylome through a complete understanding of protein myristoylation biochemistry. Prog Lipid Res 2021; 85:101139. [PMID: 34793862 DOI: 10.1016/j.plipres.2021.101139] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/22/2022]
Abstract
Protein myristoylation is a C14 fatty acid modification found in all living organisms. Myristoylation tags either the N-terminal alpha groups of cysteine or glycine residues through amide bonds or lysine and cysteine side chains directly or indirectly via glycerol thioester and ester linkages. Before transfer to proteins, myristate must be activated into myristoyl coenzyme A in eukaryotes or, in bacteria, to derivatives like phosphatidylethanolamine. Myristate originates through de novo biosynthesis (e.g., plants), from external uptake (e.g., human tissues), or from mixed origins (e.g., unicellular organisms). Myristate usually serves as a molecular anchor, allowing tagged proteins to be targeted to membranes and travel across endomembrane networks in eukaryotes. In this review, we describe and discuss the metabolic origins of protein-bound myristate. We review strategies for in vivo protein labeling that take advantage of click-chemistry with reactive analogs, and we discuss new approaches to the proteome-wide discovery of myristate-containing proteins. The machineries of myristoylation are described, along with how protein targets can be generated directly from translating precursors or from processed proteins. Few myristoylation catalysts are currently described, with only N-myristoyltransferase described to date in eukaryotes. Finally, we describe how viruses and bacteria hijack and exploit myristoylation for their pathogenicity.
Collapse
Affiliation(s)
- Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
10
|
Midgett CR, Talbot KM, Day JL, Munson GP, Kull FJ. Structure of the master regulator Rns reveals an inhibitor of enterotoxigenic Escherichia coli virulence regulons. Sci Rep 2021; 11:15663. [PMID: 34341412 PMCID: PMC8329261 DOI: 10.1038/s41598-021-95123-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
Enteric infections caused by the gram-negative bacteria enterotoxigenic Escherichia coli (ETEC), Vibrio cholerae, Shigella flexneri, and Salmonella enterica are among the most common and affect billions of people each year. These bacteria control expression of virulence factors using a network of transcriptional regulators, some of which are modulated by small molecules as has been shown for ToxT, an AraC family member from V. cholerae. In ETEC the expression of many types of adhesive pili is dependent upon the AraC family member Rns. We present here the 3 Å crystal structure of Rns and show it closely resembles ToxT. Rns crystallized as a dimer via an interface similar to that observed in other dimeric AraC's. Furthermore, the structure of Rns revealed the presence of a ligand, decanoic acid, that inhibits its activity in a manner similar to the fatty acid mediated inhibition observed for ToxT and the S. enterica homologue HilD. Together, these results support our hypothesis that fatty acids regulate virulence controlling AraC family members in a common manner across a number of enteric pathogens. Furthermore, for the first time this work identifies a small molecule capable of inhibiting the ETEC Rns regulon, providing a basis for development of therapeutics against this deadly human pathogen.
Collapse
Affiliation(s)
| | - Kacey Marie Talbot
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jessica L Day
- Department of Chemistry, Dartmouth College, Hanover, NH, USA
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - George P Munson
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - F Jon Kull
- Department of Chemistry, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
11
|
Olatunji S, Bowen K, Huang CY, Weichert D, Singh W, Tikhonova IG, Scanlan EM, Olieric V, Caffrey M. Structural basis of the membrane intramolecular transacylase reaction responsible for lyso-form lipoprotein synthesis. Nat Commun 2021; 12:4254. [PMID: 34253723 PMCID: PMC8275575 DOI: 10.1038/s41467-021-24475-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/08/2021] [Indexed: 11/08/2022] Open
Abstract
Lipoproteins serve diverse functions in the bacterial cell and some are essential for survival. Some lipoproteins are adjuvants eliciting responses from the innate immune system of the host. The growing list of membrane enzymes responsible for lipoprotein synthesis includes the recently discovered lipoprotein intramolecular transacylase, Lit. Lit creates a lipoprotein that is less immunogenic, possibly enabling the bacteria to gain a foothold in the host by stealth. Here, we report the crystal structure of the Lit enzyme from Bacillus cereus and describe its mechanism of action. Lit consists of four transmembrane helices with an extracellular cap. Conserved residues map to the cap-membrane interface. They include two catalytic histidines that function to effect unimolecular transacylation. The reaction involves acyl transfer from the sn-2 position of the glyceryl moiety to the amino group on the N-terminal cysteine of the substrate via an 8-membered ring intermediate. Transacylation takes place in a confined aromatic residue-rich environment that likely evolved to bring distant moieties on the substrate into proximity and proper orientation for catalysis.
Collapse
Affiliation(s)
- Samir Olatunji
- Membrane Structural and Functional Biology Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Katherine Bowen
- School of Chemistry, Trinity College Dublin, Dublin, Ireland
| | - Chia-Ying Huang
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Dietmar Weichert
- Membrane Structural and Functional Biology Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Warispreet Singh
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
- Hub for Biotechnology in Build Environment, Newcastle upon Tyne, United Kingdom
| | - Irina G Tikhonova
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Eoin M Scanlan
- School of Chemistry, Trinity College Dublin, Dublin, Ireland
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Martin Caffrey
- Membrane Structural and Functional Biology Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
12
|
Cortés-Avalos D, Martínez-Pérez N, Ortiz-Moncada MA, Juárez-González A, Baños-Vargas AA, Estrada-de Los Santos P, Pérez-Rueda E, Ibarra JA. An update of the unceasingly growing and diverse AraC/XylS family of transcriptional activators. FEMS Microbiol Rev 2021; 45:6219864. [PMID: 33837749 DOI: 10.1093/femsre/fuab020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/31/2021] [Indexed: 01/09/2023] Open
Abstract
Transcriptional factors play an important role in gene regulation in all organisms, especially in Bacteria. Here special emphasis is placed in the AraC/XylS family of transcriptional regulators. This is one of the most abundant as many predicted members have been identified and more members are added because more bacterial genomes are sequenced. Given the way more experimental evidence has mounded in the past decades, we decided to update the information about this captivating family of proteins. Using bioinformatics tools on all the data available for experimentally characterized members of this family, we found that many members that display a similar functional classification can be clustered together and in some cases they have a similar regulatory scheme. A proposal for grouping these proteins is also discussed. Additionally, an analysis of surveyed proteins in bacterial genomes is presented. Altogether, the current review presents a panoramic view into this family and we hope it helps to stimulate future research in the field.
Collapse
Affiliation(s)
- Daniel Cortés-Avalos
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Noemy Martínez-Pérez
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México
| | - Mario A Ortiz-Moncada
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Aylin Juárez-González
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Arturo A Baños-Vargas
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Paulina Estrada-de Los Santos
- Laboratorio de Biotecnología Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Ernesto Pérez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México.,Facultad de Ciencias, Centro de Genómica y Bioinformática, Universidad Mayor, Santiago, Chile
| | - J Antonio Ibarra
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
13
|
Icke C, Hodges FJ, Pullela K, McKeand SA, Bryant JA, Cunningham AF, Cole JA, Henderson IR. Glycine acylation and trafficking of a new class of bacterial lipoprotein by a composite secretion system. eLife 2021; 10:63762. [PMID: 33625358 PMCID: PMC7943197 DOI: 10.7554/elife.63762] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/23/2021] [Indexed: 01/21/2023] Open
Abstract
Protein acylation is critical for many cellular functions across all domains of life. In bacteria, lipoproteins have important roles in virulence and are targets for the development of antimicrobials and vaccines. Bacterial lipoproteins are secreted from the cytosol via the Sec pathway and acylated on an N-terminal cysteine residue through the action of three enzymes. In Gram-negative bacteria, the Lol pathway transports lipoproteins to the outer membrane. Here, we demonstrate that the Aat secretion system is a composite system sharing similarity with elements of a type I secretion systems and the Lol pathway. During secretion, the AatD subunit acylates the substrate CexE on a highly conserved N-terminal glycine residue. Mutations disrupting glycine acylation interfere with membrane incorporation and trafficking. Our data reveal CexE as the first member of a new class of glycine-acylated lipoprotein, while Aat represents a new secretion system that displays the substrate lipoprotein on the cell surface.
Collapse
Affiliation(s)
- Christopher Icke
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Freya J Hodges
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Karthik Pullela
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | | | | | - Adam F Cunningham
- Institute of Microbiology and Infection, Birmingham, United Kingdom.,Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Jeff A Cole
- Institute of Microbiology and Infection, Birmingham, United Kingdom
| | - Ian R Henderson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| |
Collapse
|