1
|
Wang J, Jia R, Wei W, Hu M, Li F, Wang W, Ye P, Zhao J, Xu L, Wang S, Wang Y, Shi M, Ma G. Spleen-liver dual accumulation of ly6clowExo potentiates synergistic immune modulation for liver fibrosis therapy. NANO TODAY 2024; 58:102422. [DOI: 10.1016/j.nantod.2024.102422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
|
2
|
ten Hove M, Smyris A, Booijink R, Wachsmuth L, Hansen U, Alic L, Faber C, Hӧltke C, Bansal R. Engineered SPIONs functionalized with endothelin a receptor antagonist ameliorate liver fibrosis by inhibiting hepatic stellate cell activation. Bioact Mater 2024; 39:406-426. [PMID: 38855059 PMCID: PMC11157122 DOI: 10.1016/j.bioactmat.2024.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/11/2024] Open
Abstract
Endothelin-1/endothelin A receptor (ET-1/ETAR) pathway plays an important role in the progression of liver fibrosis by activating hepatic stellate cells (HSCs) - a key cell type involved in the pathogenesis of liver fibrosis. Inactivating HSCs by blocking the ET-1/ETAR pathway using a selective ETAR antagonist (ERA) represents a promising therapeutic approach for liver fibrosis. Unfortunately, small-molecule ERAs possess limited clinical potential due to poor bioavailability, short half-life, and rapid renal clearance. To improve the clinical applicability, we conjugated ERA to superparamagnetic iron-oxide nanoparticles (SPIONs) and investigated the therapeutic efficacy of ERA and ERA-SPIONs in vitro and in vivo and analyzed liver uptake by in vivo and ex vivo magnetic resonance imaging (MRI), HSCs-specific localization, and ET-1/ETAR-pathway antagonism in vivo. In murine and human liver fibrosis/cirrhosis, we observed overexpression of ET-1 and ETAR that correlated with HSC activation, and HSC-specific localization of ETAR. ERA and successfully synthesized ERA-SPIONs demonstrated significant attenuation in TGFβ-induced HSC activation, ECM production, migration, and contractility. In an acute CCl4-induced liver fibrosis mouse model, ERA-SPIONs exhibited higher liver uptake, HSC-specific localization, and ET-1/ETAR pathway antagonism. This resulted in significantly reduced liver-to-body weight ratio, plasma ALT levels, and α-SMA and collagen-I expression, indicating attenuation of liver fibrosis. In conclusion, our study demonstrates that the delivery of ERA using SPIONs enhances the therapeutic efficacy of ERA in vivo. This approach holds promise as a theranostic strategy for the MRI-based diagnosis and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Marit ten Hove
- Personalized Diagnostics and Therapeutics, Department of Bioengineering Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Andreas Smyris
- Personalized Diagnostics and Therapeutics, Department of Bioengineering Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Richell Booijink
- Personalized Diagnostics and Therapeutics, Department of Bioengineering Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Lydia Wachsmuth
- Clinic of Radiology, University Hospital Muenster, Muenster, Germany
| | - Uwe Hansen
- Institute for Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
| | - Lejla Alic
- Department of Magnetic Detection and Imaging, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Cornelius Faber
- Clinic of Radiology, University Hospital Muenster, Muenster, Germany
| | - Carsten Hӧltke
- Clinic of Radiology, University Hospital Muenster, Muenster, Germany
| | - Ruchi Bansal
- Personalized Diagnostics and Therapeutics, Department of Bioengineering Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| |
Collapse
|
3
|
Yuan Y, Li J, Lu X, Chen M, Liang H, Chen XP, Long X, Zhang B, Gong S, Huang X, Zhao J, Chen Q. Autophagy in hepatic progenitor cells modulates exosomal miRNAs to inhibit liver fibrosis in schistosomiasis. Front Med 2024; 18:538-557. [PMID: 38769281 DOI: 10.1007/s11684-024-1079-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/27/2024] [Indexed: 05/22/2024]
Abstract
Schistosoma infection is one of the major causes of liver fibrosis. Emerging roles of hepatic progenitor cells (HPCs) in the pathogenesis of liver fibrosis have been identified. Nevertheless, the precise mechanism underlying the role of HPCs in liver fibrosis in schistosomiasis remains unclear. This study examined how autophagy in HPCs affects schistosomiasis-induced liver fibrosis by modulating exosomal miRNAs. The activation of HPCs was verified by immunohistochemistry (IHC) and immunofluorescence (IF) staining in fibrotic liver from patients and mice with Schistosoma japonicum infection. By coculturing HPCs with hepatic stellate cells (HSCs) and assessing the autophagy level in HPCs by proteomic analysis and in vitro phenotypic assays, we found that impaired autophagy degradation in these activated HPCs was mediated by lysosomal dysfunction. Blocking autophagy by the autophagy inhibitor chloroquine (CQ) significantly diminished liver fibrosis and granuloma formation in S. japonicum-infected mice. HPC-secreted extracellular vehicles (EVs) were further isolated and studied by miRNA sequencing. miR-1306-3p, miR-493-3p, and miR-34a-5p were identified, and their distribution into EVs was inhibited due to impaired autophagy in HPCs, which contributed to suppressing HSC activation. In conclusion, we showed that the altered autophagy process upon HPC activation may prevent liver fibrosis by modulating exosomal miRNA release and inhibiting HSC activation in schistosomiasis. Targeting the autophagy degradation process may be a therapeutic strategy for liver fibrosis during Schistosoma infection.
Collapse
Affiliation(s)
- Yue Yuan
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiaxuan Li
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xun Lu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Min Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Xiao-Ping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Xin Long
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Song Gong
- Department of Trauma Surgery, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaowei Huang
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jianping Zhao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China.
| | - Qian Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
4
|
Mostafa DK, Eissa MM, Ghareeb DA, Abdulmalek S, Hewedy WA. Resveratrol protects against Schistosoma mansoni-induced liver fibrosis by targeting the Sirt-1/NF-κB axis. Inflammopharmacology 2024; 32:763-775. [PMID: 38041753 PMCID: PMC10907480 DOI: 10.1007/s10787-023-01382-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/19/2023] [Indexed: 12/03/2023]
Abstract
Hepatic schistosomiasis is a prevalent form of chronic liver disease that drastically affects human health. Nevertheless, an antifibrotic drug that could suppress the development of hepatic fibrosis does not exist yet. The current study aimed to evaluate the effect of resveratrol, a natural polyphenol with multiple biological activities, on Schistosoma mansoni (S. mansoni)-induced hepatic fibrosis and delineate the underlying molecular mechanism. Swiss male albino mice were randomly assigned into infected and non-infected groups. Hepatic schistosomiasis infection was induced via exposure to S. mansoni cercariae. 6 weeks later, resveratrol was administrated either as 20 mg/kg/day or 100 mg/kg/day for 4 weeks to two infected groups. Another group received vehicle and served as infected control group. At the end of the study, portal hemodynamic, biochemical, and histopathological evaluation of liver tissues were conducted. Remarkably, resveratrol significantly reduced portal pressure, portal and mesenteric flow in a dose-dependent manner. It improved several key features of hepatic injury as evidenced biochemically by a significant reduction of bilirubin and liver enzymes, and histologically by amelioration of the granulomatous and inflammatory reactions. In line, resveratrol reduced the expression of pro-inflammatory markers; TNF-α, IL-1β and MCP-1 mRNA, together with fibrotic markers; collagen-1, TGF-β1 and α-SMA. Moreover, resveratrol restored SIRT1/NF-κB balance in hepatic tissues which is the main switch-off control for all the fibrotic and inflammatory mechanisms. Taken together, it can be inferred that resveratrol possesses a possible anti-fibrotic effect that can halt the progression of hepatic schistosomiasis via targeting SIRT1/ NF-κB signaling.
Collapse
Affiliation(s)
- Dalia Kamal Mostafa
- Clinical Pharmacology Department, Faculty of Medicine, Alexandria University, Al-Moassat Medical Campus, Elhadara, Alexandria, 21561, Egypt
| | - Maha M Eissa
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Doaa A Ghareeb
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Shaymaa Abdulmalek
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Wafaa A Hewedy
- Clinical Pharmacology Department, Faculty of Medicine, Alexandria University, Al-Moassat Medical Campus, Elhadara, Alexandria, 21561, Egypt.
| |
Collapse
|
5
|
Rivera-Gonzalez O, Case CT, Wilson NA, Speed JS, Taylor EB. Endothelin receptor antagonism improves glucose tolerance and adipose tissue inflammation in an experimental model of systemic lupus erythematosus. Am J Physiol Endocrinol Metab 2023; 324:E73-E84. [PMID: 36476039 PMCID: PMC9870584 DOI: 10.1152/ajpendo.00274.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Endothelin-1 (ET-1) is elevated in patients with systemic lupus erythematosus (SLE), an autoimmune disease characterized by high rates of hypertension, renal injury, and cardiovascular disease. SLE is also associated with an increased prevalence of obesity and insulin resistance compared to the general population. In the present study, we tested the hypothesis that elevated ET-1 in SLE contributes to obesity and insulin resistance. For these studies, we used the NZBWF1 mouse model of SLE, which develops obesity and insulin resistance on a normal chow diet. To test this hypothesis, we treated control (NZW) and SLE (NZBWF1) mice with vehicle, atrasentan (ETA receptor antagonist, 10 mg/kg/day), or bosentan (ETA/ETB receptor antagonist, 100 mg/kg/day) for 4 wk. Neither treatment impacted circulating immunoglobulin levels, but treatment with bosentan lowered anti-dsDNA IgG levels, a marker of SLE disease activity. Treatment with atrasentan and bosentan decreased glomerulosclerosis, and atrasentan lowered renal T-cell infiltration. Body weight was lower in SLE mice treated with atrasentan or bosentan. Endothelin receptor antagonism also improved hyperinsulinemia, homeostatic model assessment for insulin resistance, and glucose tolerance in SLE mice. Adipose tissue inflammation was also improved by endothelin receptor blockade. Taken together, these data suggest a potential therapeutic benefit for SLE patients with obesity and insulin resistance.NEW & NOTEWORTHY SLE is an autoimmune disease that is associated with obesity, insulin resistance, and elevated endothelin-1. The present study demonstrated that pharmacological inhibition of endothelin receptors decreased body weight, insulin resistance, and adipose tissue inflammation in a murine model of SLE. The therapeutic potential of endothelin receptor antagonists to treat obesity-related diseases and pathophysiological conditions, such as autoimmune diseases and insulin resistance, has become increasingly clear.
Collapse
Affiliation(s)
- Osvaldo Rivera-Gonzalez
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Clinton T Case
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Natalie A Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Joshua S Speed
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Erin B Taylor
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
6
|
Mesenchymal stem cell-derived exosomes and non-coding RNAs: Regulatory and therapeutic role in liver diseases. Biomed Pharmacother 2023; 157:114040. [PMID: 36423545 DOI: 10.1016/j.biopha.2022.114040] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/22/2022] Open
Abstract
Liver disease has become a major health problem worldwide due to its high morbidity and mortality. In recent years, a large body of literature has shown that mesenchymal stem cell-derived exosomes (MSC-Exo) are able to play similar physiological roles as mesenchymal stem cells (MSCs). More importantly, there is no immune rejection caused by transplanted cells and the risk of tumor formation, which has become a new strategy for the treatment of various liver diseases. Moreover, accumulating evidence suggests that non-coding RNAs (ncRNAs) are the main effectors by which they exert hepatoprotective effects. Therefore, by searching the databases of Web of Science, PubMed, ScienceDirect, Google Scholar and CNKI, this review comprehensively reviewed the therapeutic effects of MSC-Exo and ncRNAs in liver diseases, including liver injury, liver fibrosis, and hepatocellular carcinoma. According to the data, the therapeutic effects of MSC-Exo and ncRNAs on liver diseases are closely related to a variety of molecular mechanisms, including inhibition of inflammatory response, alleviation of liver oxidative stress, inhibition of apoptosis of hepatocytes and endothelial cells, promotion of angiogenesis, blocking the cell cycle of hepatocellular carcinoma, and inhibition of activation and proliferation of hepatic stellate cells. These important findings will provide a direction and basis for us to explore the potential of MSC-Exo and ncRNAs in the clinical treatment of liver diseases in the future.
Collapse
|
7
|
Xu G, Gong Y, Lu F, Wang B, Yang Z, Chen L, Min J, Cheng C, Jiang T. Endothelin receptor B enhances liver injury and pro-inflammatory responses by increasing G-protein-coupled receptor kinase-2 expression in primary biliary cholangitis. Sci Rep 2022; 12:19772. [PMID: 36396948 PMCID: PMC9672122 DOI: 10.1038/s41598-022-21816-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/04/2022] [Indexed: 11/18/2022] Open
Abstract
Severe diseases like cirrhosis and liver failure can be developed from primary biliary cholangitis (PBC). Endothelin-2 (EDN2) and endothelin receptor B (EDNRB) are related to the pathogenesis of PBC. However, the roles of EDN2 and EDNRB in PBC-related liver injury and inflammation along with molecular mechanisms are poorly defined. In this study, histopathologic alterations of liver tissues were assessed through hematoxylin-eosin staining. Alanine transaminase (ALT), alkaline phosphatase (ALP), aspartate transaminase (AST), and γ-Glutamyltranspetidase (GGT) (4 liver function indexes) serum levels were detected with corresponding activity assay kits. Also, we determined the levels of M2 subtype anti-mitochondrial antibody (AMA-M2), interferon-gamma (IFN-γ), and tumor-necrosis factor alpha (TNFα) in serum with ELISA assay. Later, RT-qPCR assay was used to measure the expression of genes at mRNA levels, while western blotting and immunohistochemical techniques were used to detect protein levels of genes. Our results showed that the liver tissues of PBC patients and mice presented with severe hepatocyte injury and inflammatory cell infiltration as well as destruction of intrahepatic small bile ducts. ALP, AST, ALT, GGT, AMA-M2, IFN-γ, and TNF-α serum levels were higher in PBC patients and mice. Besides, EDN2 and EDNRB were highly expressed in serums and livers of PBC patients and mice. EDNRB potentiated PBC-related liver injury and pro-inflammatory responses, as evidenced by observation of serious liver pathologic injury and increased serum levels of ALP, AST, ALT, AMA-M2, IFN-γ, and TNF-α in PBC mice following EDNRB overexpression. EDNRB overexpression or activation via its agonist IRL-1620 TFA triggered liver injury and pro-inflammatory responses, increased GRK2 expression and induced NF-κB expression and activation in wild-type mice. EDNRB knockdown or inhibition by Bosentan alleviated liver damage and inflammation, reduced GRK2 expression, and inhibited NF-κB in PBC mice. These findings suggested EDNRB loss or inhibition weakened liver injury and pro-inflammatory responses by down-regulating GRK2 and inhibiting the NF-κB pathway in PBC mice.
Collapse
Affiliation(s)
- Guoxin Xu
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215600 China
| | - Yanping Gong
- Department of Clinical Immunology, Institution of Laboratory Medicine of Changshu, Changshu, 215500 China
| | - Fenying Lu
- grid.417303.20000 0000 9927 0537Department of Gastroenterology, The Affiliated Changshu Hospital of Xuzhou Medical University, Suzhou, 215501 China
| | - Bin Wang
- grid.417303.20000 0000 9927 0537Department of Gastroenterology, The Affiliated Changshu Hospital of Xuzhou Medical University, Suzhou, 215501 China
| | - Zaixing Yang
- grid.469601.cDepartment of Laboratory Medicine, Huangyan Hospital of Wenzhou Medical University, Taizhou First People’s Hospital, Taizhou, 318020 China
| | - Long Chen
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215600 China
| | - Jingyu Min
- grid.417303.20000 0000 9927 0537Department of Gastroenterology, The Affiliated Changshu Hospital of Xuzhou Medical University, Suzhou, 215501 China
| | - Cuie Cheng
- grid.417303.20000 0000 9927 0537Department of Gastroenterology, The Affiliated Changshu Hospital of Xuzhou Medical University, Suzhou, 215501 China
| | - Tingwang Jiang
- grid.417303.20000 0000 9927 0537Department of Key Laboratory, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, 215500 China
| |
Collapse
|
8
|
Pathogenesis of Liver Fibrosis and Its TCM Therapeutic Perspectives. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5325431. [PMID: 35529927 PMCID: PMC9071861 DOI: 10.1155/2022/5325431] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/15/2022] [Indexed: 12/16/2022]
Abstract
Liver fibrosis is a pathological process of abnormal tissue proliferation in the liver caused by various pathogenic factors, which will further develop into cirrhosis or even hepatocellular carcinoma if liver injury is not intervened in time. As a diffuse progressive liver disease, its clinical manifestations are mostly excessive deposition of collagen-rich extracellular matrix resulting in scar formation due to liver injury. Hepatic fibrosis can be caused by hepatitis B and C, fatty liver, alcohol, and rare diseases such as hemochromatosis. As the metabolic center of the body, the liver regulates various vital activities. During the development of fibrosis, it is influenced by many other factors in addition to the central event of hepatic stellate cell activation. Currently, with the increasing understanding of TCM, the advantages of TCM with multiple components, pathways, and targets have been demonstrated. In this review, we will describe the factors influencing liver fibrosis, focusing on the effects of cells, intestinal flora, iron death, signaling pathways, autophagy and angiogenesis on liver fibrosis, and the therapeutic effects of herbal medicine on liver fibrosis.
Collapse
|
9
|
Design of a highly potent GLP-1R and GCGR dual-agonist for recovering hepatic fibrosis. Acta Pharm Sin B 2022; 12:2443-2461. [PMID: 35646543 PMCID: PMC9136578 DOI: 10.1016/j.apsb.2021.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/29/2021] [Accepted: 12/22/2021] [Indexed: 01/18/2023] Open
Abstract
Currently, there is still no effective curative treatment for the development of late-stage liver fibrosis. Here, we have illustrated that TB001, a dual glucagon-like peptide-1 receptor/glucagon receptor (GLP-1R/GCGR) agonist with higher affinity towards GCGR, could retard the progression of liver fibrosis in various rodent models, with remarkable potency, selectivity, extended half-life and low toxicity. Four types of liver fibrosis animal models which were induced by CCl4, α-naphthyl-isothiocyanate (ANIT), bile duct ligation (BDL) and Schistosoma japonicum were used in our study. We found that TB001 treatment dose-dependently significantly attenuated liver injury and collagen accumulation in these animal models. In addition to decreased levels of extracellular matrix (ECM) accumulation during hepatic injury, activation of hepatic stellate cells was also inhibited via suppression of TGF-β expression as well as downstream Smad signaling pathways particularly in CCl4-and S. japonicum-induced liver fibrosis. Moreover, TB001 attenuated liver fibrosis through blocking downstream activation of pro-inflammatory nuclear factor kappa B/NF-kappa-B inhibitor alpha (NFκB/IKBα) pathways as well as c-Jun N-terminal kinase (JNK)-dependent induction of hepatocyte apoptosis. Furthermore, GLP-1R and/or GCGR knock-down results represented GCGR played an important role in ameliorating CCl4-induced hepatic fibrosis. Therefore, TB001 can be used as a promising therapeutic candidate for the treatment of multiple causes of hepatic fibrosis demonstrated by our extensive pre-clinical evaluation of TB001.
Collapse
|
10
|
Qi Z, Lan C, Xiaofang J, Juanjuan T, Cheng F, Ting H, Erxia S, Zi L. Inhibition of COX-2 ameliorates murine liver schistosomiasis japonica through splenic cellular immunoregulation. Parasit Vectors 2022; 15:144. [PMID: 35461268 PMCID: PMC9034617 DOI: 10.1186/s13071-022-05201-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background We have reported the positive association of the cyclooxygenase 2 (COX-2)/prostaglandin E2 (PGE2) axis with liver fibrosis induced by Schistosoma japonicum (Sj) infection, and TLR4 signaling controlled this axis. However, how COX-2 regulates immune response during Sj infection is still unclear. Methods Hematoxylin and eosin staining was used to evaluate the effect of the COX-2-specific inhibitor NS398 on liver granulomatous inflammation and fibrosis. Flow cytometry was used to explore the frequency and amount of different immune cell infiltration in the spleen during Sj infection. Results NS398 significantly reduced the size of liver granuloma, spleen, and mesenteric lymph node (MLN) and alleviated chronic granulomatous inflammation. Mechanically, this might be by decreasing the number of Sj-induced macrophages and T helper type 1 (Th1), Th2, T follicular helper (Tfh), T follicular regulatory (Tfr), and germinal center B (GC B) cells. There were no differences in the number of neutrophils, myeloid-derived suppressor cells, Th17 cells, regulatory T cells (Treg), or total B cells in the spleen of the mice with or without NS398 treatment. Conclusions COX-2/PGE2 inhibition may represent a potential therapeutic approach for schistosomiasis japonica through splenic cellular immunoregulation. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Zhang Qi
- Sino‑French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, China.,Immunology Department, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, China
| | - Chen Lan
- Sino‑French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, China
| | - Ji Xiaofang
- Sino‑French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, China
| | - Tang Juanjuan
- Sino‑French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, China
| | - Fu Cheng
- Sino‑French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, China.,Immunology Department, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, China
| | - Huang Ting
- Sino‑French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, China.,Immunology Department, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, China
| | - Shen Erxia
- Sino‑French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, China. .,Immunology Department, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, China. .,The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| | - Li Zi
- Sino‑French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, China. .,The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
11
|
Zhou M, Xue C, Wu Z, Wu X, Li M. Genome-Wide Association Study Identifies New Risk Loci for Progression of Schistosomiasis Among the Chinese Population. Front Cell Infect Microbiol 2022; 12:871545. [PMID: 35493725 PMCID: PMC9039613 DOI: 10.3389/fcimb.2022.871545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Schistosoma japonicum infections, which lead to local inflammatory responses to schistosome eggs trapped in host tissues, can result in long-term, severe complications. The development of schistosomiasis may result from a complex interaction between the pathogenic, environmental, and host genetic components. Notably, the genetic factors that influence the development of schistosomiasis complications are poorly understood. Here we performed a genome-wide association study on multiple schistosomiasis-related phenotypes of 637 unrelated schistosomiasis patients in the Chinese population. Among three indicators of liver damage, we identified two novel, genome-wide significant single-nucleotide polymorphisms (SNPs) rs34486793 (P = 1.415 × 10-8) and rs2008259 (P = 6.78 × 10-8) at locus 14q32.2 as well as a gene, PMEPA1, at 20q13.31 (index rs62205791, P = 6.52 × 10-7). These were significantly associated with serum levels of hyaluronic acid (HA). In addition, RASIP1 and MAMSTR at 19q13.33 (index rs62132778, P = 1.72 × 10-7) were significantly associated with serum levels of aspartate aminotransferase (AST), and TPM1 at 15q22.2 (index rs12442303, P = 4.39 × 10-7) was significantly associated with serum levels of albumin. In schistosomiasis clinical signs, ITIH4 at 3p21.1 (index rs2239548) was associated with portal vein diameter (PVD) class, an indicator of portal hypertension, and OGDHL at 10q11.23 (index rs1258172) was related to ascites grade. We also detected an increased expression of these six genes in livers of mice with severe schistosomiasis. Summary data-based Mendelian randomization analyses indicated that ITIH4, PMEPA1 and MAMSTR were pleiotropically associated with PVD class, HA and AST, respectively.
Collapse
Affiliation(s)
- Miao Zhou
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Sun Yat-sen University, Guangzhou, China
| | - Chao Xue
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Zhongdao Wu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Sun Yat-sen University, Guangzhou, China
| | - Xiaoying Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- School of Public Health, Fudan University, Shanghai, China
- *Correspondence: Xiaoying Wu, ; Miaoxin Li,
| | - Miaoxin Li
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
- Center for Precision Medicine, Sun Yat-Sen University, Guangzhou, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- *Correspondence: Xiaoying Wu, ; Miaoxin Li,
| |
Collapse
|
12
|
Bai Y, Guan F, Zhu F, Jiang C, Xu X, Zheng F, Liu W, Lei J. IL-33/ST2 Axis Deficiency Exacerbates Hepatic Pathology by Regulating Treg and Th17 Cells in Murine Schistosomiasis Japonica. J Inflamm Res 2021; 14:5981-5998. [PMID: 34815688 PMCID: PMC8604654 DOI: 10.2147/jir.s336404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/27/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose Schistosoma japonicum-infected IL-33 and ST2 gene deficiency (IL-33−/− and ST2−/−, respectively) mice were used to explore the role of the IL-33/ST2 axis in liver pathology targeting regulatory T cells (Treg)/T helper 17 cells (Th17). Materials and Methods Each mouse was infected percutaneously with 20 S. japonicum cercariae. Hepatic mass index (HMI), liver egg granulomas, hepatic fibrosis biomarkers and serum levels of alanine aminotransferase (ALT) were investigated. Treg and Th17 frequency was determined by flow cytometry. Expressions of Foxp3, ST2, TGF-β1, IL-10, RORγt, and IL-17A were measured via quantitative real-time polymerase chain reaction (qRT-PCR). Concentrations of TGF-β1, IL-10 and IL-17A were tested with ELISA. In vitro experiments, mRNA expressions of Foxp3, TGF-β1, IL-10, Atg5, Beclin-1 and p62 associated with polarization of Treg by recombinant mouse IL-33 (rmIL-33) were detected by qRT-PCR. Results An increased expression of IL-33/ST2 was shown in S. japonicum-infected mice. Deficiency of IL-33 or ST2 gene led to an aggravated liver pathology, which was evidenced by elevated hepatic granuloma volume, HMI and ALT levels and fibrosis, which was demonstrated by increased hepatic collagen deposition in the infected mice. Injection of rmIL-33 into the infected IL-33−/− mice strongly abrogated the liver pathology and fibrosis, whereas no detectable effect with injecting rmIL-33 into the infected ST2−/− mice. Furthermore, depletion of the IL-33/ST2 axis inhibited Treg, accompanied by increased Th17. rmIL-33 treatment upregulated Treg and downregulated Th17 in the infected IL-33−/− mice, while no effect in the infected ST2−/− mice. rmIL-33 led to elevated expressions of Atg5, Beclin-1 and inhibited expression of p62 in expansion of Treg. Conclusion The IL-33/ST2 axis plays a protective role in S. japonicum infected mice, which is closely related to increasing Treg responses as well as suppressing Th17 responses. Expansion of Treg by IL-33 may be associated with its regulation of autophagy.
Collapse
Affiliation(s)
- Yang Bai
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Feifan Zhu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Chunjie Jiang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - XiaoXiao Xu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Wenqi Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| |
Collapse
|
13
|
Huang J, Yin X, Zhang L, Yao M, Wei D, Wu Y. Serum proteomic profiling in patients with advanced Schistosoma japonicum-induced hepatic fibrosis. Parasit Vectors 2021; 14:232. [PMID: 33933138 PMCID: PMC8088642 DOI: 10.1186/s13071-021-04734-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/21/2021] [Indexed: 02/02/2023] Open
Abstract
Background Schistosoma japonicum is a parasitic flatworm that is the aetiological agent of human schistosomiasis, an important cause of hepatic fibrosis. Schistosomiasis-induced hepatic fibrosis is a consequence of the highly fibrogenic nature of egg-induced granulomatous lesions, which are the main pathogenic features of schistosomiasis. Although global awareness of the association between schistosomiasis-induced hepatic fibrosis and S. japonicum infection is increasing, little is known about the molecular differences associated with rapid progression to schistosomiasis in cirrhotic patients. Methods We systematically used data-independent acquisition (DIA)-based liquid chromatography-mass spectrometry to identify differentially expressed proteins in serum samples from patients with advanced S. japonicum-induced hepatic fibrosis. Results Our analysis identified 1144 proteins, among which 66 were differentially expressed between the healthy control group and the group of patients with advanced S. japonicum-induced hepatic fibrosis stage F2 (SHF-F2) and 214 were differentially expressed between the SHF-F2 and SHF-F4 groups (up- or downregulation of at least 1.5-fold in serum samples). The results also indicated that two selected proteins (C1QA and CFD) are potential biomarkers for distinguishing between patients with SHF-F2 and those with SHF-F4 due to S. japonicum infection. Conclusions We provide here the first global proteomic profile of serum samples from patients with advanced S. japonicum-induced hepatic fibrosis. The proteins C1QA and CFD are potential diagnostic markers for patients with SHF-F2 and SHF-F4 due to S. japonicum infection, although further large-scale studies are needed. Our DIA-based quantitative proteomic analysis revealed molecular differences among individuals at different stages of advanced S. japonicum-induced hepatic fibrosis and may provide fundamental information for further detailed investigations. Graphic Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04734-1.
Collapse
Affiliation(s)
- Jing Huang
- Institute of Hepatology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, People's Republic of China.,Institute of Hepatology, The First Hospital of Jiaxing, Jiaxing, 314001, Zhejiang, People's Republic of China.,Department of Clinical Medicine, Bengbu Medical College, Bengbu, 233030, Anhui, People's Republic of China
| | - Xinguang Yin
- Jiaxing Maternity and Child Health Care Hospital, Jiaxing, 314001, Zhejiang, People's Republic of China
| | - Lifang Zhang
- Institute of Hepatology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, People's Republic of China.,Institute of Hepatology, The First Hospital of Jiaxing, Jiaxing, 314001, Zhejiang, People's Republic of China
| | - Ming Yao
- Institute of Hepatology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, People's Republic of China.,Institute of Hepatology, The First Hospital of Jiaxing, Jiaxing, 314001, Zhejiang, People's Republic of China
| | - Dahai Wei
- Institute of Hepatology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, People's Republic of China. .,Institute of Hepatology, The First Hospital of Jiaxing, Jiaxing, 314001, Zhejiang, People's Republic of China.
| | - Yiming Wu
- Institute of Hepatology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, People's Republic of China. .,Institute of Hepatology, The First Hospital of Jiaxing, Jiaxing, 314001, Zhejiang, People's Republic of China.
| |
Collapse
|