1
|
Belew MD, Chen J, Cheng Z. Emerging roles of cyclin-dependent kinase 7 in health and diseases. Trends Mol Med 2025; 31:138-151. [PMID: 39414519 PMCID: PMC11825286 DOI: 10.1016/j.molmed.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024]
Abstract
Cyclin-dependent kinase 7 (CDK7) regulates cell cycle and transcription, which are central for cancer progression. CDK7 inhibitors exhibit substantial anticancer activities in preclinical studies and are currently being evaluated in clinical trials. CDK7 is widely expressed in the body. However, the impact of CDK7 inhibition on normal tissues has received little attention. Here, we review the biological functions of CDK7, followed by its emerging roles in development, homeostasis and diseases. We discuss the regulatory mechanisms of CDK7 kinase activation and provide an overview of CDK7 substrates identified to date. Moreover, we highlight unanswered questions and propose key areas for future investigation. An advanced understanding of CDK7 will facilitate the pharmaceutical development of CDK7 inhibitors and help minimize undesirable adverse effects.
Collapse
Affiliation(s)
- Mahder Dawit Belew
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, WA 99202-2131, USA
| | - Jingrui Chen
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, WA 99202-2131, USA
| | - Zhaokang Cheng
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, WA 99202-2131, USA.
| |
Collapse
|
2
|
Liu Q, Shang Y, Tao Z, Li X, Shen L, Zhang H, Liu Z, Rao Z, Yu X, Cao Y, Zeng L, Huang X. Coxsackievirus group B3 regulates ASS1-mediated metabolic reprogramming and promotes macrophage inflammatory polarization in viral myocarditis. J Virol 2024; 98:e0080524. [PMID: 39194244 PMCID: PMC11406948 DOI: 10.1128/jvi.00805-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Coxsackievirus group B3 (CVB3) belongs to the genus Enteroviruses of the family Picornaviridae and is the main pathogen underlying viral myocarditis (VMC). No specific therapeutic is available for this condition. Argininosuccinate synthase 1 (ASS1) is a key enzyme in the urea cycle that converts citrulline and aspartic acid to argininosuccinate. Here, we found that CVB3 and its capsid protein VP2 inhibit the autophagic degradation of ASS1 and that CVB3 consumes citrulline to upregulate ASS1, triggers urea cycle metabolic reprogramming, and then activates macrophages to develop pro-inflammatory polarization, thereby promoting the occurrence and development of VMC. Conversely, citrulline supplementation to prevent depletion can downregulate ASS1, rescue macrophage polarization, and alleviate the pathogenicity of VMC. These findings provide a new perspective on the occurrence and development of VMC, revealing ASS1 as a potential new target for treating this disease. IMPORTANCE Viral myocarditis (VMC) is a common and potentially life-threatening myocardial inflammatory disease, most commonly caused by CVB3 infection. So far, the pathogenesis of VMC caused by CVB3 is mainly focused on two aspects: one is the direct myocardial injury caused by a large number of viral replication in the early stage of infection, and the other is the local immune cell infiltration and inflammatory damage of the myocardium in the adaptive immune response stage. There are few studies on the early innate immunity of CVB3 infection in myocardial tissue, but the appearance of macrophages in the early stage of CVB3 infection suggests that they can play a regulatory role as early innate immune response cells in myocardial tissue. Here, we discovered a possible new mechanism of VMC caused by CVB3, revealed new drug targets for anti-CVB3, and discovered the therapeutic potential of citrulline for VMC.
Collapse
Affiliation(s)
- Qiong Liu
- The First Affiliated Hospital of Nanchang University and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yinpan Shang
- The First Affiliated Hospital of Nanchang University and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ziwei Tao
- The First Affiliated Hospital of Nanchang University and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xuan Li
- The First Affiliated Hospital of Nanchang University and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lu Shen
- The First Affiliated Hospital of Nanchang University and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hanchi Zhang
- The First Affiliated Hospital of Nanchang University and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
- The Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Zhili Liu
- The First Affiliated Hospital of Nanchang University and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
- HuanKui Academy, Nanchang University, Nanchang, China
| | - Zhirong Rao
- The First Affiliated Hospital of Nanchang University and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
- HuanKui Academy, Nanchang University, Nanchang, China
| | - Xiaomin Yu
- The First Affiliated Hospital of Nanchang University and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanli Cao
- The First Affiliated Hospital of Nanchang University and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lingbing Zeng
- The First Affiliated Hospital of Nanchang University and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
- The First Affiliated Hospital of Nanchang University, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaotian Huang
- The First Affiliated Hospital of Nanchang University and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Veth TS, Nouwen LV, Zwaagstra M, Lyoo H, Wierenga KA, Westendorp B, Altelaar MAFM, Berkers C, van Kuppeveld FJM, Heck AJR. Assessment of Kinome-Wide Activity Remodeling upon Picornavirus Infection. Mol Cell Proteomics 2024; 23:100757. [PMID: 38556169 PMCID: PMC11067349 DOI: 10.1016/j.mcpro.2024.100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/16/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
Picornaviridae represent a large family of single-stranded positive RNA viruses of which different members can infect both humans and animals. These include the enteroviruses (e.g., poliovirus, coxsackievirus, and rhinoviruses) as well as the cardioviruses (e.g., encephalomyocarditis virus). Picornaviruses have evolved to interact with, use, and/or evade cellular host systems to create the optimal environment for replication and spreading. It is known that viruses modify kinase activity during infection, but a proteome-wide overview of the (de)regulation of cellular kinases during picornavirus infection is lacking. To study the kinase activity landscape during picornavirus infection, we here applied dedicated targeted mass spectrometry-based assays covering ∼40% of the human kinome. Our data show that upon infection, kinases of the MAPK pathways become activated (e.g., ERK1/2, RSK1/2, JNK1/2/3, and p38), while kinases involved in regulating the cell cycle (e.g., CDK1/2, GWL, and DYRK3) become inactivated. Additionally, we observed the activation of CHK2, an important kinase involved in the DNA damage response. Using pharmacological kinase inhibitors, we demonstrate that several of these activated kinases are essential for the replication of encephalomyocarditis virus. Altogether, the data provide a quantitative understanding of the regulation of kinome activity induced by picornavirus infection, providing a resource important for developing novel antiviral therapeutic interventions.
Collapse
Affiliation(s)
- Tim S Veth
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Lonneke V Nouwen
- Faculty of Veterinary Medicine, Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Marleen Zwaagstra
- Faculty of Veterinary Medicine, Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Heyrhyoung Lyoo
- Faculty of Veterinary Medicine, Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Kathryn A Wierenga
- Faculty of Veterinary Medicine, Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Bart Westendorp
- Faculty of Veterinary Medicine, Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Maarten A F M Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Celia Berkers
- Faculty of Veterinary Medicine, Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Frank J M van Kuppeveld
- Faculty of Veterinary Medicine, Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Zhang C, Zhang Y, Li Y, Lu J, Xiong S, Yue Y. Exosome-based delivery of VP1 protein conferred enhanced resistance of mice to CVB3-induced viral myocarditis. Virology 2023; 579:46-53. [PMID: 36603532 DOI: 10.1016/j.virol.2022.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023]
Abstract
Coxsackievirus B3 (CVB3) is an important cause of viral myocarditis with no vaccine available in clinic. Herein we constructed an exosome-based anti-CVB3 vaccine (Exo-VP1), and compared its immunogenicity and immunoprotection with our previously reported recombinant VP1 protein (rVP1) vaccine. We found that compared with the 25 μg rVP1 vaccine, Exo-VP1 vaccine containing only 2 μg VP1 protein induced much stronger CVB3-specific T cell proliferation and CTL responses (with an increase of more than 70% and 40% respectively), and elicited greater splenic Th1/CTL associated cytokines (IFN-γ, TNF-α and IL-12). Furthermore, higher IgG levels with increased neutralizing titers and avidity were also evidenced in Exo-VP1 group. Consistently, Exo-VP1 group exhibited enhanced resistance to viral myocarditis than rVP1 vaccine, reflected by reduced cardiac viral loads, improved myocardial inflammation and an increased survival rate. Collectively, we reported that Exo-VP1 might present a more potent CVB3 vaccine candidate than rVP1 vaccine.
Collapse
Affiliation(s)
- Changwei Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yu Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yuanyu Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Juan Lu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.
| | - Yan Yue
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
5
|
Zhang Y, Xu T, Tian H, Wu J, Yu X, Zeng L, Liu F, Liu Q, Huang X. Coxsackievirus Group B3 Has Oncolytic Activity against Colon Cancer through Gasdermin E-Mediated Pyroptosis. Cancers (Basel) 2022; 14:cancers14246206. [PMID: 36551691 PMCID: PMC9776948 DOI: 10.3390/cancers14246206] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Colon cancer is the second leading cause of cancer-related death, and there are few effective therapies for colon cancer. This study explored the use of coxsackievirus group B3 (CVB3) as an oncolytic virus for the treatment of colon cancer. In this study, we verified that CVB3 induces death of colon cancer cell lines by directly observing cell morphology and Western blot results, and observed the oncolytic effects of CVB3 by constructing an immunodeficient nude mice model. Our data show that CVB3 induces pyroptosis in colon cancer cell lines. Mechanistically, we demonstrated that CVB3 causes cleavage of gasdermin E (GSDME), but not gasdermin D (GSDMD), by activating caspase-3. This leads to production of GSDME N-termini and the development of pores in the plasma membrane, inducing pyroptosis of colon cancer cell lines. We also demonstrate that CVB3-induced pyroptosis is promoted by reactive oxygen species (ROS). Finally, in vivo studies using immunodeficient nude mice revealed that intratumoral injection of CVB3 led to significant tumor regression. Our findings indicate that CVB3 has oncolytic activity in colon cancer cell lines via GSDME-mediated pyroptosis.
Collapse
Affiliation(s)
- Yejia Zhang
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Tian Xu
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Huizhen Tian
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Jianfeng Wu
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Xiaomin Yu
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Lingbing Zeng
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Fadi Liu
- The Department of Clinical Laboratory, Children’s Hospital of Jiangxi Province, Nanchang 330006, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- Correspondence: (Q.L.); (X.H.)
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- Correspondence: (Q.L.); (X.H.)
| |
Collapse
|
6
|
Ortiz-Álvarez G, Fortoul A, Srivastava A, Moreau MX, Bouloudi B, Mailhes-Hamon C, Delgehyr N, Faucourt M, Bahin M, Blugeon C, Breau M, Géli V, Causeret F, Meunier A, Spassky N. p53/p21 pathway activation contributes to the ependymal fate decision downstream of GemC1. Cell Rep 2022; 41:111810. [PMID: 36516767 DOI: 10.1016/j.celrep.2022.111810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/08/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Multiciliated ependymal cells and adult neural stem cells are components of the adult neurogenic niche, essential for brain homeostasis. These cells share a common glial cell lineage regulated by the Geminin family members Geminin and GemC1/Mcidas. Ependymal precursors require GemC1/Mcidas expression to massively amplify centrioles and become multiciliated cells. Here, we show that GemC1-dependent differentiation is initiated in actively cycling radial glial cells, in which a DNA damage response, including DNA replication-associated damage and dysfunctional telomeres, is induced, without affecting cell survival. Genotoxic stress is not sufficient by itself to induce ependymal cell differentiation, although the absence of p53 or p21 in progenitors hinders differentiation by maintaining cell division. Activation of the p53-p21 pathway downstream of GemC1 leads to cell-cycle slowdown/arrest, which permits timely onset of ependymal cell differentiation in progenitor cells.
Collapse
Affiliation(s)
- Gonzalo Ortiz-Álvarez
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Aurélien Fortoul
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Ayush Srivastava
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Matthieu X Moreau
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Benoît Bouloudi
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Caroline Mailhes-Hamon
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Nathalie Delgehyr
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Marion Faucourt
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Mathieu Bahin
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Corinne Blugeon
- Genomics Core Facility, Institut de Biologie de l'ENS (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Marielle Breau
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (Équipe Labellisée) Marseille, 13009 Marseille, France
| | - Vincent Géli
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (Équipe Labellisée) Marseille, 13009 Marseille, France
| | - Frédéric Causeret
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Alice Meunier
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Nathalie Spassky
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France.
| |
Collapse
|
7
|
Yang H, Jiang P, Xiao P, Zhou H. Bone Marrow Mesenchymal Stem Cells Modified with microRNA-216a-5p Enhance Proliferation of Acinar Cells in Severe Acute Pancreatitis. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study assesses the effect of bone marrow mesenchymal stem cells (BMSC) modified with miR-216a-5p on acinar cell proliferation in SAP. 40 rats were equally assigned into miR-NC set, miR-216a-5p set, BMSC set and anti-miR-216a-5p set randomly. The SAP model was prepared using AR42J
cells which were disposed with CAE. Cells were transfected with lipidosome method to meaure miR-216-5p by RT-PCR, cell proliferation by CCK-8 along with analysis of cell clone formation and apoptosis. miR-216a-5p in modified BMSC was significantly upregulated compared with BMSC, indicating
that BMSC was modified with miR-216a-5p successfully. BMSC modified with miR-216a-5p significantly promoted cell proliferation and clone formation and decreased apoptosis. The luciferase activity in wild type of miR-216a-5p was reduced, indicating that miR-216-5p could target Pak2 gene. In
conclusion, proliferation of acinar cells in SAP is prompted and apoptosis ise reduced by BMSC modified with miR-216a-5p, which is possibly through targeting PAK2 gene.
Collapse
Affiliation(s)
- Hongxiu Yang
- Department of Critical Medicine, Brain Hospital of Hunan Province, Changsha, Hunan, 410007, China
| | - Peng Jiang
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan, 410007, China
| | - Pengfei Xiao
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan, 410007, China
| | - Huiyu Zhou
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan, 410007, China
| |
Collapse
|
8
|
Xiao Z, He F, Feng M, Liu Z, Liu Z, Li S, Wang W, Yao H, Wu J. Engineered coxsackievirus B3 containing multiple organ-specific miRNA targets showed attenuated viral tropism and protective immunity. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 103:105316. [PMID: 35718333 DOI: 10.1016/j.meegid.2022.105316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/07/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Coxsackievirus B3 (CVB3) can cause viral myocarditis, pancreatitis, and aseptic meningitis. This study aimed to construct an engineered CVB3 harboring three different tissue-specific miRNA targets (CVB3-miR3*T) to decrease the virulence of CVB3 in muscles, pancreas, and brain. CVB3-miR3*T and CVB3-miR-CON (containing three sequences not found in the human genome) were engineered and replicated in HELA cells. A viral plaque assay was used to determine the titers in HELA cells and TE671 cells (high miRNA-206 expression), MIN-6 cells (high miRNA-29a-3p expression), and mouse astrocytes (high miRNA-124-3p expression). We found that engineered CVB3 showed attenuated replication and reduced cytotoxicity, the variability of each type of cell was also increased in the CVB3-miR3*T group. Male BALB/c mice were infected to determine the LD50 and examine heart, pancreas, and brain titers and injury. Viral replication of the engineered viruses was restricted in infected mouse heart, pancreas, and brain, and viral plaques were about 100 fold lower compared with the control group. Mice immunized using CVB3-miR3*T, UV-inactivated CVB3-WT, and CVB3-miR-CON were infected with 100 × LD50 of CVB3-WT to determine neutralization. CVB3-miRT*3-preimmunized mice exhibited complete protection and remained alive after lethal virus infection, while only 5/15 were alive in the UV-inactivated mice, and all 15 mice were dead in the PBS-immunized group. The results demonstrate that miR-206-, miRNA-29a-3p-, and miRNA-124-3p-mediated CVB3 detargeting from the pancreas, heart, and brain might be a highly effective strategy for viral vaccine development.
Collapse
Affiliation(s)
- Zonghui Xiao
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Feng He
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Miao Feng
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Zhuo Liu
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Zhewei Liu
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Sen Li
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Wei Wang
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Hailan Yao
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China.
| | - Jianxin Wu
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China; Beijing Municipal Key Laboratory of Child Development and Nutriomics, Beijing, China; Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|