1
|
Mendu C, Rashid SA, Nur Atirah Wan Mohd Azemin WS, Philip N. Current antibiotics for leptospirosis: Are still effective? Heliyon 2025; 11:e41239. [PMID: 39802004 PMCID: PMC11720912 DOI: 10.1016/j.heliyon.2024.e41239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/02/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Leptospirosis is a recurring zoonotic disease of global significance. Leptospirosis is curable, and antibiotics are available for its treatment. However, little is known about the effectiveness of the currently used antibiotics against different Leptospira species, serovars, and strains. This review aimed to give insight into the anti-leptospiral activities of the currently available antibiotics towards Leptospira strains and their effectiveness in treating and preventing leptospirosis. Anti-leptospiral activities from natural resources were also reviewed. The literature search was conducted using several databases. The majority of Leptospira strains were sensitive to the current antibiotics. Antibiotics can accelerate the defervescence and reduced the occurrence of leptospirosis cases, nevertheless, there is no affirmative evidence on the beneficial effects of the antibiotics compared to placebo in preventing death. Adverse reactions like Jarisch-Herxheimer reactions (JHR) in patients treated with the current antibiotics were also reported. Plants, marine actinobacteria and propolis are shown as potential sources of new anti-leptospiral compounds. Although leptospirosis can still be adequately treated with current antibiotics, continuous susceptibility testing and the development of novel antibiotics especially from natural resources are highly encouraged.
Collapse
Affiliation(s)
- Celyne Mendu
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Syarifah Ab Rashid
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | | | - Noraini Philip
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
2
|
Imelio JA, Trajtenberg F, Mondino S, Zarantonelli L, Vitrenko I, Lemée L, Cokelaer T, Picardeau M, Buschiazzo A. Signal-sensing triggers the shutdown of HemKR, regulating heme and iron metabolism in the spirochete Leptospira biflexa. PLoS One 2024; 19:e0311040. [PMID: 39325783 PMCID: PMC11426443 DOI: 10.1371/journal.pone.0311040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Heme and iron metabolic pathways are highly intertwined, both compounds being essential for key biological processes, yet becoming toxic if overabundant. Their concentrations are exquisitely regulated, including via dedicated two-component systems (TCSs) that sense signals and regulate adaptive responses. HemKR is a TCS present in both saprophytic and pathogenic Leptospira species, involved in the control of heme metabolism. However, the molecular means by which HemKR is switched on/off in a signal-dependent way, are still unknown. Moreover, a comprehensive list of HemKR-regulated genes, potentially overlapped with iron-responsive targets, is also missing. Using the saprophytic species Leptospira biflexa as a model, we now show that 5-aminolevulinic acid (ALA) triggers the shutdown of the HemKR pathway in live cells, and does so by stimulating the phosphatase activity of HemK towards phosphorylated HemR. Phospho~HemR dephosphorylation leads to differential expression of multiple genes, including of heme metabolism and transport systems. Besides the heme-biosynthetic genes hemA and the catabolic hmuO, which we had previously reported as phospho~HemR targets, we now extend the regulon identifying additional genes. Finally, we discover that HemR inactivation brings about an iron-deficit tolerant phenotype, synergistically with iron-responsive signaling systems. Future studies with pathogenic Leptospira will be able to confirm whether such tolerance to iron deprivation is conserved among Leptospira spp., in which case HemKR could play a vital role during infection where available iron is scarce. In sum, HemKR responds to abundance of porphyrin metabolites by shutting down and controlling heme homeostasis, while also contributing to integrate the regulation of heme and iron metabolism in the L. biflexa spirochete model.
Collapse
Affiliation(s)
- Juan Andrés Imelio
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Felipe Trajtenberg
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Sonia Mondino
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Iakov Vitrenko
- Plateforme Technologique Biomics, C2RT, Institut Pasteur, Université Paris Cité, Paris, France
| | - Laure Lemée
- Plateforme Technologique Biomics, C2RT, Institut Pasteur, Université Paris Cité, Paris, France
| | - Thomas Cokelaer
- Plateforme Technologique Biomics, C2RT, Institut Pasteur, Université Paris Cité, Paris, France
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Paris, France
| | - Mathieu Picardeau
- Biology of Spirochetes Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Alejandro Buschiazzo
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Dept of Microbiology, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
3
|
Kandari D, Joshi H. PerR: A Peroxide Sensor Eliciting Metal Ion-dependent Regulation in Various Bacteria. Mol Biotechnol 2024:10.1007/s12033-024-01266-8. [PMID: 39294512 DOI: 10.1007/s12033-024-01266-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/20/2024] [Indexed: 09/20/2024]
Abstract
Bacteria have to thrive in difficult conditions wherein their competitors generate partially reduced forms of oxygen, like hydrogen peroxide and superoxides. These oxidative stress molecules can also arise from within via the autoxidation of redox enzymes. To adapt to such conditions, bacteria express detox enzymes as well as repair proteins. Transcription factors regulate these defenses, and PerR is one of them. PerR is a Fur family transcriptional regulator that senses peroxide stress. Metal-bound PerR (either Mn2+ or Fe2+) can repress transcription of its regulon, but only the Fe2+-bound form of PerR can sense H2O2. This review describes different aspects of PerR and its varied roles, specifically in bacterial pathogens. Despite having roles beyond sensing peroxides, it is an underrated regulator that needs to be explored more deeply in pathogens.
Collapse
Affiliation(s)
- Divya Kandari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
- Division of Experimental Medicine, University of California, San Francisco, CA, 94107, USA.
| |
Collapse
|
4
|
Bettin EB, Grassmann AA, Dellagostin OA, Gogarten JP, Caimano MJ. Leptospira interrogans encodes a canonical BamA and three novel noNterm Omp85 outer membrane protein paralogs. Sci Rep 2024; 14:19958. [PMID: 39198480 PMCID: PMC11358297 DOI: 10.1038/s41598-024-67772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/15/2024] [Indexed: 09/01/2024] Open
Abstract
The Omp85 family of outer membrane proteins are ubiquitously distributed among diderm bacteria and play essential roles in outer membrane (OM) biogenesis. The majority of Omp85 orthologs are bipartite and consist of a conserved OM-embedded 16-stranded beta-barrel and variable periplasmic functional domains. Here, we demonstrate that Leptospira interrogans encodes four distinct Omp85 proteins. The presumptive leptospiral BamA, LIC11623, contains a noncanonical POTRA4 periplasmic domain that is conserved across Leptospiraceae. The remaining three leptospiral Omp85 proteins, LIC12252, LIC12254 and LIC12258, contain conserved beta-barrels but lack periplasmic domains. Two of the three 'noNterm' Omp85-like proteins were upregulated by leptospires in urine from infected mice compared to in vitro and/or following cultivation within rat peritoneal cavities. Mice infected with a L. interrogans lic11254 transposon mutant shed tenfold fewer leptospires in their urine compared to mice infected with the wild-type parent. Analyses of pathogenic and saprophytic Leptospira spp. identified five groups of noNterm Omp85 paralogs, including one pathogen- and two saprophyte-specific groups. Expanding our analysis beyond Leptospira spp., we identified additional noNterm Omp85 orthologs in bacteria isolated from diverse environments, suggesting a potential role for these previously unrecognized noNterm Omp85 proteins in physiological adaptation to harsh conditions.
Collapse
Affiliation(s)
- Everton B Bettin
- Department of Medicine, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030-3715, USA
| | - André A Grassmann
- Department of Medicine, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030-3715, USA
| | - Odir A Dellagostin
- Biotechnology Unit, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Johann Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Melissa J Caimano
- Department of Medicine, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030-3715, USA.
- Department of Pediatrics, University of Connecticut Health, Farmington, CT, USA.
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
5
|
Tantiapibalkun Y, Nuchpun S, Mekseriwattana W, Limsampan S, Doungchawee G, Jangpatarapongsa K, Srikhirin T, Katewongsa KP. Quantum dots as a fluorescent labeling tool for live-cell imaging of Leptospira. NANOSCALE 2024; 16:13677-13686. [PMID: 38967236 DOI: 10.1039/d4nr00543k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Leptospirosis is a global public health problem caused by Gram-negative pathogenic bacteria belonging to the genus Leptospira. The disease is transmitted through the urine of infected animals, which contaminates water and soil, leading to the infection of other animals and humans. Currently, several approaches exist to detect these bacteria; however, a new sensitive method for the live-cell imaging of Leptospira is required. In this study, we report the green synthesis of cadmium telluride quantum dots (CdTe QDs) which are unique fluorescent nanocrystals with a high fluorescence quantum yield capable of modifying cell surfaces and are biocompatible with cells. The fabrication of QDs with concanavalin A (ConA), a carbohydrate-binding lectin and known biological probe for Gram-negative bacteria, produced ConA-QDs which can effectively bind on Leptospira and exhibit strong fluorescence under simple fluorescence microscopy, allowing the live-cell imaging of the bacteria. Overall, we performed the simple synthesis of ConA-QDs and demonstrated their potential use as versatile fluorescent probes for the live-cell imaging of Leptospira. This technique could be further applied to track leptospiral cells and study the infection mechanism, contributing to a more thorough understanding of leptospirosis and how to control it in the future.
Collapse
Affiliation(s)
| | - Sopon Nuchpun
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Wid Mekseriwattana
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sukhonta Limsampan
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Galayanee Doungchawee
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Kulachart Jangpatarapongsa
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Toemsak Srikhirin
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Kanlaya Prapainop Katewongsa
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
6
|
Kosaruk W, Brown JL, Towiboon P, Pringproa K, Punyapornwithaya V, Tankaew P, Kittisirikul N, Toonrongchang W, Janyamathakul T, Muanghong P, Thitaram C. Seasonal patterns of oxidative stress markers in captive Asian elephants in Thailand and relationships to elephant endotheliotropic herpesvirus shedding. Front Vet Sci 2023; 10:1263775. [PMID: 37795017 PMCID: PMC10546319 DOI: 10.3389/fvets.2023.1263775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/06/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction Oxidative stress refers to an imbalance between oxidant and antioxidant activity and accumulation of reactive oxygen species, which can have detrimental effects on animal health. Annual fluctuations in oxidative stress status can occur, increasing disease susceptibility during certain time periods. However, a full understanding of factors related to oxidative stress in Asian elephants and how to mitigate the negative consequences is lacking. Methods This study measured six serum oxidative stress markers [reactive oxygen species (ROS), malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), albumin, glutathione peroxidase (GPx), and catalase] and two stress markers [serum cortisol and fecal glucocorticoid metabolites (fGCM)] in 23 captive Asian elephants in Thailand over a 12 months period to examine relationships with age and season. Results Seasonal variations were observed, with several markers exhibiting significantly higher concentrations in the summer (ROS, MDA, 8-OHdG, albumin) and lower values during the rainy/winter seasons (MDA, 8-OHdG, albumin, catalase). By contrast, GPx was the only marker to be highest during the rainy season. For the stress markers, higher fGCM concentrations were noted during the rainy season, which contrasts with earlier studies showing more activity in the winter (tourist season). Positive correlations were found between the temperature-humidity index and ROS, GPx, and fGCM, while a negative correlation was observed with serum albumin. Elephant endotheliotropic herpesvirus (EEHV) shedding events were associated with higher concentrations of ROS and MDA. A moderate negative correlation was observed between 8-OHdG and the PCR threshold cycle of EEHV shedding (Ct), indicating DNA damage may be involved in EEHV shedding in elephants. Discussion Results revealed significant age and seasonal effects on several oxidative stress markers, indicating those factors should be considered in study design and data interpretation. There also may be physiological adaptations in oxidative stress conditions in relation to environmental changes that could impact health outcomes.
Collapse
Affiliation(s)
- Worapong Kosaruk
- Doctoral Degree Program in Veterinary Science, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Elephant and Wildlife Health, Chiang Mai University Animal Hospital, Chiang Mai, Thailand
- Elephant, Wildlife, and Companion Animals Research Group, Chiang Mai University, Chiang Mai, Thailand
| | - Janine L. Brown
- Center of Elephant and Wildlife Health, Chiang Mai University Animal Hospital, Chiang Mai, Thailand
- Elephant, Wildlife, and Companion Animals Research Group, Chiang Mai University, Chiang Mai, Thailand
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, VA, United States
| | - Patcharapa Towiboon
- Center of Elephant and Wildlife Health, Chiang Mai University Animal Hospital, Chiang Mai, Thailand
| | - Kidsadagon Pringproa
- Center of Elephant and Wildlife Health, Chiang Mai University Animal Hospital, Chiang Mai, Thailand
- Elephant, Wildlife, and Companion Animals Research Group, Chiang Mai University, Chiang Mai, Thailand
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Veerasak Punyapornwithaya
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pallop Tankaew
- Central Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Narueporn Kittisirikul
- Elephant Hospital, National Elephant Institute, Forest Industry Organization, Lampang, Thailand
| | | | | | | | - Chatchote Thitaram
- Center of Elephant and Wildlife Health, Chiang Mai University Animal Hospital, Chiang Mai, Thailand
- Elephant, Wildlife, and Companion Animals Research Group, Chiang Mai University, Chiang Mai, Thailand
- Department of Companion Animal and Wildlife Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
7
|
Huete SG, Benaroudj N. The Arsenal of Leptospira Species against Oxidants. Antioxidants (Basel) 2023; 12:1273. [PMID: 37372003 DOI: 10.3390/antiox12061273] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Reactive oxygen species (ROS) are byproducts of oxygen metabolism produced by virtually all organisms living in an oxic environment. ROS are also produced by phagocytic cells in response to microorganism invasion. These highly reactive molecules can damage cellular constituents (proteins, DNA, and lipids) and exhibit antimicrobial activities when present in sufficient amount. Consequently, microorganisms have evolved defense mechanisms to counteract ROS-induced oxidative damage. Leptospira are diderm bacteria form the Spirochaetes phylum. This genus is diverse, encompassing both free-living non-pathogenic bacteria as well as pathogenic species responsible for leptospirosis, a widespread zoonotic disease. All leptospires are exposed to ROS in the environment, but only pathogenic species are well-equipped to sustain the oxidative stress encountered inside their hosts during infection. Importantly, this ability plays a pivotal role in Leptospira virulence. In this review, we describe the ROS encountered by Leptospira in their different ecological niches and outline the repertoire of defense mechanisms identified so far in these bacteria to scavenge deadly ROS. We also review the mechanisms controlling the expression of these antioxidants systems and recent advances in understanding the contribution of Peroxide Stress Regulators in Leptospira adaptation to oxidative stress.
Collapse
Affiliation(s)
- Samuel G Huete
- Institut Pasteur, Université Paris Cité, Biologie des Spirochètes, CNRS UMR 6047, F-75015 Paris, France
| | - Nadia Benaroudj
- Institut Pasteur, Université Paris Cité, Biologie des Spirochètes, CNRS UMR 6047, F-75015 Paris, France
| |
Collapse
|
8
|
Cheah HL, Ahmed SA, Tang TH. Transcription start site mapping and small RNA profiling of Leptospira biflexa serovar Patoc. World J Microbiol Biotechnol 2023; 39:104. [PMID: 36808011 DOI: 10.1007/s11274-023-03540-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/03/2023] [Indexed: 02/23/2023]
Abstract
Leptospirosis is an emerging zoonotic disease caused by bacterial species of the genus Leptospira. However, the regulatory mechanisms and pathways underlying the adaptation of pathogenic and non-pathogenic Leptospira spp. in different environmental conditions remain elusive. Leptospira biflexa is a non-pathogenic species of Leptospira that lives exclusively in a natural environment. It is an ideal model not only for exploring molecular mechanisms underlying the environmental survival of Leptospira species but also for identifying virulence factors unique to Leptospira's pathogenic species. In this study, we aim to establish the transcription start site (TSS) landscape and the small RNA (sRNA) profile of L. biflexa serovar Patoc grown to exponential and stationary phases via differential RNA-seq (dRNA-seq) and small RNA-seq (sRNA-seq) analyses, respectively. Our dRNA-seq analysis uncovered a total of 2726 TSSs, which are also used to identify other elements, e.g., promoter and untranslated regions (UTRs). Besides, our sRNA-seq analysis revealed a total of 603 sRNA candidates, comprising 16 promoter-associated sRNAs, 184 5'UTR-derived sRNAs, 230 true intergenic sRNAs, 136 5'UTR-antisense sRNAs, and 130 open reading frame (ORF)-antisense sRNAs. In summary, these findings reflect the transcriptional complexity of L. biflexa serovar Patoc under different growth conditions and help to facilitate our understanding of regulatory networks in L. biflexa. To the best of our knowledge, this is the first study reporting the TSS landscape of L. biflexa. The TSS and sRNA landscapes of L. biflexa can also be compared with its pathogenic counterparts, e.g., L. borgpetersenii and L. interrogans, to identify features contributing to their environmental survival and virulence.
Collapse
Affiliation(s)
- Hong-Leong Cheah
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Siti Aminah Ahmed
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Thean-Hock Tang
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| |
Collapse
|
9
|
In Silico Approach Gives Insights into Ig-like Fold Containing Proteins in Vibrio parahaemolyticus: A Focus on the Fibrillar Adhesins. Toxins (Basel) 2022; 14:toxins14020133. [PMID: 35202160 PMCID: PMC8877628 DOI: 10.3390/toxins14020133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/10/2022] Open
Abstract
Immunoglobulin-like (Ig-like) fold domains are abundant on the surface of bacteria, where they are required for cell-to-cell recognition, adhesion, biofilm formation, and conjugative transfer. Fibrillar adhesins are proteins with Ig-like fold(s) that have filamentous structures at the cell surface, being thinner and more flexible than pili. While the roles of fibrillar adhesins have been proposed in bacteria overall, their characterization in Vibrio parahaemolyticus has not been established and, therefore, understanding about fibrillar adhesins remain limited in V. parahaemolyticus. This in silico analysis can aid in the systematic identification of Ig-like-folded and fibrillar adhesin-like proteins in V. parahaemolyticus, opening new avenues for disease prevention by interfering in microbial interaction between V. parahaemolyticus and the host.
Collapse
|
10
|
Grassmann AA, Zavala-Alvarado C, Bettin EB, Picardeau M, Benaroudj N, Caimano MJ. The FUR-like regulators PerRA and PerRB integrate a complex regulatory network that promotes mammalian host-adaptation and virulence of Leptospira interrogans. PLoS Pathog 2021; 17:e1009078. [PMID: 34855918 PMCID: PMC8638967 DOI: 10.1371/journal.ppat.1009078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/18/2021] [Indexed: 11/18/2022] Open
Abstract
Leptospira interrogans, the causative agent of most cases of human leptospirosis, must respond to myriad environmental signals during its free-living and pathogenic lifestyles. Previously, we compared L. interrogans cultivated in vitro and in vivo using a dialysis membrane chamber (DMC) peritoneal implant model. From these studies emerged the importance of genes encoding the Peroxide responsive regulators PerRA and PerRB. First described in in Bacillus subtilis, PerRs are widespread in Gram-negative and -positive bacteria, where regulate the expression of gene products involved in detoxification of reactive oxygen species and virulence. Using perRA and perRB single and double mutants, we establish that L. interrogans requires at least one functional PerR for infectivity and renal colonization in a reservoir host. Our finding that the perRA/B double mutant survives at wild-type levels in DMCs is noteworthy as it demonstrates that the loss of virulence is not due to a metabolic lesion (i.e., metal starvation) but instead reflects dysregulation of virulence-related gene products. Comparative RNA-Seq analyses of perRA, perRB and perRA/B mutants cultivated within DMCs identified 106 genes that are dysregulated in the double mutant, including ligA, ligB and lvrA/B sensory histidine kinases. Decreased expression of LigA and LigB in the perRA/B mutant was not due to loss of LvrAB signaling. The majority of genes in the perRA and perRB single and double mutant DMC regulons were differentially expressed only in vivo, highlighting the importance of host signals for regulating gene expression in L. interrogans. Importantly, the PerRA, PerRB and PerRA/B DMC regulons each contain multiple genes related to environmental sensing and/or transcriptional regulation. Collectively, our data suggest that PerRA and PerRB are part of a complex regulatory network that promotes host adaptation by L. interrogans within mammals.
Collapse
Affiliation(s)
- André A. Grassmann
- Department of Medicine, University of Connecticut Health, Farmington, Connecticut, United States of America
| | - Crispin Zavala-Alvarado
- Unité de Biologie des Spirochètes, Department of Microbiology, Institut Pasteur, Paris, France
- Université de Paris, Sorbonne Paris Cité, Communauté d’universités et d’établissements (COMUE), Bio Sorbonne Paris Cité (BioSPC), Paris, France
| | - Everton B. Bettin
- Department of Medicine, University of Connecticut Health, Farmington, Connecticut, United States of America
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sol, Brazil
| | - Mathieu Picardeau
- Unité de Biologie des Spirochètes, Department of Microbiology, Institut Pasteur, Paris, France
| | - Nadia Benaroudj
- Unité de Biologie des Spirochètes, Department of Microbiology, Institut Pasteur, Paris, France
| | - Melissa J. Caimano
- Department of Medicine, University of Connecticut Health, Farmington, Connecticut, United States of America
- Department of Pediatrics, University of Connecticut Health, Farmington, Connecticut, United States of America
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut, United States of America
| |
Collapse
|