1
|
Coffman JA. Enteroviruses Activate Cellular Innate Immune Responses Prior to Adaptive Immunity and Tropism Contributes to Severe Viral Pathogenesis. Microorganisms 2025; 13:870. [PMID: 40284705 PMCID: PMC12029620 DOI: 10.3390/microorganisms13040870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/26/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Numerous innate immune mechanisms have been shown to be activated during viral infections, including pattern recognition receptors (PRRs) functioning outside and inside the cell along with other sensors promoting the production of interferon and other cytokines. Innate cells, including NK cells, NKT cells, γδ T cells, dendritic cells, macrophages, and even neutrophils, have been shown to respond to viral infections. Several innate humoral responses to viral infections have also been identified. Adaptive immunity includes common cell-mediated immunity (CMI) and humoral responses. Th1, Th2, and Tfh CD4+ T cell responses have been shown to help activate cytotoxic T lymphocytes (CTLs) and to help promote the class switching of antiviral antibodies. Enteroviruses were shown to induce innate immune responses and the tropism of the virus that was mediated through viral attachment proteins (VAPs) and cellular receptors was directly related to the risk of severe disease in a primary infection. Adaptive immune responses include cellular and humoral immunity, and its delay in primary infections underscores the importance of vaccination in ameliorating or preventing severe viral pathogenesis.
Collapse
Affiliation(s)
- Jonathan A Coffman
- School of Pharmacy, American University of Health Sciences, Signal Hill, CA 90755, USA
| |
Collapse
|
2
|
Chio CC, Chien JC, Chan HW, Huang HI. Overview of the Trending Enteric Viruses and Their Pathogenesis in Intestinal Epithelial Cell Infection. Biomedicines 2024; 12:2773. [PMID: 39767680 PMCID: PMC11672972 DOI: 10.3390/biomedicines12122773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/08/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Enteric virus infection is a major public health issue worldwide. Enteric viruses have become epidemic infectious diseases in several countries. Enteric viruses primarily infect the gastrointestinal tract and complete their life cycle in intestinal epithelial cells. These viruses are transmitted via the fecal-oral route through contaminated food, water, or person to person and cause similar common symptoms, including vomiting, abdominal pain, and diarrhea. Diarrheal disease is the third leading cause of death in children under five years of age, accounting for approximately 1.7 billion cases and 443,832 deaths annually in this age group. Additionally, some enteric viruses can invade other tissues, leading to severe conditions and even death. The pathogenic mechanisms of enteric viruses are also unclear. In this review, we organized the research on trending enteric virus infections, including rotavirus, norovirus, adenovirus, Enterovirus-A71, Coxsackievirus A6, and Echovirus 11. Furthermore, we discuss the gastrointestinal effects and pathogenic mechanisms of SARS-CoV-2 in intestinal epithelial cells, given the gastrointestinal symptoms observed during the COVID-19 pandemic. We conducted a literature review on their pathogenic mechanisms, which serves as a guide for formulating future treatment strategies for enteric virus infections.
Collapse
Affiliation(s)
- Chi-Chong Chio
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (C.-C.C.); (J.-C.C.); (H.-W.C.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Jou-Chun Chien
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (C.-C.C.); (J.-C.C.); (H.-W.C.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Hio-Wai Chan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (C.-C.C.); (J.-C.C.); (H.-W.C.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Hsing-I Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (C.-C.C.); (J.-C.C.); (H.-W.C.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Kwei-Shan, Taoyuan 33305, Taiwan
| |
Collapse
|
3
|
Luo W, Wang L, Chen Z, Liu M, Zhao Y, Wu Y, Huang B, Wang P. Pathoimmunological analyses of fatal E11 infection in premature infants. Front Cell Infect Microbiol 2024; 14:1391824. [PMID: 39045132 PMCID: PMC11263194 DOI: 10.3389/fcimb.2024.1391824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024] Open
Abstract
E11 causes acute fulminant hepatitis in newborns. We investigated the pathological changes of different tissues from premature male twins who died due to E11 infection. The E11 expression level was higher in the liver than in other tissues. IP10 was upregulated in liver tissue in the patient group, and might be regulated by IFNAR and IRF7, whereas IFNα was regulated by IFNAR or IRF5.
Collapse
Affiliation(s)
- Wei Luo
- Department of Neonatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lixia Wang
- College of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Zhengrong Chen
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ming Liu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yixue Zhao
- Department of Neonatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yucan Wu
- Department of Neonatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bing Huang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Wang
- Department of Neonatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Wang C, Li J, Liu Y, Sun Q, Liu Z. Pathogenesis of enterovirus infection in central nervous system. BIOSAFETY AND HEALTH 2023; 5:233-239. [PMID: 40078226 PMCID: PMC11894963 DOI: 10.1016/j.bsheal.2023.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 03/14/2025] Open
Abstract
Enteroviruses (EVs) are classified into 15 species according to their sequence diversity. They include four human EV (A, B, C, and D) and three rhinoviruses (A, B, and C), and cause diseases in millions of people worldwide. Generally, individuals with enteroviral infections have mild clinical symptoms, including respiratory illness, vomiting, diarrhea, dizziness, and fever. More importantly, some members of the human EV family are neurotropic pathogens that may cause a wide range of clinical diseases, such as aseptic meningitis and encephalitis. Previously, the EV that caused the most severe neurotropic symptoms was poliovirus (PV), a member of the EV C group. Poliovirus has been eliminated in most countries through a global vaccination campaign. Non-PV EVs infect the central nervous system (CNS) and are the major EVs causing neurological diseases. These human non-PV EVs include EV A (e.g., EV-A71, CVA6, and CVA16), B (e.g., CVA9 and CVB3, CVB5, echovirus 11 [E11], E30, and E7), C (e.g., CVA24), and D (e.g., EV-D68). Here, we review the relationship between EV infection and CNS diseases and advance in the use of cellular receptors and host immune responses during viral infection.
Collapse
Affiliation(s)
- Congcong Wang
- Department of Medical Microbiology, Weifang Medical University, Weifang 261053, China
- National Polio Laboratory and WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jichen Li
- National Polio Laboratory and WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ying Liu
- National Polio Laboratory and WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Qiang Sun
- National Polio Laboratory and WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Zhijun Liu
- Department of Medical Microbiology, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
5
|
Liang Y, Chen J, Wang C, Yu B, Zhang Y, Liu Z. Investigating the mechanism of Echovirus 30 cell invasion. Front Microbiol 2023; 14:1174410. [PMID: 37485505 PMCID: PMC10359910 DOI: 10.3389/fmicb.2023.1174410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
Viruses invade susceptible cells through a complex mechanism before injecting their genetic material into them. This causes direct damage to the host cell, as well as resulting in disease in the corresponding system. Echovirus type 30 (E30) is a member of the Enterovirus B group and has recently been reported to cause central nervous system (CNS) disorders, leading to viral encephalitis and viral meningitis in children. In this review, we aim to help in improving the understanding of the mechanisms of CNS diseases caused by E30 for the subsequent development of relevant drugs and vaccines.
Collapse
Affiliation(s)
- Yucai Liang
- Department of Microbiology, Weifang Medical University, Weifang, China
| | - Junbing Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Gastrointestinal Cancer Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Congcong Wang
- Department of Microbiology, Weifang Medical University, Weifang, China
| | - Bowen Yu
- Department of Immunology, Weifang Medical University, Weifang, China
| | - Yong Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhijun Liu
- Department of Microbiology, Weifang Medical University, Weifang, China
| |
Collapse
|
6
|
Wang P, Xu Y, Liu M, Li H, Wang H, Liu Y, Wang B, Xia S, Su H, Wei M, Tao L, Chen X, Lu B, Gu X, Lyu H, Zhou W, Zhang H, Gong S. Risk factors and early markers for echovirus type 11 associated haemorrhage-hepatitis syndrome in neonates, a retrospective cohort study. Front Pediatr 2023; 11:1063558. [PMID: 37090924 PMCID: PMC10117901 DOI: 10.3389/fped.2023.1063558] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/14/2023] [Indexed: 04/25/2023] Open
Abstract
Background Echovirus type 11(E-11) can cause fatal haemorrhage-hepatitis syndrome in neonates. This study aims to investigate clinical risk factors and early markers of E-11 associated neonatal haemorrhage-hepatitis syndrome. Methods This is a multicentre retrospective cohort study of 105 neonates with E-11 infection in China. Patients with haemorrhage-hepatitis syndrome (the severe group) were compared with those with mild disease. Clinical risk factors and early markers of haemorrhage-hepatitis syndrome were analysed. In addition, cytokine analysis were performed in selective patients to explore the immune responses. Results In addition to prematurity, low birth weight, premature rupture of fetal membrane, total parenteral nutrition (PN) (OR, 28.7; 95% CI, 2.8-295.1) and partial PN (OR, 12.9; 95% CI, 2.2-77.5) prior to the onset of disease were identified as risk factors of developing haemorrhage-hepatitis syndrome. Progressive decrease in haemoglobin levels (per 10 g/L; OR, 1.5; 95% CI, 1.1-2.0) and platelet (PLT) < 140 × 10⁹/L at early stage of illness (OR, 17.7; 95% CI, 1.4-221.5) were associated with the development of haemorrhage-hepatitis syndrome. Immunological workup revealed significantly increased interferon-inducible protein-10(IP-10) (P < 0.0005) but decreased IFN-α (P < 0.05) in peripheral blood in severe patients compared with the mild cases. Conclusions PN may potentiate the development of E-11 associated haemorrhage-hepatitis syndrome. Early onset of thrombocytopenia and decreased haemoglobin could be helpful in early identification of neonates with the disease. The low level of IFN-α and elevated expression of IP-10 may promote the progression of haemorrhage-hepatitis syndrome.
Collapse
Affiliation(s)
- Ping Wang
- Division of Neonatology and Center for Newborn Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yi Xu
- Division of Infectious Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ming Liu
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huixian Li
- Data Center, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Hui Wang
- Division of Neonatology, Tongji Medical College, Maternal and Child Health Hospital of Hubei Province, Huazhong University of Science and Technology, Wuhan, China
| | - Yumei Liu
- Division of Neonatology, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Bin Wang
- Division of Neonatology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Shiwen Xia
- Division of Neonatology, Tongji Medical College, Maternal and Child Health Hospital of Hubei Province, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Su
- Division of Neonatology and Center for Newborn Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mou Wei
- Division of Neonatology and Center for Newborn Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Li Tao
- Division of Neonatology and Center for Newborn Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaowen Chen
- Division of Neonatology and Center for Newborn Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bingtai Lu
- Medical Research Center of Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaoqiong Gu
- Department of Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hui Lyu
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei Zhou
- Division of Neonatology and Center for Newborn Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huayan Zhang
- Division of Neonatology and Center for Newborn Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Division of Neonatology, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
| | - Sitang Gong
- Division of Gestroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Wang LC, Tsai HP, Chen SH, Wang SM. Therapeutics for fulminant hepatitis caused by enteroviruses in neonates. Front Pharmacol 2022; 13:1014823. [PMID: 36339581 PMCID: PMC9630557 DOI: 10.3389/fphar.2022.1014823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/04/2022] [Indexed: 01/01/2025] Open
Abstract
Neonatal infection with nonpolio enteroviruses (EVs) causes nonspecific febrile illnesses and even life-threatening multiorgan failure. Hepatitis, which often results in hepatic necrosis followed by disseminated intravascular coagulopathy, is one of the most severe and frequent fatal neonatal EV infection complications. Coxsackievirus B (CVB) 1-5 and many echoviruses have been most commonly identified. Neonatal EV infection treatment has usually involved initial supportive care. Studies for CVB and echovirus infection treatments were developed for more than thirty years. Intravenous immunoglobulin and pleconaril therapy was performed in some clinical trials. Additionally, other studies demonstrated antiviral and/or anti-inflammatory pathogenesis mechanisms of neonatal EV hepatitis in in vitro or in vivo models. These treatments represented promising options for the clinical practice of neonatal EV hepatitis. However, further investigation is needed to elucidate the whole therapeutic potential and safety problems.
Collapse
Affiliation(s)
- Li-Chiu Wang
- School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Huey-Pin Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shun-Hua Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Min Wang
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
8
|
Wells AI, Coyne CB. An In Vivo Model of Echovirus-Induced Meningitis Defines the Differential Roles of Type I and Type III Interferon Signaling in Central Nervous System Infection. J Virol 2022; 96:e0033022. [PMID: 35699446 PMCID: PMC9278148 DOI: 10.1128/jvi.00330-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
Echoviruses are among the most common worldwide causes of aseptic meningitis, which can cause long-term sequelae and death, particularly in neonates. However, the mechanisms by which these viruses induce meningeal inflammation are poorly understood, owing at least in part to the lack of in vivo models that recapitulate this aspect of echovirus pathogenesis. Here, we developed an in vivo neonatal mouse model that recapitulates key aspects of echovirus-induced meningitis. We show that expression of the human homologue of the primary echovirus receptor, the neonatal Fc receptor (FcRn), is not sufficient for infection of the brains of neonatal mice. However, ablation of type I, but not III, interferon (IFN) signaling in mice expressing human FcRn permitted high levels of echovirus replication in the brain, with corresponding clinical symptoms, including delayed motor skills and hind-limb weakness. Using this model, we defined the immunological response of the brain to echovirus infection and identified key cytokines, such as granulocyte colony-stimulating factor (G-CSF) and interleukin 6 (IL-6), that were induced by this infection. Lastly, we showed that echoviruses specifically replicate in the leptomeninges, where they induce profound inflammation and cell death. Together, this work establishes an in vivo model of aseptic meningitis associated with echovirus infections that delineates the differential roles of type I and type III IFNs in echovirus-associated neuronal disease and defines the specificity of echoviral infections within the meninges. IMPORTANCE Echoviruses are among the most common worldwide causes of aseptic meningitis, which can cause long-term sequelae or even death. The mechanisms by which echoviruses infect the brain are poorly understood, largely owing to the lack of robust in vivo models that recapitulate this aspect of echovirus pathogenesis. Here, we establish a neonatal mouse model of echovirus-induced aseptic meningitis and show that expression of the human homologue of the FcRn, the primary receptor for echoviruses, and ablation of type I IFN signaling are required to recapitulate echovirus-induced meningitis and clinical disease. These findings provide key insights into the host factors that control echovirus-induced meningitis and a model that could be used to test anti-echovirus therapeutics.
Collapse
Affiliation(s)
- Alexandra I. Wells
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Carolyn B. Coyne
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
9
|
Enterovirus Replication and Dissemination Are Differentially Controlled by Type I and III Interferons in the Gastrointestinal Tract. mBio 2022; 13:e0044322. [PMID: 35604122 PMCID: PMC9239134 DOI: 10.1128/mbio.00443-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Echovirus infections are associated with a broad spectrum of illness, particularly in neonates, and are primarily transmitted through the fecal-oral route. Little is known regarding how echoviruses infect the gastrointestinal tract and how the intestinal epithelium controls echoviral replication.
Collapse
|
10
|
Abstract
Echovirus 30 (E30), a member of species B enterovirus, is associated with outbreaks of aseptic meningitis and has become a global health emergency. However, the pathogenesis of E30 remains poorly understood due to the lack of appropriate animal models. In this study, we established a mouse infection model to explore the pathogenicity of E30. The 2-day-old IFNAR-/- mice infected with E30 strain WZ16 showed lethargy and paralysis, and some died. Obvious pathological changes were observed in the skeletal muscle, brain tissue, and other tissues, with the highest viral load in the skeletal muscles. Transcriptome analysis of brain and skeletal muscle tissues from infected mice showed that significant differentially expressed genes were enriched in complement response and neuropathy-related pathways. Using immunofluorescence assay, we found that the viral double-stranded RNA (dsRNA) was detected in the mouse brain region and could infect human glioma (U251) cells. These results indicated that E30 affects the nervous system, and they provide a theoretical basis for understanding its pathogenesis. IMPORTANCE Echovirus 30 (E30) infection causes a wide spectrum of diseases with mild symptoms, such as hand, foot, and mouth disease (HFMD), acute flaccid paralysis, and aseptic meningitis and other diseases, especially one of the most common pathogens causing aseptic meningitis outbreaks. We established a novel mouse model of E30 infection by inoculating neonatal mice with clinical isolates of E30 and observed the pathological changes induced by E30. Using the E30 infection model, we found complement responses and neuropathy-related genes in the mice tissues at the transcriptome level. Moreover, we found that the viral dsRNA localized in the mouse brain and could replicate in human glioma cell line U251 rather than in the neuroblastoma cell line, SK-N-SH.
Collapse
|
11
|
Fulminant Myocardial Involvement in Neonatal Echovirus-induced Sepsis. Two Autopsy Cases. Pediatr Infect Dis J 2022; 41:148-150. [PMID: 34292270 DOI: 10.1097/inf.0000000000003276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Group-B Enteroviruses, such as Echoviruses, are a common cause of infections in neonates but fatal myocarditis during Echovirus-induced sepsis have been rarely reported. We report on 2 cases of neonatal Echovirus-related sepsis with myocarditis. Fatal cardiorespiratory failure occurred in both cases. Autopsies and thorough histologic and microbiologic investigations evidenced Echoviruses 5- and 11-induced myocarditis as the cause of death.
Collapse
|
12
|
Heckenberg E, Steppe JT, Coyne CB. Enteroviruses: The role of receptors in viral pathogenesis. Adv Virus Res 2022; 113:89-110. [DOI: 10.1016/bs.aivir.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Zhang G, Li J, Sun Q, Zhang K, Xu W, Zhang Y, Wu G. Pathological Features of Echovirus-11-Associated Brain Damage in Mice Based on RNA-Seq Analysis. Viruses 2021; 13:v13122477. [PMID: 34960747 PMCID: PMC8707869 DOI: 10.3390/v13122477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 01/22/2023] Open
Abstract
Echovirus 11 (E11) is a neurotropic virus that occasionally causes fatal neurological diseases in infected children. However, the molecular mechanism underlying the disease and pathological spectrum of E11 infection remains unclear. Therefore, we modelled E11 infection in 2-day-old type I interferon receptor knockout (IFNAR−/−) mice, which are susceptible to enteroviruses, with E11, and identified symptoms consistent with the clinical signs observed in human cases. All organs of infected suckling mice were found to show viral replication and pathological changes; the muscle tissue showed the highest viral replication, whereas the brain and muscle tissues showed the most obvious pathological changes. Brain tissues showed oedema and a large number of dead nerve cells; RNA-Seq analysis of the brain and hindlimb muscle tissues revealed differentially expressed genes to be abundantly enriched in immune response-related pathways, with changes in the Guanylate-binding protein (GBP) and MHC class genes, causing aseptic meningitis-related symptoms. Furthermore, human glioma U251 cell was identified as sensitive target cells for E11 infection. Overall, these results provide new insights into the pathogenesis and progress of aseptic meningitis caused by E11.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Brain/metabolism
- Brain/pathology
- Brain/virology
- Cell Line, Tumor
- Disease Models, Animal
- Echovirus Infections/genetics
- Echovirus Infections/pathology
- Echovirus Infections/virology
- Enterovirus B, Human/physiology
- Humans
- Meningitis, Aseptic/genetics
- Meningitis, Aseptic/pathology
- Meningitis, Aseptic/virology
- Mice
- Mice, Knockout
- Muscle, Skeletal/pathology
- Muscle, Skeletal/virology
- RNA-Seq
- Receptor, Interferon alpha-beta/genetics
- Transcriptome
- Viral Load
- Virus Replication
Collapse
Affiliation(s)
- Guoyan Zhang
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing 102206, China; (G.Z.); (J.L.); (Q.S.); (K.Z.); (W.X.)
- Biosafety Level-3 Laboratory, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing 102206, China
| | - Jichen Li
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing 102206, China; (G.Z.); (J.L.); (Q.S.); (K.Z.); (W.X.)
- Department of Medical Microbiology, Weifang Medical University, Weifang 261053, China
| | - Qiang Sun
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing 102206, China; (G.Z.); (J.L.); (Q.S.); (K.Z.); (W.X.)
| | - Keyi Zhang
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing 102206, China; (G.Z.); (J.L.); (Q.S.); (K.Z.); (W.X.)
- Biosafety Level-3 Laboratory, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing 102206, China
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing 102206, China; (G.Z.); (J.L.); (Q.S.); (K.Z.); (W.X.)
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing 102206, China; (G.Z.); (J.L.); (Q.S.); (K.Z.); (W.X.)
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Correspondence: (Y.Z.); (G.W.); Tel.: +86-58-900-183 (Y.Z.); +86-58-900-656 (G.W.)
| | - Guizhen Wu
- Biosafety Level-3 Laboratory, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing 102206, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Correspondence: (Y.Z.); (G.W.); Tel.: +86-58-900-183 (Y.Z.); +86-58-900-656 (G.W.)
| |
Collapse
|