1
|
Yu H, Resch W, Moss B. Poxvirus structural biology for application to vaccine design. Trends Immunol 2025:S1471-4906(25)00094-8. [PMID: 40340168 DOI: 10.1016/j.it.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 05/10/2025]
Abstract
The upsurge of mpox (formerly known as monkeypox) in Africa and its global spread highlight the need for improved vaccines. The development of new recombinant vaccines, including mRNA and protein nanoparticles, depends on understanding the biology of poxviruses and selecting the most protective immunogens. Animal studies demonstrate that vaccines need to target the antigens of both infectious forms - the mature virion and the enveloped virion - which display surface proteins responsible for cell entry and cell-to-cell spread, respectively. Although some of these proteins have been shown to induce protective antibodies, others including most of those that are essential for membrane fusion remain to be tested. We review the structures of orthopoxvirus surface proteins as a guide to the selection of optimal antigens for recombinant vaccines.
Collapse
Affiliation(s)
- Huibin Yu
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Wolfgang Resch
- Center for Information Technology, NIH, Bethesda, MD, USA
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
2
|
Li Y, Wang L, Chen S. An overview of the progress made in research into the Mpox virus. Med Res Rev 2025; 45:788-812. [PMID: 39318037 DOI: 10.1002/med.22085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/05/2024] [Accepted: 09/01/2024] [Indexed: 09/26/2024]
Abstract
Mpox is a zoonotic illness caused by the Mpox virus (MPXV), a member of the Orthopoxvirus family. Although a few cases have been reported outside Africa, it was originally regarded as an endemic disease limited to African countries. However, the Mpox outbreak of 2022 was remarkable in that the infection spread to more than 123 countries worldwide, causing thousands of infections and deaths. The ongoing Mpox outbreak has been declared as a public health emergency of international concern by the World Health Organization. For a better management and control of the epidemic, this review summarizes the research advances and important scientific findings on MPXV by reviewing the current literature on epidemiology, clinical characteristics, diagnostic methods, prevention and treatment measures, and animal models of MPXV. This review provides useful information to raise awareness about the transmission, symptoms, and protective measures of MPXV, serving as a theoretical guide for relevant institutions to control MPXV.
Collapse
Affiliation(s)
- Yansheng Li
- Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound lmaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Department of Critical Care Medicine, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lianrong Wang
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Shi Chen
- Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound lmaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Department of Critical Care Medicine, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
3
|
Nikitin VN, Merkuleva IA, Shcherbakov DN. Monoclonal Antibodies in Light of Mpox Outbreak: Current Research, Therapeutic Targets, and Animal Models. Antibodies (Basel) 2025; 14:20. [PMID: 40136469 PMCID: PMC11939467 DOI: 10.3390/antib14010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
The rapid rise in monkeypox virus infections among humans from 2022 to 2024 has captured the attention of the global healthcare community. In light of the lack of mandatory vaccination and limited data on next-generation vaccines for monkeypox prevention, the urgent development of therapeutic agents has become a priority. One promising approach involves the use of neutralizing monoclonal antibodies. This review highlights significant advancements in the search for antibodies against human pathogenic orthopoxviruses, particularly focusing on their potential application against the monkeypox virus. We also analyze viral proteins that serve as targets for identifying therapeutic antibodies capable of neutralizing a wide range of viruses. Finally, we deemed it essential to address the challenges associated with selecting an animal model that can adequately reflect the infectious process of each orthopoxvirus species in humans.
Collapse
Affiliation(s)
| | - Iuliia A. Merkuleva
- State Research Center of Virology and Biotechnology Vector, Rospotrebnadzor, Koltsovo 630559, Russia; (V.N.N.); (D.N.S.)
| | | |
Collapse
|
4
|
Ritter JM, Martines RB, Bhatnagar J, Rao AK, Villalba JA, Silva-Flannery L, Lee E, Bullock HA, Hutson CL, Cederroth T, Harris CK, Hord K, Xu Y, Brown CA, Guccione JP, Miller M, Paddock CD, Reagan-Steiner S. Pathology and Monkeypox virus Localization in Tissues From Immunocompromised Patients With Severe or Fatal Mpox. J Infect Dis 2024; 229:S219-S228. [PMID: 38243606 DOI: 10.1093/infdis/jiad574] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Pathology and Monkeypox virus (MPXV) tissue tropism in severe and fatal human mpox is not thoroughly described but can help elucidate the disease pathogenesis and the role of coinfections in immunocompromised patients. METHODS We analyzed biopsy and autopsy tissues from 22 patients with severe or fatal outcomes to characterize pathology and viral antigen and DNA distribution in tissues by immunohistochemistry and in situ hybridization. Tissue-based testing for coinfections was also performed. RESULTS Mucocutaneous lesions showed necrotizing and proliferative epithelial changes. Deceased patients with autopsy tissues evaluated had digestive tract lesions, and half had systemic tissue necrosis with thrombotic vasculopathy in lymphoid tissues, lung, or other solid organs. Half also had bronchopneumonia, and one-third had acute lung injury. All cases had MPXV antigen and DNA detected in tissues. Coinfections were identified in 5 of 16 (31%) biopsy and 4 of 6 (67%) autopsy cases. CONCLUSIONS Severe mpox in immunocompromised patients is characterized by extensive viral infection of tissues and viremic dissemination that can progress despite available therapeutics. Digestive tract and lung involvement are common and associated with prominent histopathological and clinical manifestations. Coinfections may complicate mpox diagnosis and treatment. Significant viral DNA (likely correlating to infectious virus) in tissues necessitates enhanced biosafety measures in healthcare and autopsy settings.
Collapse
Affiliation(s)
| | | | | | - Agam K Rao
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | - Elizabeth Lee
- Infectious Diseases Pathology Branch
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
| | | | - Christina L Hutson
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | - Kristin Hord
- Office of Chief Medical Examiner, New York City, New York
| | - Ya Xu
- Department of Pathology and Immunology, Baylor College of Medicine
- Department of Pathology and Laboratory Medicine, Ben Taub Hospital, Harris Health System, Houston, Texas
| | - Cameron A Brown
- Department of Pathology and Immunology, Baylor College of Medicine
- Department of Pathology and Laboratory Medicine, Ben Taub Hospital, Harris Health System, Houston, Texas
| | - Jack P Guccione
- Department of Medical Examiner-Coroner, Los Angeles County, Los Angeles, California
| | - Matthew Miller
- Department of Medical Examiner-Coroner, Los Angeles County, Los Angeles, California
| | - Christopher D Paddock
- Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, National Center for Zoonotic and Emerging Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | |
Collapse
|
5
|
Gutierrez-Barbosa H, Medina-Moreno S, Perdomo-Celis F, Davis H, Coronel-Ruiz C, Zapata JC, Chua JV. A Comparison of Lymphoid and Myeloid Cells Derived from Human Hematopoietic Stem Cells Xenografted into NOD-Derived Mouse Strains. Microorganisms 2023; 11:1548. [PMID: 37375051 DOI: 10.3390/microorganisms11061548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Humanized mice are an invaluable tool for investigating human diseases such as cancer, infectious diseases, and graft-versus-host disease (GvHD). However, it is crucial to understand the strengths and limitations of humanized mice and select the most appropriate model. In this study, we describe the development of the human lymphoid and myeloid lineages using a flow cytometric analysis in four humanized mouse models derived from NOD mice xenotransplanted with CD34+ fetal cord blood from a single donor. Our results showed that all murine strains sustained human immune cells within a proinflammatory environment induced by GvHD. However, the Hu-SGM3 model consistently generated higher numbers of human T cells, monocytes, dendritic cells, mast cells, and megakaryocytes, and a low number of circulating platelets showing an activated profile when compared with the other murine strains. The hu-NOG-EXL model had a similar cell development profile but a higher number of circulating platelets with an inactivated state, and the hu-NSG and hu-NCG developed low frequencies of immune cells compared with the other models. Interestingly, only the hu-SGM3 and hu-EXL models developed mast cells. In conclusion, our findings highlight the importance of selecting the appropriate humanized mouse model for specific research questions, considering the strengths and limitations of each model and the immune cell populations of interest.
Collapse
Affiliation(s)
| | - Sandra Medina-Moreno
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Federico Perdomo-Celis
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Harry Davis
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Carolina Coronel-Ruiz
- Vice-Chancellor of Research, Virology Group, Universidad El Bosque, Bogotá 110121, Colombia
| | - Juan C Zapata
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joel V Chua
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
6
|
Brown LE, Seitz S, Kondas AV, Marcyk PT, Filone CM, Hossain MM, Schaus SE, Olson VA, Connor JH. Identification of Small Molecules with Improved Potency against Orthopoxviruses from Vaccinia to Smallpox. Antimicrob Agents Chemother 2022; 66:e0084122. [PMID: 36222522 PMCID: PMC9664851 DOI: 10.1128/aac.00841-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/30/2022] [Indexed: 11/20/2022] Open
Abstract
The genus Orthopoxvirus contains several human pathogens, including vaccinia, monkeypox, cowpox, and variola virus, the causative agent of smallpox. Although there are a few effective vaccines, widespread prophylactic vaccination has ceased and is unlikely to resume, making therapeutics increasingly important to treat poxvirus disease. Here, we described efforts to improve the potency of the anti-poxvirus small molecule CMLDBU6128. This class of small molecules, referred to as pyridopyrimidinones (PDPMs), showed a wide range of biological activities. Through the synthesis and testing of several exploratory chemical libraries based on this molecule, we identified several compounds that had increased potency from the micromolar into the nanomolar range. Two compounds, designated (12) and (16), showed inhibitory concentrations of 326 nM and 101 nM, respectively, which was more than a 10-fold increase in potency to CMLDBU6128 with an inhibitory concentration of around 6 μM. We also expanded our investigation of the breadth of action of these molecules and showed that they can inhibit the replication of variola virus, a related orthopoxvirus. Together, these findings highlighted the promise of this new class of antipoxviral agents as broad-spectrum small molecules with significant potential to be developed as antiviral therapy. This would add a small molecule option for therapy of spreading diseases, including monkeypox and cowpox viruses, that would also be expected to have efficacy against smallpox.
Collapse
Affiliation(s)
- Lauren E. Brown
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | - Scott Seitz
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Ashley V. Kondas
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Paul T. Marcyk
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | - Claire Marie Filone
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Mohammad M. Hossain
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Scott E. Schaus
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | - Victoria A. Olson
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - John H. Connor
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Recent Trends in Protective Textiles against Biological Threats: A Focus on Biological Warfare Agents. Polymers (Basel) 2022; 14:polym14081599. [PMID: 35458353 PMCID: PMC9026340 DOI: 10.3390/polym14081599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023] Open
Abstract
The rising threats to worldwide security (affecting the military, first responders, and civilians) urge us to develop efficient and versatile technological solutions to protect human beings. Soldiers, medical personnel, firefighters, and law enforcement officers should be adequately protected, so that their exposure to biological warfare agents (BWAs) is minimized, and infectious microorganisms cannot be spread so easily. Current bioprotective military garments include multilayered fabrics integrating activated carbon as a sorptive agent and a separate filtrating layer for passive protection. However, secondary contaminants emerge following their accumulation within the carbon filler. The clothing becomes too heavy and warm to wear, not breathable even, preventing the wearer from working for extended hours. Hence, a strong need exists to select and/or create selectively permeable layered fibrous structures with bioactive agents that offer an efficient filtering capability and biocidal skills, ensuring lightweightness, comfort, and multifunctionality. This review aims to showcase the main possibilities and trends of bioprotective textiles, focusing on metal-organic frameworks (MOFs), inorganic nanoparticles (e.g., ZnO-based), and organic players such as chitosan (CS)-based small-scale particles and plant-derived compounds as bioactive agents. The textile itself should be further evaluated as the foundation for the barrier effect and in terms of comfort. The outputs of a thorough, standardized characterization should dictate the best elements for each approach.
Collapse
|