1
|
Duizer C, Salomons M, van Gogh M, Gräve S, Schaafsma FA, Stok MJ, Sijbranda M, Kumarasamy Sivasamy R, Willems RJL, de Zoete MR. Fusobacterium nucleatum upregulates the immune inhibitory receptor PD-L1 in colorectal cancer cells via the activation of ALPK1. Gut Microbes 2025; 17:2458203. [PMID: 39881579 PMCID: PMC11784648 DOI: 10.1080/19490976.2025.2458203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 01/02/2025] [Accepted: 01/14/2025] [Indexed: 01/31/2025] Open
Abstract
Fusobacterium nucleatum is a Gram-negative oncobacterium that is associated with colorectal cancer. The molecular mechanisms utilized by F. nucleatum to promote colorectal tumor development have largely focused on adhesin-mediated binding to the tumor tissue and on the pro-inflammatory capacity of F. nucleatum. However, the exact manner in which F. nucleatum promotes inflammation in the tumor microenvironment and subsequent tumor promotion remains underexplored. Here, we show that both living F. nucleatum and sterile F. nucleatum-conditioned medium promote CXCL8 release from the intestinal adenocarcinoma HT-29 cell line. We determined that the observed pro-inflammatory effect was ALPK1-dependent in both HEK293 and HT-29 cells and that the released F. nucleatum molecule had characteristics that match those of the pro-inflammatory ALPK1 ligand ADP-heptose or related heptose phosphates. In addition, we determined that not only F. nucleatum promoted an ALPK1-dependent pro-inflammatory environment but also other Fusobacterium species such as F. varium, F. necrophorum and F. gonidiaformans generated similar effects, indicating that ADP-heptose or related heptose phosphate secretion is a conserved feature of the Fusobacterium genus. By performing transcriptional analysis of ADP-heptose stimulated HT-29 cells, we found several inflammatory and cancer-related pathways to be differentially regulated, including DNA mismatch repair genes and the immune inhibitory receptor PD-L1. Finally, we show that stimulation of HT-29 cells with F. nucleatum resulted in an ALPK1-dependent upregulation of PD-L1. These results aid in our understanding of the mechanisms by which F. nucleatum can affect tumor development and therapy and pave the way for future therapeutic approaches.
Collapse
Affiliation(s)
- Coco Duizer
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Moniek Salomons
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Merel van Gogh
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sanne Gräve
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Freke A. Schaafsma
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maaike J. Stok
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Merel Sijbranda
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Rob J. L. Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marcel R. de Zoete
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
2
|
Du O, Yan YL, Yang HY, Yang YX, Wu AG, Guo YK, Li K, Qiao G, Du JR, Long FY. ALPK1 signaling pathway activation by HMGB1 drives microglial pyroptosis and ferroptosis and brain injury after acute ischemic stroke. Int Immunopharmacol 2025; 149:114229. [PMID: 39933362 DOI: 10.1016/j.intimp.2025.114229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/26/2025] [Accepted: 02/02/2025] [Indexed: 02/13/2025]
Abstract
Pyroptosis and ferroptosis emerge as remarkable contributors to neuronal death and inflammation following ischemic stroke. High mobility group box 1 (HMGB1), a principal damage-associated molecular pattern (DAMP), is implicated in pyroptosis and ferroptosis post-stroke. Our previous research has demonstrated that alpha kinase 1 (ALPK1), a novel cytoplasmic pattern recognition receptor (PRR), plays an important role in mediating inflammatory damage following ischemic stroke. However, the interaction between ALPK1 and HMGB1, and their combined impact on pyroptosis and ferroptosis post-ischemic stroke remain unexplored, which is what this study aims to investigate. Initially, we observed that ALPK1 ablation attenuated ischemic brain injury of transient middle cerebral artery occlusion (tMCAO) mice. Moreover, recombinant HMGB1 (rHMGB1) stimulation induced the greatest upregulation of ALPK1 expression in microglia compared to astrocytes and neurons. Further investigation using co-immunofluorescence, co-immunoprecipitation, pull-down assay, and molecular docking revealed an interaction between HMGB1 and ALPK1. Additionally, the exacerbation of ischemic brain injury and the induction of microglial pyroptosis and ferroptosis by rHMGB1 treatment in tMCAO mice were significantly mitigated through ALPK1 deficiency by inhibiting the NLRP3/Caspase-1/GSDMD and JAK2/STAT3 signaling pathways. The inhibitory effects of ALPK1 deficiency on pyroptosis and ferroptosis induced by rHMGB1 in microglial cells were further substantiated. Finally, glycyrrhizic acid (GA), an inhibitor of HMGB1, exhibited significant neuroprotective effects in both tMCAO mice and BV2 cells subjected to oxygen-glucose deprivation/reperfusion (OGD/R) by downregulating ALPK1 expression and inhibiting microglial pyroptosis and ferroptosis. Collectively, these findings suggest that HMGB1 may interact with ALPK1 to drive microglial pyroptosis and ferroptosis via the activation of the ALPK1/NF-κB/NLRP3/GSDMD and JAK2/STAT3 signaling pathways, thereby exacerbating brain injury following acute ischemic stroke.
Collapse
Affiliation(s)
- Ou Du
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Ya-Ling Yan
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Han-Yinan Yang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Yu-Xin Yang
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drug Ability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yin-Kun Guo
- Department of Radiology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kuan Li
- Department of Radiology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Gan Qiao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drug Ability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jun-Rong Du
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Fang-Yi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Martin A, Caron S, Marcotte M, Bronnec P, Garneret E, Martel N, Maalouf G, Sève P, Saadoun D, Jamilloux Y, Henry T. IFN-γ licenses normal and pathogenic ALPK1/TIFA pathway in human monocytes. iScience 2025; 28:111563. [PMID: 39868044 PMCID: PMC11758396 DOI: 10.1016/j.isci.2024.111563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/22/2024] [Accepted: 12/06/2024] [Indexed: 01/28/2025] Open
Abstract
Alpha-kinase 1 (ALPK1) is an immune receptor sensing the bacterial nucleotide sugar ADP-heptose. ALPK1 phosphorylates TIFA leading to its oligomerization and downstream NF-κB activation. Specific mutations in ALPK1 are associated with an autoinflammatory syndrome termed ROSAH and with spiradenoma (skin cancers with sweat gland differentiation). This study investigated ALPK1 responses in human mononuclear cells and demonstrates that human mononuclear cells have distinct abilities to respond to ADP-heptose. Notably, IFN-γ is required to license the ALPK1/TIFA pathway in monocytes, while it was dispensable for the responsiveness of B cells. IFN-γ induced TIFA upregulation in monocytes, and TIFA induction was sufficient to recapitulate the licensing effect of IFN-γ. IFN-γ treatment promoted the phenotypic expression of pathogenic ALPK1 mutations. The licensing effect of IFN-γ in monocytes was blocked by JAK inhibitors. These findings underscore the critical role of IFN-γ in ALPK1 function and suggest JAK inhibitors as potential therapies for ALPK1-related inflammatory conditions.
Collapse
Affiliation(s)
- Amandine Martin
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, F-69007 Lyon, France
| | - Solène Caron
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, F-69007 Lyon, France
| | - Mélissa Marcotte
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, F-69007 Lyon, France
| | - Pauline Bronnec
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, F-69007 Lyon, France
| | - Etienne Garneret
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, F-69007 Lyon, France
| | - Nora Martel
- CeRéMAIA: Centre National de Références Maladies Autoinflammatoires et Amylose Inflammatoire, 69000 Lyon, France
- Internal Medicine, University Hospital Croix-Rousse, Hospices Civils de Lyon, 69000 Lyon, France
| | - Georgina Maalouf
- CeRéMAIA: Centre National de Références Maladies Autoinflammatoires et Amylose Inflammatoire, 69000 Lyon, France
- Department of Internal Medicine and Clinical Immunology, Sorbonne Universités, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre National de Références Maladies Auto-immunes et Systémiques Rares, INSERM, UMR S959, Immunology-Immunopathology-Immunotherapy (I3), 83 Boulevard de L’hôpital, 75013 Paris, France
| | - Pascal Sève
- CeRéMAIA: Centre National de Références Maladies Autoinflammatoires et Amylose Inflammatoire, 69000 Lyon, France
- Internal Medicine, University Hospital Croix-Rousse, Hospices Civils de Lyon, 69000 Lyon, France
| | - David Saadoun
- CeRéMAIA: Centre National de Références Maladies Autoinflammatoires et Amylose Inflammatoire, 69000 Lyon, France
- Department of Internal Medicine and Clinical Immunology, Sorbonne Universités, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre National de Références Maladies Auto-immunes et Systémiques Rares, INSERM, UMR S959, Immunology-Immunopathology-Immunotherapy (I3), 83 Boulevard de L’hôpital, 75013 Paris, France
| | - Yvan Jamilloux
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, F-69007 Lyon, France
- CeRéMAIA: Centre National de Références Maladies Autoinflammatoires et Amylose Inflammatoire, 69000 Lyon, France
- Internal Medicine, University Hospital Croix-Rousse, Hospices Civils de Lyon, 69000 Lyon, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, F-69007 Lyon, France
- CeRéMAIA: Centre National de Références Maladies Autoinflammatoires et Amylose Inflammatoire, 69000 Lyon, France
| |
Collapse
|
4
|
Roohi, Bano N. Actinobacteria: Smart Micro-Factories for The Health Sector. Recent Pat Biotechnol 2025; 19:85-98. [PMID: 38756090 DOI: 10.2174/0118722083300181240429072502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 05/18/2024]
Abstract
Antibiotics are considered "wonder drugs" due to the fact that they are the most extensively utilised medication in the world. They are used to cure a broad spectrum of diseases and lethal infections. A variety of bacteria and fungi produce antibiotics as a result of secondary metabolism; however, their production is dominated by a special class of bacteria, namely Actinobacteria. Actinobacteria are gram-positive bacteria with high G+C content and unparalleled antibiotic-producing ability. They produce numerous polyenes, tetracyclines, β-lactams, macrolides, and peptides. Actinobacteria are ubiquitous in nature and are isolated from various sources, such as marine and terrestrial endophytes of plants and air. They are studied for their relative antibiotic-producing ability along with the mechanism that the antibiotics follow to annihilate the pathogenic agents that include bacteria, fungi, protozoans, helminths, etc. Actinobacteria isolated from endophytes of medicinal plants have amassed significant attention as they interfere with the metabolism of medicinal plants and acquire enormous benefits from it in the form of conspicuous novel antibiotic-producing ability. Actinobacteria is not only an antibiotic but also a rich source of anticancer compounds that are widely used owing to its remarkable tumorigenic potential. Today, amongst Actinobacteria, class Streptomyces subjugates the area of antibiotic production, producing 70% of all known antibiotics. The uniqueness of bioactive Actinobacteria has turned the attention of scientists worldwide in order to explore its potentiality as effective "micronanofactories". This study provides a brief overview of the production of antibiotics from Actinobacteria inhabiting patent environments and the methods involved in the screening of antibiotics.
Collapse
Affiliation(s)
- Roohi
- Department of Bioengineering, Integral University, Lucknow, 226026, India
| | - Naushin Bano
- Department of Bioengineering, Integral University, Lucknow, 226026, India
| |
Collapse
|
5
|
Tang Y, Tian X, Wang M, Cui Y, She Y, Shi Z, Liu J, Mao H, Liu L, Li C, Zhang Y, Li P, Ma Y, Sun J, Du Q, Li J, Wang J, Li DF, Wu B, Shao F, Chen Y. The β-d- manno-heptoses are immune agonists across kingdoms. Science 2024; 385:678-684. [PMID: 39116220 DOI: 10.1126/science.adk7314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 07/09/2024] [Indexed: 08/10/2024]
Abstract
Bacterial small molecule metabolites such as adenosine-diphosphate-d-glycero-β-d-manno-heptose (ADP-heptose) and their derivatives act as effective innate immune agonists in mammals. We show that functional nucleotide-diphosphate-heptose biosynthetic enzymes (HBEs) are distributed widely in bacteria, archaea, eukaryotes, and viruses. We identified a conserved STTR5 motif as a hallmark of heptose nucleotidyltransferases that can synthesize not only ADP-heptose but also cytidine-diphosphate (CDP)- and uridine-diphosphate (UDP)-heptose. Both CDP- and UDP-heptoses are agonists that trigger stronger alpha-protein kinase 1 (ALPK1)-dependent immune responses than ADP-heptose in human and mouse cells and mice. We also produced ADP-heptose in archaea and verified its innate immune agonist functions. Hence, the β-d-manno-heptoses are cross-kingdom, small-molecule, pathogen-associated molecular patterns that activate the ALPK1-dependent innate immune signaling cascade.
Collapse
Affiliation(s)
- Yue Tang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoying Tian
- National Institute of Biological Sciences, Beijing 102206, China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 102206, China
| | - Min Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Yinglu Cui
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang She
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhaoxiang Shi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 117004, China
| | - Jiaqi Liu
- National Institute of Biological Sciences, Beijing 102206, China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 102206, China
| | - Huijin Mao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lilu Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwei Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pengwei Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yue Ma
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinyuan Sun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - De-Feng Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bian Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Feng Shao
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
- New Cornerstone Science Laboratory, Shenzhen 518054, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Tikhomirova A, McNabb ER, Petterlin L, Bellamy GL, Lin KH, Santoso CA, Daye ES, Alhaddad FM, Lee KP, Roujeinikova A. Campylobacter jejuni virulence factors: update on emerging issues and trends. J Biomed Sci 2024; 31:45. [PMID: 38693534 PMCID: PMC11064354 DOI: 10.1186/s12929-024-01033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
Campylobacter jejuni is a very common cause of gastroenteritis, and is frequently transmitted to humans through contaminated food products or water. Importantly, C. jejuni infections have a range of short- and long-term sequelae such as irritable bowel syndrome and Guillain Barre syndrome. C. jejuni triggers disease by employing a range of molecular strategies which enable it to colonise the gut, invade the epithelium, persist intracellularly and avoid detection by the host immune response. The objective of this review is to explore and summarise recent advances in the understanding of the C. jejuni molecular factors involved in colonisation, invasion of cells, collective quorum sensing-mediated behaviours and persistence. Understanding the mechanisms that underpin the pathogenicity of C. jejuni will enable future development of effective preventative approaches and vaccines against this pathogen.
Collapse
Affiliation(s)
- Alexandra Tikhomirova
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Emmylee R McNabb
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Luca Petterlin
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Georgia L Bellamy
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Kyaw H Lin
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Christopher A Santoso
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Ella S Daye
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Fatimah M Alhaddad
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Kah Peng Lee
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Anna Roujeinikova
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
7
|
Imbrea AM, Balta I, Dumitrescu G, McCleery D, Pet I, Iancu T, Stef L, Corcionivoschi N, Liliana PC. Exploring the Contribution of Campylobacter jejuni to Post-Infectious Irritable Bowel Syndrome: A Literature Review. APPLIED SCIENCES 2024; 14:3373. [DOI: 10.3390/app14083373] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
This comprehensive review investigates the specific impact of the foodborne pathogen Campylobacter jejuni (C. jejuni) on gastrointestinal health, focusing on its connection to post-infectious irritable bowel syndrome (PI-IBS). This review examines the pathogen’s pathophysiology, clinical implications and epidemiological trends using recent research and data to highlight its prevalence and association with PI-IBS. A detailed literature analysis synthesizes current research to illuminate Campylobacter’s long-lasting effects on gut microbiota and intestinal function. It provides a detailed analysis of the literature to shed light on C. jejuni’s long-term impact on gut microbiota and intestinal function. The findings suggest the need for multifaceted prevention and treatment approaches considering individual, microbial and epidemiological factors, thus contributing to a more nuanced understanding of PI-IBS following C. jejuni infection.
Collapse
Affiliation(s)
- Ana-Maria Imbrea
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Michael I from Timisoara, 300645 Timisoara, Romania
| | - Igori Balta
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Michael I from Timisoara, 300645 Timisoara, Romania
| | - Gabi Dumitrescu
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Michael I from Timisoara, 300645 Timisoara, Romania
| | - David McCleery
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK
| | - Ioan Pet
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Michael I from Timisoara, 300645 Timisoara, Romania
| | - Tiberiu Iancu
- Faculty of Management and Rural Tourism, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Lavinia Stef
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Michael I from Timisoara, 300645 Timisoara, Romania
| | - Nicolae Corcionivoschi
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Michael I from Timisoara, 300645 Timisoara, Romania
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK
- Academy of Romanian Scientists, Ilfov Street, No. 3, 050044 Bucharest, Romania
| | - Petculescu-Ciochina Liliana
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Michael I from Timisoara, 300645 Timisoara, Romania
| |
Collapse
|
8
|
Zhao J, Feng Y, Liu X, Li H, Guo H, Ke J, Long X. The relationship of ALPK1, hyaluronic acid and M1 macrophage polarization in the temporomandibular joint synovitis. J Cell Mol Med 2024; 28:e18172. [PMID: 38494837 PMCID: PMC10945073 DOI: 10.1111/jcmm.18172] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/09/2024] [Accepted: 01/31/2024] [Indexed: 03/19/2024] Open
Abstract
M1 macrophage polarization and synovitis play an important role in the pathogenesis of temporomandibular joint osteoarthritis (TMJOA). Reduced molecular weight of hyaluronic acid (HA) in synovial fluid of patients with TMJOA. In addition, high molecular weight hyaluronic acid (HMW-HA) is often used clinically to treat TMJ inflammation. As a pattern recognition receptor of the cytoplasm, ALPK1 was found to be pro-inflammatory in a variety of diseases. However, the relationship of ALPK1, HA and M1 macrophage polarization in TMJ synovitis remains unclear. We aimed to investigate the role of ALPK1 and HA in macrophage polarization and TMJ synovitis and the underlying mechanisms. The results demonstrated that ALPK1 was highly upregulated in the synovial macrophages in the inflamed TMJ synovium of patients. Low molecular weight hyaluronic acid (LMW-HA) promoted the expression of ALPK1 and M1 macrophage-associated genes. Besides, rhALPK1 promoted the expression of M1 macrophage-associated factors and the nuclear translocation of PKM2. Furthermore, ALPK1 knockout mice exhibited limited infiltration of macrophages and decreased expression levels of M1 macrophage-associated genes in CFA-induced TMJ synovitis. While HMW-HA inhibited the expression of ALPK1 and M1 macrophage polarization. Our results elucidated that ALPK1 promoted TMJ synovitis by promoting nuclear PKM2-mediated M1 macrophage polarization, whereas HMW-HA inhibited the expression of ALPK1 as well as M1 macrophage polarization.
Collapse
Affiliation(s)
- Jie Zhao
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Yaping Feng
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Xin Liu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Huimin Li
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Huilin Guo
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Jin Ke
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral and Maxillofacial Surgery, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Xing Long
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral and Maxillofacial Surgery, School and Hospital of StomatologyWuhan UniversityWuhanChina
| |
Collapse
|
9
|
Shi Z, Tang Y, Wang Z, Wang M, Zhong Z, Jia J, Chen Y. Characterization of the ADP-β-D-manno-heptose biosynthetic enzymes from two pathogenic Vibrio strains. Appl Microbiol Biotechnol 2024; 108:267. [PMID: 38498053 PMCID: PMC10948575 DOI: 10.1007/s00253-024-13108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/24/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
ADP-activated β-D-manno-heptoses (ADP-β-D-manno-heptoses) are precursors for the biosynthesis of the inner core of lipopolysaccharide in Gram-negative bacteria. Recently, ADP-D-glycero-β-D-manno-heptose (ADP-D,D-manno-heptose) and its C-6'' epimer, ADP-L-glycero-β-D-manno-heptose (ADP-L,D-manno-heptose), were identified as potent pathogen-associated molecular patterns (PAMPs) that can trigger robust innate immune responses. Although the production of ADP-D,D-manno-heptose has been studied in several different pathogenic Gram-negative bacteria, current knowledge of ADP-β-D-manno-heptose biosynthesis in Vibrio strains remains limited. Here, we characterized the biosynthetic enzymes of ADP-D,D-manno-heptose and the epimerase that converts it to ADP-L,D-manno-heptose from Vibrio cholerae (the causative agent of pandemic cholera) and Vibrio parahaemolyticus (non-cholera pathogen causing vibriosis with clinical manifestations of gastroenteritis and wound infections) in comparison with their isozymes from Escherichia coli. Moreover, we discovered that β-D-mannose 1-phosphate, but not α-D-mannose 1-phosphate, could be activated to its ADP form by the nucleotidyltransferase domains of bifunctional kinase/nucleotidyltransferases HldEVC (from V. cholerae) and HldEVP (from V. parahaemolyticus). Kinetic analyses of the nucleotidyltransferase domains of HldEVC and HldEVP together with the E. coli-derived HldEEC were thus carried out using β-D-mannose 1-phosphate as a mimic sugar substrate. Overall, our works suggest that V. cholerae and V. parahaemolyticus are capable of synthesizing ADP-β-D-manno-heptoses and lay a foundation for further physiological function explorations on manno-heptose metabolism in Vibrio strains. KEY POINTS: • Vibrio strains adopt the same biosynthetic pathway as E. coli in synthesizing ADP-β-D-manno-heptoses. • HldEs from two Vibrio strains and E. coli could activate β-D-mannose 1-phosphate to ADP-β-D-mannose. • Comparable nucleotidyltransfer efficiencies were observed in the kinetic studies of HldEs.
Collapse
Affiliation(s)
- Zhaoxiang Shi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 117004, China
| | - Yue Tang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | - Min Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Zijian Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingming Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 117004, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Lu J, Liu X, Li X, Li H, Shi L, Xia X, He BL, Meyer TF, Li X, Sun H, Yang X. Copper regulates the host innate immune response against bacterial infection via activation of ALPK1 kinase. Proc Natl Acad Sci U S A 2024; 121:e2311630121. [PMID: 38232278 PMCID: PMC10823219 DOI: 10.1073/pnas.2311630121] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
Copper is an essential trace element for the human body, and its requirement for optimistic immune functions has been recognized for decades. How copper is involved in the innate immune pathway, however, remains to be clarified. Here, we report that copper serves as a signal molecule to regulate the kinase activity of alpha-kinase 1 (ALPK1), a cytosolic pattern-recognition receptor (PRR), and therefore promotes host cell defense against bacterial infection. We show that in response to infection, host cells actively accumulate copper in the cytosol, and the accumulated cytosolic copper enhances host cell defense against evading pathogens, including intracellular and, unexpectedly, extracellular bacteria. Subsequently, we demonstrate that copper activates the innate immune pathway of host cells in an ALPK1-dependent manner. Further mechanistic studies reveal that copper binds to ALPK1 directly and is essential for the kinase activity of this cytosolic PRR. Moreover, the binding of copper to ALPK1 enhances the sensitivity of ALPK1 to the bacterial metabolite ADP-heptose and eventually prompts host cells to elicit an enhanced immune response during bacterial infection. Finally, using a zebrafish in vivo model, we show that a copper-treated host shows an increased production of proinflammatory cytokines, enhanced recruitment of phagosome cells, and promoted bacterial clearance. Our findings uncover a previously unrecognized role of copper in the modulation of host innate immune response against bacterial pathogens and advance our knowledge on the cross talk between cytosolic copper homeostasis and immune system.
Collapse
Affiliation(s)
- Jing Lu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
| | - Xue Liu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
- Department of Chemistry, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
| | - Xinghua Li
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Chinese Academy of Sciences-The University of Hong Kong Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Liwa Shi
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
| | - Xin Xia
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
| | - Bai-liang He
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
| | - Thomas F. Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin10117, Germany
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian Albrecht’s University of Kiel, University Hospital Schleswig Holstein, Kiel24105, Germany
| | - Xiaofeng Li
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Chinese Academy of Sciences-The University of Hong Kong Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xinming Yang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
| |
Collapse
|
11
|
Martin-Gallausiaux C, Salesse L, Garcia-Weber D, Marinelli L, Beguet-Crespel F, Brochard V, Le Gléau C, Jamet A, Doré J, Blottière HM, Arrieumerlou C, Lapaque N. Fusobacterium nucleatum promotes inflammatory and anti-apoptotic responses in colorectal cancer cells via ADP-heptose release and ALPK1/TIFA axis activation. Gut Microbes 2024; 16:2295384. [PMID: 38126163 PMCID: PMC10761154 DOI: 10.1080/19490976.2023.2295384] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
The anaerobic bacterium Fusobacterium nucleatum is significantly associated with human colorectal cancer (CRC) and is considered a significant contributor to the disease. The mechanisms underlying the promotion of intestinal tumor formation by F. nucleatum have only been partially uncovered. Here, we showed that F. nucleatum releases a metabolite into the microenvironment that strongly activates NF-κB in intestinal epithelial cells via the ALPK1/TIFA/TRAF6 pathway. Furthermore, we showed that the released molecule had the biological characteristics of ADP-heptose. We observed that F. nucleatum induction of this pathway increased the expression of the inflammatory cytokine IL-8 and two anti-apoptotic genes known to be implicated in CRC, BIRC3 and TNFAIP3. Finally, it promoted the survival of CRC cells and reduced 5-fluorouracil chemosensitivity in vitro. Taken together, our results emphasize the importance of the ALPK1/TIFA pathway in Fusobacterium induced-CRC pathogenesis, and identify the role of ADP-H in this process.
Collapse
Affiliation(s)
| | - Laurène Salesse
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Ludovica Marinelli
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Vincent Brochard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Camille Le Gléau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Alexandre Jamet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Joël Doré
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, Metagenopolis, Jouy-en-Josas, France
| | - Hervé M. Blottière
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, Metagenopolis, Jouy-en-Josas, France
| | | | - Nicolas Lapaque
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
12
|
Lou S, Wang J, Chen J, Xie H, Chen H, Zhou B, Zhang B, Hou J, Jiang DK. The Role of ALPK1 in Inhibiting Hepatitis B Virus Replication Facilitates the Identification of ALPK1 P660L Variant for Predicting Response to Pegylated Interferon α Therapy. J Infect Dis 2023; 228:694-703. [PMID: 36932045 DOI: 10.1093/infdis/jiad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Alpha kinase 1 (ALPK1) agonist has recently been reported to demonstrate anti-hepatitis B virus (HBV) efficacy via activating NF-κB signaling, which is crucial for maximizing interferon (IFN) responses. Here, we investigated the impact of ALPK1 on HBV replication and explored ALPK1 variants for predicting the response to pegylated IFN-α (PegIFN-α) treatment. METHODS The potential anti-HBV effect of ALPK1 was evaluated in HBV-integrated and HBV-infected hepatoma cells. The potentially functional genetic variants of ALPK1 were screened out, and their correlations with PegIFN-α treatment response were assessed in 945 hepatitis B e antigen (HBeAg)-positive patients with chronic hepatitis B (CHB). RESULTS We revealed that ALPK1 inhibited HBV replication in hepatocytes via activating the JAK-STAT pathway. ALPK1 overexpression improved the anti-HBV effect of IFN-α in cell models. A missense variant, rs35389530 (P660L), of ALPK1 was strongly associated with combined response (CR; namely, HBeAg seroconversion and HBV DNA level <3.3log10 IU/mL) to PegIFN-α treatment in patients with CHB (P = 2.12 × 10-6). Moreover, a polygenic score integrating ALPK1_rs35389530 and 2 additional genetic variants was further significantly associated with CR (Ptrend = 9.28 × 10-7), hepatitis B surface antigen (HBsAg) level (Ptrend = .0002), and HBsAg loss (Ptrend = .025). CONCLUSIONS The anti-HBV effects of ALPK1 through activating JAK-STAT pathway provides a new perspective for CHB therapy. ALPK1_rs35389530 and polygenic score are potential biomarkers to predict PegIFN-α treatment response and may be used for optimizing CHB treatment.
Collapse
Affiliation(s)
- Shuang Lou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Key Laboratory of Molecular Pathology (Hepatic Diseases) of Guangxi, Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Jialin Wang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiaxuan Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haisheng Xie
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Bin Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bo Zhang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - De-Ke Jiang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Key Laboratory of Molecular Pathology (Hepatic Diseases) of Guangxi, Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| |
Collapse
|
13
|
Hauke M, Metz F, Rapp J, Faass L, Bats SH, Radziej S, Link H, Eisenreich W, Josenhans C. Helicobacter pylori Modulates Heptose Metabolite Biosynthesis and Heptose-Dependent Innate Immune Host Cell Activation by Multiple Mechanisms. Microbiol Spectr 2023; 11:e0313222. [PMID: 37129481 PMCID: PMC10269868 DOI: 10.1128/spectrum.03132-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 04/05/2023] [Indexed: 05/03/2023] Open
Abstract
Heptose metabolites including ADP-d-glycero-β-d-manno-heptose (ADP-heptose) are involved in bacterial lipopolysaccharide and cell envelope biosynthesis. Recently, heptoses were also identified to have potent proinflammatory activity on human cells as novel microbe-associated molecular patterns. The gastric pathogenic bacterium Helicobacter pylori produces heptose metabolites, which it transports into human cells through its Cag type 4 secretion system. Using H. pylori as a model, we have addressed the question of how proinflammatory ADP-heptose biosynthesis can be regulated by bacteria. We have characterized the interstrain variability and regulation of heptose biosynthesis genes and the modulation of heptose metabolite production by H. pylori, which impact cell-autonomous proinflammatory human cell activation. HldE, a central enzyme of heptose metabolite biosynthesis, showed strong sequence variability between strains and was also variably expressed between strains. Amounts of gene transcripts in the hldE gene cluster displayed intrastrain and interstrain differences, were modulated by host cell contact and the presence of the cag pathogenicity island, and were affected by carbon starvation regulator A (CsrA). We reconstituted four steps of the H. pylori lipopolysaccharide (LPS) heptose biosynthetic pathway in vitro using recombinant purified GmhA, HldE, and GmhB proteins. On the basis of one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry, the structures of major reaction products were identified as β-d-ADP-heptose and β-heptose-1-monophosphate. A proinflammatory heptose-monophosphate variant was also identified for the first time as a novel cell-active product in H. pylori bacteria. Separate purified HldE subdomains and variant HldE allowed us to uncover additional strain variation in generating heptose metabolites. IMPORTANCE Bacterial heptose metabolites, intermediates of lipopolysaccharide (LPS) biosynthesis, are novel microbe-associated molecular patterns (MAMPs) that activate proinflammatory signaling. In the gastric pathogen Helicobacter pylori, heptoses are transferred into host cells by the Cag type IV secretion system, which is also involved in carcinogenesis. Little is known about how H. pylori, which is highly strain variable, regulates heptose biosynthesis and downstream host cell activation. We report here that the regulation of proinflammatory heptose production by H. pylori is strain specific. Heptose gene cluster activity is modulated by the presence of an active cag pathogenicity island (cagPAI), contact with human cells, and the carbon starvation regulator A. Reconstitution with purified biosynthesis enzymes and purified bacterial lysates allowed us to biochemically characterize heptose pathway products, identifying a heptose-monophosphate variant as a novel proinflammatory metabolite. These findings emphasize that the bacteria use heptose biosynthesis to fine-tune inflammation and also highlight opportunities to mine the heptose biosynthesis pathway as a potential therapeutic target against infection, inflammation, and cancer.
Collapse
Affiliation(s)
- Martina Hauke
- Max von Pettenkofer Institute, Ludwig Maximilians University Munich, München, Germany
| | - Felix Metz
- Max von Pettenkofer Institute, Ludwig Maximilians University Munich, München, Germany
| | - Johanna Rapp
- Bacterial Metabolomics, CMFI, University Tübingen, Tübingen, Germany
| | - Larissa Faass
- Max von Pettenkofer Institute, Ludwig Maximilians University Munich, München, Germany
| | - Simon H. Bats
- Max von Pettenkofer Institute, Ludwig Maximilians University Munich, München, Germany
| | - Sandra Radziej
- Bavarian NMR Center–Structural Membrane Biochemistry, Department of Chemistry, Technical University Munich, Garching, Germany
| | - Hannes Link
- Bacterial Metabolomics, CMFI, University Tübingen, Tübingen, Germany
| | - Wolfgang Eisenreich
- Bavarian NMR Center–Structural Membrane Biochemistry, Department of Chemistry, Technical University Munich, Garching, Germany
| | - Christine Josenhans
- Max von Pettenkofer Institute, Ludwig Maximilians University Munich, München, Germany
| |
Collapse
|
14
|
Sidor K, Skirecki T. A Bittersweet Kiss of Gram-Negative Bacteria: The Role of ADP-Heptose in the Pathogenesis of Infection. Microorganisms 2023; 11:1316. [PMID: 37317291 DOI: 10.3390/microorganisms11051316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
Due to the global crisis caused by the dramatic rise of drug resistance among Gram-negative bacteria, there is an urgent need for a thorough understanding of the pathogenesis of infections of such an etiology. In light of the limited availability of new antibiotics, therapies aimed at host-pathogen interactions emerge as potential treatment modalities. Thus, understanding the mechanism of pathogen recognition by the host and immune evasion appear to be the key scientific issues. Until recently, lipopolysaccharide (LPS) was recognized as a major pathogen-associated molecular pattern (PAMP) of Gram-negative bacteria. However, recently, ADP-L-glycero-β-D-manno-heptose (ADP-heptose), an intermediate carbohydrate metabolite of the LPS biosynthesis pathway, was discovered to activate the hosts' innate immunity. Therefore, ADP-heptose is regarded as a novel PAMP of Gram-negative bacteria that is recognized by the cytosolic alpha kinase-1 (ALPK1) protein. The conservative nature of this molecule makes it an intriguing player in host-pathogen interactions, especially in the context of changes in LPS structure or even in its loss by certain resistant pathogens. Here, we present the ADP-heptose metabolism, outline the mechanisms of its recognition and the activation of its immunity, and summarize the role of ADP-heptose in the pathogenesis of infection. Finally, we hypothesize about the routes of the entry of this sugar into cytosol and point to emerging questions that require further research.
Collapse
Affiliation(s)
- Karolina Sidor
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| |
Collapse
|
15
|
Duizer C, de Zoete MR. The Role of Microbiota-Derived Metabolites in Colorectal Cancer. Int J Mol Sci 2023; 24:8024. [PMID: 37175726 PMCID: PMC10178193 DOI: 10.3390/ijms24098024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The impact of bacterial members of the microbiota on the development of colorectal cancer (CRC) has become clear in recent years. However, exactly how bacteria contribute to the development of cancer is often still up for debate. The impact of bacteria-derived metabolites, which can influence the development of CRC either in a promoting or inhibiting manner, is undeniable. Here, we discuss the effects of the most well-studied bacteria-derived metabolites associated with CRC, including secondary bile acids, short-chain fatty acids, trimethylamine-N-oxide and indoles. We show that the effects of individual metabolites on CRC development are often nuanced and dose- and location-dependent. In the coming years, the array of metabolites involved in CRC development will undoubtedly increase further, which will emphasize the need to focus on causation and mechanisms and the clearly defined roles of bacterial species within the microbiota.
Collapse
Affiliation(s)
| | - Marcel R. de Zoete
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
16
|
Brown MA, Morgan SB, Donachie GE, Horton KL, Pavord ID, Arancibia-Cárcamo CV, Hinks TSC. Epithelial immune activation and intracellular invasion by non-typeable Haemophilus influenzae. Front Cell Infect Microbiol 2023; 13:1141798. [PMID: 37180449 PMCID: PMC10167379 DOI: 10.3389/fcimb.2023.1141798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Type-2 low asthma affects 30-50% of people with severe asthma and includes a phenotype characterized by sputum neutrophilia and resistance to corticosteroids. Airways inflammation in type-2 low asthma or COPD is potentially driven by persistent bacterial colonization of the lower airways by bacteria such as non-encapsulated Haemophilus influenzae (NTHi). Although pathogenic in the lower airways, NTHi is a commensal of the upper airways. It is not known to what extent these strains can invade airway epithelial cells, persist intracellularly and activate epithelial cell production of proinflammatory cytokines, and how this differs between the upper and lower airways. We studied NTHi infection of primary human bronchial epithelial cells (PBECs), primary nasal epithelial cells (NECs) and epithelial cell lines from upper and lower airways. NTHi strains differed in propensity for intracellular and paracellular invasion. We found NTHi was internalized within PBECs at 6 h, but live intracellular infection did not persist at 24 h. Confocal microscopy and flow cytometry showed NTHi infected secretory, ciliated and basal PBECs. Infection of PBECs led to induction of CXCL8, interleukin (IL)-1β, IL-6 and TNF. The magnitude of cytokine induction was independent of the degree of intracellular invasion, either by differing strains or by cytochalasin D inhibition of endocytosis, with the exception of the inflammasome-induced mediator IL-1β. NTHi-induced activation of TLR2/4, NOD1/2 and NLR inflammasome pathways was significantly stronger in NECs than in PBECs. These data suggest that NTHi is internalized transiently by airway epithelial cells and has capacity to drive inflammation in airway epithelial cells.
Collapse
Affiliation(s)
- Mary A. Brown
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Sophie B. Morgan
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Gillian E. Donachie
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Katie L. Horton
- School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Ian D. Pavord
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Carolina V. Arancibia-Cárcamo
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine, University of Oxford, Oxford, United Kingdom
| | - Timothy S. C. Hinks
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
García-Weber D, Dangeard AS, Teixeira V, Hauke M, Carreaux A, Josenhans C, Arrieumerlou C. In vitro kinase assay reveals ADP-heptose-dependent ALPK1 autophosphorylation and altered kinase activity of disease-associated ALPK1 mutants. Sci Rep 2023; 13:6278. [PMID: 37072480 PMCID: PMC10113258 DOI: 10.1038/s41598-023-33459-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023] Open
Abstract
Alpha-protein kinase 1 (ALPK1) is a pathogen recognition receptor that detects ADP-heptose (ADPH), a lipopolysaccharide biosynthesis intermediate, recently described as a pathogen-associated molecular pattern in Gram-negative bacteria. ADPH binding to ALPK1 activates its kinase domain and triggers TIFA phosphorylation on threonine 9. This leads to the assembly of large TIFA oligomers called TIFAsomes, activation of NF-κB and pro-inflammatory gene expression. Furthermore, mutations in ALPK1 are associated with inflammatory syndromes and cancers. While this kinase is of increasing medical interest, its activity in infectious or non-infectious diseases remains poorly characterized. Here, we use a non-radioactive ALPK1 in vitro kinase assay based on the use of ATPγS and protein thiophosphorylation. We confirm that ALPK1 phosphorylates TIFA T9 and show that T2, T12 and T19 are also weakly phosphorylated by ALPK1. Interestingly, we find that ALPK1 itself is phosphorylated in response to ADPH recognition during Shigella flexneri and Helicobacter pylori infection and that disease-associated ALPK1 mutants exhibit altered kinase activity. In particular, T237M and V1092A mutations associated with ROSAH syndrome and spiradenoma/spiradenocarcinoma respectively, exhibit enhanced ADPH-induced kinase activity and constitutive assembly of TIFAsomes. Altogether, this study provides new insights into the ADPH sensing pathway and disease-associated ALPK1 mutants.
Collapse
Affiliation(s)
- Diego García-Weber
- Université Paris Cité, CNRS, INSERM, Institut Cochin, 75014, Paris, France
| | | | - Veronica Teixeira
- Université Paris Cité, CNRS, INSERM, Institut Cochin, 75014, Paris, France
| | - Martina Hauke
- Max von Pettenkofer Institute, Ludwig Maximilians Universität München, Pettenkoferstrasse 9a, 80336, Munich, Germany
| | - Alexis Carreaux
- Université Paris Cité, CNRS, INSERM, Institut Cochin, 75014, Paris, France
| | - Christine Josenhans
- Max von Pettenkofer Institute, Ludwig Maximilians Universität München, Pettenkoferstrasse 9a, 80336, Munich, Germany
| | | |
Collapse
|
18
|
Kemper L, Hensel A. Campylobacter jejuni: targeting host cells, adhesion, invasion, and survival. Appl Microbiol Biotechnol 2023; 107:2725-2754. [PMID: 36941439 PMCID: PMC10027602 DOI: 10.1007/s00253-023-12456-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023]
Abstract
Campylobacter jejuni, causing strong enteritis, is an unusual bacterium with numerous peculiarities. Chemotactically controlled motility in viscous milieu allows targeted navigation to intestinal mucus and colonization. By phase variation, quorum sensing, extensive O-and N-glycosylation and use of the flagellum as type-3-secretion system C. jejuni adapts effectively to environmental conditions. C. jejuni utilizes proteases to open cell-cell junctions and subsequently transmigrates paracellularly. Fibronectin at the basolateral side of polarized epithelial cells serves as binding site for adhesins CadF and FlpA, leading to intracellular signaling, which again triggers membrane ruffling and reduced host cell migration by focal adhesion. Cell contacts of C. jejuni results in its secretion of invasion antigens, which induce membrane ruffling by paxillin-independent pathway. In addition to fibronectin-binding proteins, other adhesins with other target structures and lectins and their corresponding sugar structures are involved in host-pathogen interaction. Invasion into the intestinal epithelial cell depends on host cell structures. Fibronectin, clathrin, and dynein influence cytoskeletal restructuring, endocytosis, and vesicular transport, through different mechanisms. C. jejuni can persist over a 72-h period in the cell. Campylobacter-containing vacuoles, avoid fusion with lysosomes and enter the perinuclear space via dynein, inducing signaling pathways. Secretion of cytolethal distending toxin directs the cell into programmed cell death, including the pyroptotic release of proinflammatory substances from the destroyed cell compartments. The immune system reacts with an inflammatory cascade by participation of numerous immune cells. The development of autoantibodies, directed not only against lipooligosaccharides, but also against endogenous gangliosides, triggers autoimmune diseases. Lesions of the epithelium result in loss of electrolytes, water, and blood, leading to diarrhea, which flushes out mucus containing C. jejuni. Together with the response of the immune system, this limits infection time. Based on the structural interactions between host cell and bacterium, the numerous virulence mechanisms, signaling, and effects that characterize the infection process of C. jejuni, a wide variety of targets for attenuation of the pathogen can be characterized. The review summarizes strategies of C. jejuni for host-pathogen interaction and should stimulate innovative research towards improved definition of targets for future drug development. KEY POINTS: • Bacterial adhesion of Campylobacter to host cells and invasion into host cells are strictly coordinated processes, which can serve as targets to prevent infection. • Reaction and signalling of host cell depend on the cell type. • Campylobacter virulence factors can be used as targets for development of antivirulence drug compounds.
Collapse
Affiliation(s)
- Leon Kemper
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Andreas Hensel
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany.
| |
Collapse
|
19
|
Abstract
Enteric bacterial infections contribute substantially to global disease burden and mortality, particularly in the developing world. In vitro 2D monolayer cultures have provided critical insights into the fundamental virulence mechanisms of a multitude of pathogens, including Salmonella enterica serovars Typhimurium and Typhi, Vibrio cholerae, Shigella spp., Escherichia coli and Campylobacter jejuni, which have led to the identification of novel targets for antimicrobial therapy and vaccines. In recent years, the arsenal of experimental systems to study intestinal infections has been expanded by a multitude of more complex models, which have allowed to evaluate the effects of additional physiological and biological parameters on infectivity. Organoids recapitulate the cellular complexity of the human intestinal epithelium while 3D bioengineered scaffolds and microphysiological devices allow to emulate oxygen gradients, flow and peristalsis, as well as the formation and maintenance of stable and physiologically relevant microbial diversity. Additionally, advancements in ex vivo cultures and intravital imaging have opened new possibilities to study the effects of enteric pathogens on fluid secretion, barrier integrity and immune cell surveillance in the intact intestine. This review aims to present a balanced and updated overview of current intestinal in vitro and ex vivo methods for modeling of enteric bacterial infections. We conclude that the different paradigms are complements rather than replacements and their combined use promises to further our understanding of host-microbe interactions and their impacts on intestinal health.
Collapse
Affiliation(s)
- Nayere Taebnia
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- CONTACT Ute Römling Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Volker M. Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- Volker M. Lauschke Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| |
Collapse
|
20
|
Kozycki CT, Kodati S, Huryn L, Wang H, Warner BM, Jani P, Hammoud D, Abu-Asab MS, Jittayasothorn Y, Mattapallil MJ, Tsai WL, Ullah E, Zhou P, Tian X, Soldatos A, Moutsopoulos N, Kao-Hsieh M, Heller T, Cowen EW, Lee CCR, Toro C, Kalsi S, Khavandgar Z, Baer A, Beach M, Long Priel D, Nehrebecky M, Rosenzweig S, Romeo T, Deuitch N, Brenchley L, Pelayo E, Zein W, Sen N, Yang AH, Farley G, Sweetser DA, Briere L, Yang J, de Oliveira Poswar F, Schwartz IVD, Silva Alves T, Dusser P, Koné-Paut I, Touitou I, Titah SM, van Hagen PM, van Wijck RTA, van der Spek PJ, Yano H, Benneche A, Apalset EM, Jansson RW, Caspi RR, Kuhns DB, Gadina M, Takada H, Ida H, Nishikomori R, Verrecchia E, Sangiorgi E, Manna R, Brooks BP, Sobrin L, Hufnagel RB, Beck D, Shao F, Ombrello AK, Aksentijevich I, Kastner DL. Gain-of-function mutations in ALPK1 cause an NF-κB-mediated autoinflammatory disease: functional assessment, clinical phenotyping and disease course of patients with ROSAH syndrome. Ann Rheum Dis 2022; 81:1453-1464. [PMID: 35868845 PMCID: PMC9484401 DOI: 10.1136/annrheumdis-2022-222629] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/06/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES To test the hypothesis that ROSAH (retinal dystrophy, optic nerve oedema, splenomegaly, anhidrosis and headache) syndrome, caused by dominant mutation in ALPK1, is an autoinflammatory disease. METHODS This cohort study systematically evaluated 27 patients with ROSAH syndrome for inflammatory features and investigated the effect of ALPK1 mutations on immune signalling. Clinical, immunologic and radiographical examinations were performed, and 10 patients were empirically initiated on anticytokine therapy and monitored. Exome sequencing was used to identify a new pathogenic variant. Cytokine profiling, transcriptomics, immunoblotting and knock-in mice were used to assess the impact of ALPK1 mutations on protein function and immune signalling. RESULTS The majority of the cohort carried the p.Thr237Met mutation but we also identified a new ROSAH-associated mutation, p.Tyr254Cys.Nearly all patients exhibited at least one feature consistent with inflammation including recurrent fever, headaches with meningeal enhancement and premature basal ganglia/brainstem mineralisation on MRI, deforming arthritis and AA amyloidosis. However, there was significant phenotypic variation, even within families and some adults lacked functional visual deficits. While anti-TNF and anti-IL-1 therapies suppressed systemic inflammation and improved quality of life, anti-IL-6 (tocilizumab) was the only anticytokine therapy that improved intraocular inflammation (two of two patients).Patients' primary samples and in vitro assays with mutated ALPK1 constructs showed immune activation with increased NF-κB signalling, STAT1 phosphorylation and interferon gene expression signature. Knock-in mice with the Alpk1 T237M mutation exhibited subclinical inflammation.Clinical features not conventionally attributed to inflammation were also common in the cohort and included short dental roots, enamel defects and decreased salivary flow. CONCLUSION ROSAH syndrome is an autoinflammatory disease caused by gain-of-function mutations in ALPK1 and some features of disease are amenable to immunomodulatory therapy.
Collapse
Affiliation(s)
- Christina Torres Kozycki
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | | | | | - Hongying Wang
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Blake M Warner
- National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Priyam Jani
- National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Dima Hammoud
- Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Mones S Abu-Asab
- Section of Histopathology, National Eye Institute, Bethesda, Maryland, USA
| | | | | | - Wanxia Li Tsai
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Ehsan Ullah
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, Bethesda, Maryland, USA
| | - Ping Zhou
- National Institute of Biological Sciences Beijing, Beijing, China
| | - Xiaoying Tian
- National Institute of Biological Sciences Beijing, Beijing, China
| | - Ariane Soldatos
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Niki Moutsopoulos
- National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Marie Kao-Hsieh
- National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Theo Heller
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Edward W Cowen
- Dermatology Branch, NIH, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | | | - Camilo Toro
- Undiagnosed Diseases Program, Bethesda, Maryland, USA
- National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Shelley Kalsi
- National Heart Lung and Blood Institute, Bethesda, Maryland, USA
| | - Zohreh Khavandgar
- National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Alan Baer
- National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Margaret Beach
- National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Debra Long Priel
- Neutrophil Monitoring Laboratory, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Michele Nehrebecky
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Sofia Rosenzweig
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Tina Romeo
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Natalie Deuitch
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
- Oncogenesis and Development Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Laurie Brenchley
- National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Eileen Pelayo
- National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Wadih Zein
- National Eye Institute, Bethesda, Maryland, USA
| | - Nida Sen
- National Eye Institute, Bethesda, Maryland, USA
| | - Alexander H Yang
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Gary Farley
- Drs. Gilbert and Farley, OD, PC, Colonial Heights, Virginia, USA
| | - David A Sweetser
- Massachusetts General Hospital Center for Genomic Medicine, Boston, Massachusetts, USA
- Division of Medical Genetics & Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lauren Briere
- Massachusetts General Hospital Center for Genomic Medicine, Boston, Massachusetts, USA
| | - Janine Yang
- Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Fabiano de Oliveira Poswar
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Post Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ida Vanessa D Schwartz
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Post Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Perrine Dusser
- Service de Rhumatologie Pédiatrique, Centre de Référence des Maladies Auto-Inflammatoires de l'enfant, Hôpital Bicêtre, AP HP, Université Paris Sud, Bicetre, France
| | - Isabelle Koné-Paut
- Service de Rhumatologie Pédiatrique, Centre de Référence des Maladies Auto-Inflammatoires et de l'amylose inflammatoire CEREMAIA, Hôpital Bicêtre, AP HP, Université Paris Saclay, Bicetre, France
| | - Isabelle Touitou
- CeRéMAIA, CHU Montpellier, INSERM, University of Montpellier, Montpellier, France
| | | | | | | | | | | | - Andreas Benneche
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Ellen M Apalset
- Bergen Group of Epidemiology and Biomarkers in Rheumatic Disease, Department of Rheumatology, Haukeland University Hospital, Bergen, Norway
| | | | - Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Douglas Byron Kuhns
- Neutrophil Monitoring Laboratory, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Massimo Gadina
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Hidetoshi Takada
- Department of Child Health, University of Tsukuba Faculty of Medicine, Tsukuba, Japan
| | - Hiroaki Ida
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Ryuta Nishikomori
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Elena Verrecchia
- Department of Internal Medicine, Periodic Fevers Research Center, Università Cattolica del Sacro Cuore, Roma, Italy
- Dipartimento di scienze dell'invecchiamento, neurologiche, ortopediche e della testa-collo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Eugenio Sangiorgi
- Istitute of Genomic di Medicine, Universita Cattolica del Sacro Cuore, Roma, Italy
| | - Raffaele Manna
- Department of Internal Medicine, Periodic Fevers Research Center, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Brian P Brooks
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, Bethesda, Maryland, USA
| | - Lucia Sobrin
- Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Robert B Hufnagel
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, Bethesda, Maryland, USA
| | | | - Feng Shao
- National Institute of Biological Sciences Beijing, Beijing, China
| | - Amanda K Ombrello
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Daniel L Kastner
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| |
Collapse
|
21
|
Jin G, Liu Y, Xu W, Li Y, Zhang H, Qiu S, Gao C, Liu S. Tnfaip2 promotes atherogenesis by enhancing oxidative stress induced inflammation. Mol Immunol 2022; 151:41-51. [PMID: 36084515 DOI: 10.1016/j.molimm.2022.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/09/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022]
Abstract
The inflammation is considered to be the crucial determinants of lesion progression and plaque stability during atherogenesis. Tnfaip2 appears to be a regulator for carcinogenesis and infectious diseases. But its role in atherosclerosis is not clear. Here we first report that Tnfaip2 promotes the formation of atherosclerosis through enhancing the inflammation under oxidative stress condition. Although the endogenous expression of Tnfaip2 was upregulated under oxidative stress condition, the overexpressed Tnfaip2 could promote cells proliferation. This might result from the ability of promoting cells entering G2/M phase. Conversely, the cells proliferation and migration were significantly reduced in Tnfaip2 knockdown cells through inhibiting the activation of NF-κB/MAPK/Akt signaling pathways. However, the efferocytosis increased markedly due to the upregulation of "eat me" receptors, such as CD36, SR-A, and SR-B1, and the downregulation of "don't eat me" signal CD47. As a consequence, Tnfaip2 deficiency in bone marrow-derived cells inhibited atherosclerosis development in Ldlr-/- mice fed a high-fat diet accompanied by decreased inflammatory cytokines and shTnfaip2 could reduce the plaque lesions in ApoE-/- mice. These results indicate that Tnfaip2 might play an important role during atherogenesis.
Collapse
Affiliation(s)
- Guiyuan Jin
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Ji'nan, PR China; Medical Research Centre, Affiliated Hospital of Ji'ning Medical University, Ji'ning, Shandong Province, PR China
| | - Ying Liu
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Ji'nan, PR China
| | - Wenwen Xu
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Ji'nan, PR China
| | - Yan Li
- Department of Blood Transfusion, Qilu Hospital of Shandong University, Ji'nan, PR China
| | - Heng Zhang
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Ji'nan, PR China
| | - Shuoke Qiu
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Ji'nan, PR China
| | - Chengjiang Gao
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Ji'nan, PR China
| | - Suxia Liu
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Ji'nan, PR China.
| |
Collapse
|
22
|
Martin-Gallausiaux C, Garcia-Weber D, Lashermes A, Larraufie P, Marinelli L, Teixeira V, Rolland A, Béguet-Crespel F, Brochard V, Quatremare T, Jamet A, Doré J, Gray-Owen SD, Blottière HM, Arrieumerlou C, Lapaque N. Akkermansia muciniphila upregulates genes involved in maintaining the intestinal barrier function via ADP-heptose-dependent activation of the ALPK1/TIFA pathway. Gut Microbes 2022; 14:2110639. [PMID: 36036242 PMCID: PMC9427033 DOI: 10.1080/19490976.2022.2110639] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The commensal bacteria that make up the gut microbiota impact the health of their host on multiple levels. In particular, the interactions taking place between the microbe-associated molecule patterns (MAMPs) and pattern recognition receptors (PRRs), expressed by intestinal epithelial cells (IECs), are crucial for maintaining intestinal homeostasis. While numerous studies showed that TLRs and NLRs are involved in the control of gut homeostasis by commensal bacteria, the role of additional innate immune receptors remains unclear. Here, we seek for novel MAMP-PRR interactions involved in the beneficial effect of the commensal bacterium Akkermansia muciniphila on intestinal homeostasis. We show that A. muciniphila strongly activates NF-κB in IECs by releasing one or more potent activating metabolites into the microenvironment. By using drugs, chemical and gene-editing tools, we found that the released metabolite(s) enter(s) epithelial cells and activate(s) NF-κB via an ALPK1, TIFA and TRAF6-dependent pathway. Furthermore, we show that the released molecule has the biological characteristics of the ALPK1 ligand ADP-heptose. Finally, we show that A. muciniphila induces the expression of the MUC2, BIRC3 and TNFAIP3 genes involved in the maintenance of the intestinal barrier function and that this process is dependent on TIFA. Altogether, our data strongly suggest that the commensal A. muciniphila promotes intestinal homeostasis by activating the ALPK1/TIFA/TRAF6 axis, an innate immune pathway exclusively described so far in the context of Gram-negative bacterial infections.
Collapse
Affiliation(s)
| | | | - Amandine Lashermes
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Pierre Larraufie
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Ludovica Marinelli
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Veronica Teixeira
- INSERM, Institut Cochin, Université de Paris Cité, CNRS, Paris, France
| | - Alice Rolland
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Vincent Brochard
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Timothé Quatremare
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Alexandre Jamet
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Joël Doré
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Scott D. Gray-Owen
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hervé M. Blottière
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Nicolas Lapaque
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France,CONTACT Nicolas Lapaque INRAE-MICALIS UMR1319, Bat 442, Domaine de Vilvert78350Jouy-en-Josas, France
| |
Collapse
|