1
|
Li X, Pang Y, Jiang L, Liu L, Zhou J, Jin C, Wang Q, Sun H, Li Q, Chen Z, Qin J, Mu J, Liu B, Zhang Q, Liu Y, Feng L, Wang L. Two-component system GrpP/GrpQ promotes pathogenicity of uropathogenic Escherichia coli CFT073 by upregulating type 1 fimbria. Nat Commun 2025; 16:607. [PMID: 39799152 PMCID: PMC11724981 DOI: 10.1038/s41467-025-55982-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is a major cause of urinary tract infections (UTIs). Invasion into bladder epithelial cells (BECs) on the bladder luminal surface via type 1 fimbria is the first critical step in UPEC infection. Although type 1 fimbria expression increases during UPEC invasion of BECs, the underlying regulatory mechanisms remain poorly understood. This study reported a previously uncharacterized two-component system (TCS) GrpP/GrpQ that directly activates type 1 fimbria expression to promote UPEC invasion and therefore pathogenicity in response to D-serine present in the host urine. grpP/grpQ mutation severely impaired UPEC invasion of BECs and decreased the bacterial burden and formation of intracellular bacterial communities in mouse bladders during acute UTI. grpP/grpQ is widely present in UPEC genomes but rarely in other E. coli genomes, suggesting that this TCS specifically contributes to UPEC evolution. This study revealed a new pathway for virulence activation in response to host cues, providing further insight into UPEC pathogenesis and a promising target for UTI treatment.
Collapse
Affiliation(s)
- Xueping Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Yu Pang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Lingyan Jiang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Le Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Jiarui Zhou
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Chen Jin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Qian Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Hongmin Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Qing Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Zhen Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Jingliang Qin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Jianwei Mu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Bin Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Qiyue Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Yutao Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Lu Feng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China.
- Nankai International Advanced Research Institute, Nankai University Shenzhen, Shenzhen, China.
| | - Lei Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China.
- Southwest United Graduate School, Kunming, 650092, China.
| |
Collapse
|
2
|
Li X, Zhou J, Liu X, Jin C, Liu L, Sun H, Wang Q, Wang Q, Liu R, Zheng X, Liu Y, Pang Y. Nucleoside-diphosphate kinase of uropathogenic Escherichia coli inhibits caspase-1-dependent pyroptosis facilitating urinary tract infection. Cell Rep 2024; 43:114051. [PMID: 38564334 DOI: 10.1016/j.celrep.2024.114051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/19/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the most common causative agent of urinary tract infection (UTI). UPEC invades bladder epithelial cells (BECs) via fusiform vesicles, escapes into the cytosol, and establishes biofilm-like intracellular bacterial communities (IBCs). Nucleoside-diphosphate kinase (NDK) is secreted by pathogenic bacteria to enhance virulence. However, whether NDK is involved in UPEC pathogenesis remains unclear. Here, we find that the lack of ndk impairs the colonization of UPEC CFT073 in mouse bladders and kidneys owing to the impaired ability of UPEC to form IBCs. Furthermore, we demonstrate that NDK inhibits caspase-1-dependent pyroptosis by consuming extracellular ATP, preventing superficial BEC exfoliation, and promoting IBC formation. UPEC utilizes the reactive oxygen species (ROS) sensor OxyR to indirectly activate the regulator integration host factor, which then directly activates ndk expression in response to intracellular ROS. Here, we reveal a signaling transduction pathway that UPEC employs to inhibit superficial BEC exfoliation, thus facilitating acute UTI.
Collapse
Affiliation(s)
- Xueping Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin 300457, P.R. China
| | - Jiarui Zhou
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin 300457, P.R. China
| | - Xingmei Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin 300457, P.R. China
| | - Chen Jin
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin 300457, P.R. China
| | - Le Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin 300457, P.R. China
| | - Hongmin Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin 300457, P.R. China
| | - Qian Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin 300457, P.R. China
| | - Qiushi Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin 300457, P.R. China
| | - Ruiying Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin 300457, P.R. China
| | - Xiaoyu Zheng
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin 300457, P.R. China
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin 300457, P.R. China.
| | - Yu Pang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin 300457, P.R. China.
| |
Collapse
|
3
|
Ghosh D, Mangar P, Choudhury A, Kumar A, Saha A, Basu P, Saha D. Characterization of a hemolytic and antibiotic-resistant Pseudomonas aeruginosa strain S3 pathogenic to fish isolated from Mahananda River in India. PLoS One 2024; 19:e0300134. [PMID: 38547304 PMCID: PMC10977779 DOI: 10.1371/journal.pone.0300134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/21/2024] [Indexed: 04/02/2024] Open
Abstract
Virulent strain Pseudomonas aeruginosa isolated from Mahananda River exhibited the highest hemolytic activity and virulence factors and was pathogenic to fish as clinical signs of hemorrhagic spots, loss of scales, and fin erosions were found. S3 was cytotoxic to the human liver cell line (WRL-68) in the trypan blue dye exclusion assay. Genotype characterization using whole genome analysis showed that S3 was similar to P. aeruginosa PAO1. The draft genome sequence had an estimated length of 62,69,783 bp, a GC content of 66.3%, and contained 5916 coding sequences. Eight genes across the genome were predicted to be related to hemolysin action. Antibiotic resistance genes such as class C and class D beta-lactamases, fosA, APH, and catB were detected, along with the strong presence of multiple efflux system genes. This study shows that river water is contaminated by pathogenic P. aeruginosa harboring an array of virulence and antibiotic resistance genes which warrants periodic monitoring to prevent disease outbreaks.
Collapse
Affiliation(s)
- Dipanwita Ghosh
- Department of Biotechnology, University of North Bengal, Siliguri, West Bengal, India
| | - Preeti Mangar
- Department of Botany, University of North Bengal, Siliguri, West Bengal, India
| | - Abhinandan Choudhury
- Department of Biotechnology, University of North Bengal, Siliguri, West Bengal, India
| | - Anoop Kumar
- Department of Biotechnology, University of North Bengal, Siliguri, West Bengal, India
| | - Aniruddha Saha
- Department of Botany, University of North Bengal, Siliguri, West Bengal, India
| | - Protip Basu
- Department of Botany, Siliguri College, West Bengal, India
| | - Dipanwita Saha
- Department of Biotechnology, University of North Bengal, Siliguri, West Bengal, India
| |
Collapse
|
4
|
Ma C, Huang J, Jiang Y, Liu L, Wang N, Huang S, Li H, Zhang X, Wen S, Wang B, Yang S. Gasdermin D in macrophages drives orchitis by regulating inflammation and antigen presentation processes. EMBO Mol Med 2024; 16:361-385. [PMID: 38177538 PMCID: PMC10897472 DOI: 10.1038/s44321-023-00016-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Inflammation in the testes induced by infection and autoimmunity contributes significantly to male infertility, a public health issue. Current therapies using antibiotics and broad-spectrum anti-inflammatory drugs are ineffective against non-bacterial orchitis and induce side effects. This highlights the need to explore the pathogenesis of orchitis and develop alternative therapeutic strategies. In this study, we demonstrated that Gasdermin D (GSDMD) was activated in the testes during uropathogenic Escherichia coli (UPEC)-induced acute orchitis, and that GSDMD in macrophages induced inflammation and affected spermatogenesis during acute and chronic orchitis. In testicular macrophages, GSDMD promoted inflammation and antigen presentation, thereby enhancing the T-cell response after orchitis. Furthermore, the pharmacological inhibition of GSDMD alleviated the symptoms of UPEC-induced acute orchitis. Collectively, these findings provide the first demonstration of GSDMD's role in driving orchitis and suggest that GSDMD may be a potential therapeutic target for treating orchitis.
Collapse
Affiliation(s)
- Chunmei Ma
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine,National Vaccine Innovation Platform, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Jiajia Huang
- Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, 210023, Nanjing, China
| | - Yuying Jiang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine,National Vaccine Innovation Platform, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Lu Liu
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine,National Vaccine Innovation Platform, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Na Wang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine,National Vaccine Innovation Platform, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Shaoqiong Huang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine,National Vaccine Innovation Platform, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Honghui Li
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine,National Vaccine Innovation Platform, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Xiangyu Zhang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine,National Vaccine Innovation Platform, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Shuang Wen
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine,National Vaccine Innovation Platform, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Bingwei Wang
- Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, 210023, Nanjing, China.
| | - Shuo Yang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine,National Vaccine Innovation Platform, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 211166, Nanjing, China.
| |
Collapse
|
5
|
Sahoo R, Chauhan TKS, Lalhmangaihzuali L, Sinha E, Qureshi S, Mahawar M. Pan msr gene deleted strain of Salmonella Typhimurium suffers oxidative stress, depicts macromolecular damage and attenuated virulence. Sci Rep 2023; 13:21852. [PMID: 38071209 PMCID: PMC10710478 DOI: 10.1038/s41598-023-48734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Salmonella encounters but survives host inflammatory response. To defend host-generated oxidants, Salmonella encodes primary antioxidants and protein repair enzymes. Methionine (Met) residues are highly prone to oxidation and convert into methionine sulfoxide (Met-SO) which compromises protein functions and subsequently cellular survival. However, by reducing Met-SO to Met, methionine sulfoxide reductases (Msrs) enhance cellular survival under stress conditions. Salmonella encodes five Msrs which are specific for particular Met-SO (free/protein bound), and 'R'/'S' types. Earlier studies assessed the effect of deletions of one or two msrs on the stress physiology of S. Typhimurium. We generated a pan msr gene deletion (Δ5msr) strain in S. Typhimurium. The Δ5msr mutant strain shows an initial lag in in vitro growth. However, the Δ5msr mutant strain depicts very high sensitivity (p < 0.0001) to hypochlorous acid (HOCl), chloramine T (ChT) and superoxide-generating oxidant paraquat. Further, the Δ5msr mutant strain shows high levels of malondialdehyde (MDA), protein carbonyls, and protein aggregation. On the other side, the Δ5msr mutant strain exhibits lower levels of free amines. Further, the Δ5msr mutant strain is highly susceptible to neutrophils and shows defective fitness in the spleen and liver of mice. The results of the current study suggest that the deletions of all msrs render S. Typhimurium highly prone to oxidative stress and attenuate its virulence.
Collapse
Affiliation(s)
- Raj Sahoo
- Division of Biochemistry, ICAR-IVRI, Izatnagar, 243122, India
| | | | | | - Esha Sinha
- Division of Biological Standardization, ICAR-IVRI, Izatnagar, 243122, India
| | - Salauddin Qureshi
- Division of Biological Standardization, ICAR-IVRI, Izatnagar, 243122, India
| | - Manish Mahawar
- Division of Biochemistry, ICAR-IVRI, Izatnagar, 243122, India.
| |
Collapse
|
6
|
Silva I, Rodrigues ET, Tacão M, Henriques I. Microplastics accumulate priority antibiotic-resistant pathogens: Evidence from the riverine plastisphere. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121995. [PMID: 37302790 DOI: 10.1016/j.envpol.2023.121995] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) might accumulate and transport antibiotic-resistant bacteria (ARB) in aquatic systems. We determined the abundance and diversity of culturable ciprofloxacin- and cefotaxime-resistant bacteria in biofilms covering MPs placed in river water, and characterized priority pathogens from these biofilms. Our results showed that the abundance of ARB colonizing MPs tends to be higher compared to sand particles. Also, higher numbers were cultivated from a mixture of polypropylene (PP), polyethylene (PE) and polyethylene terephthalate (PET), compared to PP and PET alone. Aeromonas and Pseudomonas isolates were the most frequently retrieved from MPs placed before a WWTP discharge while Enterobacteriaceae dominated the culturable plastisphere 200 m after the WWTP discharge. Ciprofloxacin- and/or cefotaxime-resistant Enterobacteriaceae (n = 54 unique isolates) were identified as Escherichia coli (n = 37), Klebsiella pneumoniae (n = 3), Citrobacter spp. (n = 9), Enterobacter spp. (n = 4) and Shigella sp. (n = 1). All isolates presented at least one of the virulence features tested (i.e. biofilm formation, haemolytic activity and production of siderophores), 70% carried the intI1 gene and 85% exhibited a multi-drug resistance phenotype. Plasmid-mediated quinolone resistance genes were detected in ciprofloxacin-resistant Enterobacteriaceae [aacA4-cr (40% of the isolates), qnrS (30%), qnrB (25%), and qnrVC (8%)], along with mutations in gyrA (70%) and parC (72%). Cefotaxime-resistant strains (n = 23) harbored blaCTX-M (70%), blaTEM (61%) and blaSHV (39%). Among CTX-M producers, high-risk clones of E. coli (e.g. ST10 or ST131) and K. pneumoniae (ST17) were identified, most of which carrying blaCTX-M-15. Ten out of 16 CTX-M producers were able to transfer blaCTX-M to a recipient strain. Our results demonstrated the occurrence of multidrug resistant Enterobacteriaceae in the riverine plastisphere, harboring ARGs of clinical concern and exhibiting virulence traits, suggesting a contribution of MPs to the dissemination of antibiotic-resistant priority pathogens. The type of MPs and especially water contamination (e.g. by WWTPs discharges) seem to determine the resistome of the riverine plastisphere.
Collapse
Affiliation(s)
- Isabel Silva
- Department of Life Sciences, Centre for Functional Ecology, Associate Laboratory TERRA, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal; CESAM (Centre for Environmental and Marine Studies) University of Aveiro, 3810-193, Aveiro, Portugal
| | - Elsa T Rodrigues
- Department of Life Sciences, Centre for Functional Ecology, Associate Laboratory TERRA, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Marta Tacão
- CESAM (Centre for Environmental and Marine Studies) University of Aveiro, 3810-193, Aveiro, Portugal; Department of Biology University of Aveiro, 3810-193, Aveiro, Portugal
| | - Isabel Henriques
- Department of Life Sciences, Centre for Functional Ecology, Associate Laboratory TERRA, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal.
| |
Collapse
|
7
|
Genomic Island-Encoded Histidine Kinase and Response Regulator Coordinate Mannose Utilization with Virulence in Enterohemorrhagic Escherichia coli. mBio 2023; 14:e0315222. [PMID: 36786613 PMCID: PMC10128022 DOI: 10.1128/mbio.03152-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a highly adaptive pathogen and has acquired diverse genetic elements, such as genomic islands and prophages, via horizontal gene transfer to promote fitness in vivo. Two-component signaling systems (TCSs) allow bacteria to sense, respond to, and adapt to various environments. This study identified a putative two-component signaling system composed of the histidine kinase EDL5436 (renamed LmvK) and the response regulator EDL5428 (renamed LmvR) in EHEC. lmvK and lmvR along with EDL5429 to EDL5434 (EDL5429-5434) between them constitute the OI167 genomic island and are highly associated with the EHEC pathotype. EDL5429-5434 encode transporters and metabolic enzymes that contribute to growth on mannose and are directly upregulated by LmvK/LmvR in the presence of mannose, as revealed by quantitative PCR (qPCR) and DNase I footprint assays. Moreover, LmvR directly activates the expression of the type III secretion system in response to mannose and promotes the formation of attaching and effacing lesions on HeLa cells. Using human colonoid and mouse infection models, we show that lmvK and lmvR contributed greatly to adherence and microcolony (MC) formation ex vivo and colonization in vivo. Finally, RNA sequencing and chromatin immunoprecipitation coupled with sequencing analyses identified additional direct targets of LmvR, most of which are involved in metabolism. Given that mannose is a mucus-derived sugar that induces virulence and is preferentially used by EHEC during infection, our data revealed a previously unknown mechanism by which EHEC recognizes the host metabolic landscape and regulates virulence expression accordingly. Our findings provide insights into how pathogenic bacteria evolve by acquiring genetic elements horizontally to adapt to host environments. IMPORTANCE The gastrointestinal tract represents a complex and challenging environment for enterohemorrhagic Escherichia coli (EHEC). However, EHEC is a highly adaptable pathogen, requiring only 10 to 100 CFUs to cause infection. This ability was achieved partially by acquiring mobile genetic elements, such as genomic islands, that promote overall fitness. Mannose is an intestinal mucus-derived sugar that stimulates virulence and is preferentially used by EHEC during infection. Here, we characterize the OI167 genomic island of EHEC, which encodes a novel two-component signaling system (TCS) and transporters and metabolic enzymes (EDL5429-5434) involved in mannose utilization. The TCS directly upregulates EDL5429-5434 and genes encoding the type III secretion system in the presence of mannose. Moreover, the TCS contributes greatly to EHEC virulence ex vivo and in vivo. Our data demonstrate an elegant example in which EHEC strains evolve by acquiring genetic elements horizontally to recognize the host metabolic landscape and regulate virulence expression accordingly, leading to successful infections.
Collapse
|
8
|
Zhou W, Lin R, Zhou Z, Ma J, Lin H, Zheng X, Wang J, Wu J, Dong Y, Jiang H, Yang H, Yang Z, Tang B, Yue M. Antimicrobial resistance and genomic characterization of Escherichia coli from pigs and chickens in Zhejiang, China. Front Microbiol 2022; 13:1018682. [PMID: 36353453 PMCID: PMC9638057 DOI: 10.3389/fmicb.2022.1018682] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli is considered an opportunistic pathogen and an indicator for antimicrobial resistance (AMR) monitoring. Despite many reports on its AMR monitoring, studies based on genome-based analysis of AMR genes are still insufficient. Here, 181 E. coli strains were isolated from anal swab samples collected from pigs and chickens of animal farms located in Eastern China and sequenced through the Illumina platform. The results showed that 87.85% (159/181) of the E. coli isolates were multidrug-resistant (MDR). Ampicillin (AMP)- spectinomycin (SPT)- tetracycline (TET)- florfenicol (FFC)- sulfisoxazole (SF)- trimethoprim/sulfamethoxazole (SXT) was the predominant AMR pattern. By whole-genome sequencing, we found that ST10 (10.49%, 19/181) and ST48 (7.18%, 13/181) were major sequence types. IncFIB and IncX1 were the most prevalent plasmid replicons. The AMR genes bla NDM-5 (1.10%, 2/181), mcr-1 (1.10%, 2/181), tet(X4) (1.10%, 2/181), and cfr (6.08%, 2/181) were also found in these isolates. In addition, among the 169 virulence genes detected, we identified astA (37.02%, 67/181), hlyA (1.66%, 3/181), hlyB (1.66%, 3/181) and hlyD (1.66%, 3/181), which were closely related to heat-stable enterotoxin 1 and α-hemolysin. In addition, there were 33 virulence genes associated with the iron uptake system, and 46 were adhesion-related genes. Our study highlighted the need for routine surveillance of AMR with advanced genomic approaches, providing up-to-date data on the prevalence of AMR for the development and execution of antimicrobial stewardship policy.
Collapse
Affiliation(s)
- Wei Zhou
- Zhejiang Provincial Center for Animal Disease Prevention and Control, Hangzhou, China
| | - Rumeng Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, China
| | - Zhijin Zhou
- Zhejiang Provincial Center for Animal Disease Prevention and Control, Hangzhou, China
| | - Jiangang Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- The Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xue Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jingge Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jing Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuzhi Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, China
| | - Han Jiang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhangnv Yang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Min Yue
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Heterologously secreted MbxA from Moraxella bovis induces a membrane blebbing response of the human host cell. Sci Rep 2022; 12:17825. [PMID: 36280777 PMCID: PMC9592583 DOI: 10.1038/s41598-022-22480-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/14/2022] [Indexed: 01/20/2023] Open
Abstract
Many proteins of the Repeats in Toxins (RTX) protein family are toxins of Gram-negative pathogens including hemolysin A (HlyA) of uropathogenic E. coli. RTX proteins are secreted via Type I secretion systems (T1SS) and adopt their native conformation in the Ca2+-rich extracellular environment. Here we employed the E. coli HlyA T1SS as a heterologous surrogate system for the RTX toxin MbxA from the bovine pathogen Moraxella bovis. In E. coli the HlyA system successfully activates the heterologous MbxA substrate by acylation and secretes the precursor proMbxA and active MbxA allowing purification of both species in quantities sufficient for a variety of investigations. The activating E. coli acyltransferase HlyC recognizes the acylation sites in MbxA, but unexpectedly in a different acylation pattern as for its endogenous substrate HlyA. HlyC-activated MbxA shows host species-independent activity including a so-far unknown toxicity against human lymphocytes and epithelial cells. Using live-cell imaging, we show an immediate MbxA-mediated permeabilization and a rapidly developing blebbing of the plasma membrane in epithelial cells, which is associated with immediate cell death.
Collapse
|
10
|
Platelet-Rich Fibrin Reduces IL-1β Release from Macrophages Undergoing Pyroptosis. Int J Mol Sci 2022; 23:ijms23158306. [PMID: 35955441 PMCID: PMC9368224 DOI: 10.3390/ijms23158306] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Pyroptosis is a catabolic process relevant to periodontal disorders for which interleukin-1β (IL-1β) inflammation is central to the pathophysiology of the disease. Despite platelet-rich fibrin (PRF) anti-inflammatory properties and its application to support periodontal regeneration, the capacity of PRF to modulate pyroptosis, specifically the production and release of IL-1β, remains unknown. The question arises whether PRF could regulate IL-1β release from macrophages in vitro. Methods: To answer this question, RAW 264.7 macrophages and primary macrophages obtained from murine bone marrow were primed with PRF before being challenged by lipopolysaccharide (LPS). Cells were then analysed for the pyroptosis signalling components by gene expression analyses and IL-1β secretion at the protein level. The release of mitochondrial reactive oxygen species (ROS) was also detected. Results: PRF lowered the LPS-induced expression of IL-1β and NLRP3 inflammasome, caspase-11 and IL-18 in primary macrophages, and IL-1β and caspase-11 in RAW 264.7 cells. Additionally, PRF diminished the secretion of IL-1β at the protein level in LPS-induced RAW 264.7 cells. This was shown through immunoassays performed with the supernatant and further confirmed by analysing the lysates of permeabilised cells. Furthermore, PRF reduced the ROS release provoked by LPS in RAW 264.7 cells. Finally, to enhance IL-1β release from the LPS-primed macrophages, we introduced a second signal with adenosine triphosphate (ATP). In this setting, PRF significantly reduced IL-1β release in RAW 264.7 cells and a trend to diminish IL-1β release in primary macrophages. Conclusion: These findings suggest that PRF can reduce IL-1β release and, at least in part, inhibit pyroptosis-related factors in LPS-challenged macrophages.
Collapse
|
11
|
Zhang X, Yan Y, Lv Y, Li X, Chen L, Huang Z, Zhou J, Wang Y, Wang X, Wang X, Gu H. Dendrobium officinale polysaccharides attenuate uropathogenic Escherichia coli (UPEC)-induced pyroptosis in macrophage cells. Biomed Pharmacother 2022; 151:113098. [PMID: 35594714 DOI: 10.1016/j.biopha.2022.113098] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/02/2022] Open
Abstract
Urinary tract infections (UTI) are recognized as one of the most common infectious diseases worldwide, and uropathogenic Escherichia coli (UPEC) is the main causative agent of UTI. Dendrobium officinale polysaccharides (DOPs), the main effective ingredient in Dendrobium officinale, have been reported to possess an anti-inflammatory role. Whether DOPs can attenuate the inflammatory injury (pyroptosis) induced by UPEC remains unknown. The present study aimed to assess the protective effect and potential mechanism of DOPs in UPEC-induced pyroptosis. Cell viability of THP-1 differentiated macrophage cells with DOPs was determined using MTT assay. Pyroptosis by UPEC in macrophage cells with or not DOPs pre-treatment was evaluated with flow cytometry analysis, lactate dehydrogenase (LDH) assay, and proinflammatory cytokines secretion. Expression level of key proteins in the NLRP3/Caspase-1/GSDMD pyroptotic pathway was analyzed with western blot. Furthermore the effect of DOPs on ROS activation was investigated. Results indicated that DOPs attenuated UPEC-induced cell damage in macrophage cells, inhibited the activation of NLRP3 mediated inflammasome, subsequently decreased induction and activation of caspase-1/GSDMD, and reduced the secretion of pro-inflammatory cytokine (IL-1β et al.). Moreover, pretreatment with DOPs significantly reduces ROS production, an important/putative pyroptosis stimulus signal. These results suggested that DOPs successfully mitigate UPEC-promoted pyroptosis in macrophage cells. The protective effects of DOPs are associated with the inhibition of the NLRP3/Caspase-1/GSDMD pathway and ROS signal activation.
Collapse
Affiliation(s)
- Xiaoyang Zhang
- Central Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese Medicine, Nanjing 210014, China
| | - Yanfeng Yan
- Central Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese Medicine, Nanjing 210014, China
| | - Yunxia Lv
- Central Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese Medicine, Nanjing 210014, China
| | - Xin Li
- Central Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese Medicine, Nanjing 210014, China
| | - Leiyao Chen
- Central Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese Medicine, Nanjing 210014, China
| | - Zihui Huang
- Central Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese Medicine, Nanjing 210014, China
| | - Junbo Zhou
- Central Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese Medicine, Nanjing 210014, China
| | - Yong Wang
- Central Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese Medicine, Nanjing 210014, China
| | - Xiaoming Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Xu Wang
- Central Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese Medicine, Nanjing 210014, China
| | - Hongwei Gu
- Central Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese Medicine, Nanjing 210014, China
| |
Collapse
|
12
|
Pan-genome and resistome analysis of extended-spectrum ß-lactamase-producing Escherichia coli: A multi-setting epidemiological surveillance study from Malaysia. PLoS One 2022; 17:e0265142. [PMID: 35271656 PMCID: PMC8912130 DOI: 10.1371/journal.pone.0265142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/23/2022] [Indexed: 11/19/2022] Open
Abstract
Objectives
This study profiled the prevalence of extended-spectrum ß-lactamase-producing Escherichia coli (ESBL-EC) in the community and compared their resistome and genomic profiles with isolates from clinical patients through whole-genome sequencing.
Methods
Fecal samples from 233 community dwellers from Segamat, a town in southern Malaysia, were obtained between May through August 2018. Putative ESBL strains were screened and tested using antibiotic susceptibility tests. Additionally, eight clinical ESBL-EC were obtained from a hospital in the same district between June through October 2020. Whole-genome sequencing was then conducted on selected ESBL-EC from both settings (n = 40) for pan-genome comparison, cluster analysis, and resistome profiling.
Results
A mean ESBL-EC carriage rate of 17.82% (95% CI: 10.48%– 24.11%) was observed in the community and was consistent across demographic factors. Whole-genome sequences of the ESBL-EC (n = 40) enabled the detection of multiple plasmid replicon groups (n = 28), resistance genes (n = 34) and virulence factors (n = 335), with no significant difference in the number of genes carried between the community and clinical isolates (plasmid replicon groups, p = 0.13; resistance genes, p = 0.47; virulence factors, p = 0.94). Virulence gene marker analysis detected the presence of extraintestinal pathogenic E. coli (ExPEC), uropathogenic E. coli (UPEC), and enteroaggregative E. coli (EAEC) in both the community and clinical isolates. Multiple blaCTX-M variants were observed, dominated by blaCTX-M-27 (n = 12), blaCTX-M-65 (n = 10), and blaCTX-M-15 (n = 9). The clinical and community isolates did not cluster together based on the pan-genome comparison, suggesting isolates from the two settings were clonally unrelated. However, cluster analysis based on carried plasmids, resistance genes and phenotypic susceptibility profiles identified four distinct clusters, with similar patterns between the community and clinical isolates.
Conclusion
ESBL-EC from the clinical and community settings shared similar resistome profiles, suggesting the frequent exchange of genetic materials through horizontal gene transfer.
Collapse
|
13
|
Pazhani GP, Chowdhury G, Ramamurthy T. Adaptations of Vibrio parahaemolyticus to Stress During Environmental Survival, Host Colonization, and Infection. Front Microbiol 2021; 12:737299. [PMID: 34690978 PMCID: PMC8530187 DOI: 10.3389/fmicb.2021.737299] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/08/2021] [Indexed: 02/03/2023] Open
Abstract
Vibrio parahaemolyticus (Vp) is an aquatic Gram-negative bacterium that may infect humans and cause gastroenteritis and wound infections. The first pandemic of Vp associated infection was caused by the serovar O3:K6 and epidemics caused by the other serovars are increasingly reported. The two major virulence factors, thermostable direct hemolysin (TDH) and/or TDH-related hemolysin (TRH), are associated with hemolysis and cytotoxicity. Vp strains lacking tdh and/or trh are avirulent and able to colonize in the human gut and cause infection using other unknown factors. This pathogen is well adapted to survive in the environment and human host using several genetic mechanisms. The presence of prophages in Vp contributes to the emergence of pathogenic strains from the marine environment. Vp has two putative type-III and type-VI secretion systems (T3SS and T6SS, respectively) located on both the chromosomes. T3SS play a crucial role during the infection process by causing cytotoxicity and enterotoxicity. T6SS contribute to adhesion, virulence associated with interbacterial competition in the gut milieu. Due to differential expression, type III secretion system 2 (encoded on chromosome-2, T3SS2) and other genes are activated and transcribed by interaction with bile salts within the host. Chromosome-1 encoded T6SS1 has been predominantly identified in clinical isolates. Acquisition of genomic islands by horizontal gene transfer provides enhanced tolerance of Vp toward several antibiotics and heavy metals. Vp consists of evolutionarily conserved targets of GTPases and kinases. Expression of these genes is responsible for the survival of Vp in the host and biochemical changes during its survival. Advanced genomic analysis has revealed that various genes are encoded in Vp pathogenicity island that control and expression of virulence in the host. In the environment, the biofilm gene expression has been positively correlated to tolerance toward aerobic, anaerobic, and micro-aerobic conditions. The genetic similarity analysis of toxin/antitoxin systems of Escherichia coli with VP genome has shown a function that could induce a viable non-culturable state by preventing cell division. A better interpretation of the Vp virulence and other mechanisms that support its environmental fitness are important for diagnosis, treatment, prevention and spread of infections. This review identifies some of the common regulatory pathways of Vp in response to different stresses that influence its survival, gut colonization and virulence.
Collapse
Affiliation(s)
- Gururaja Perumal Pazhani
- School of Pharmaceutical Sciences, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Goutam Chowdhury
- ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | |
Collapse
|