1
|
Lv R, Li J, Fang X, Tang L, Shi R, Wang J, Zhang W, Wang J, Zhao G, Wang J, Gao S, Xu X, Kang L, Xin W. Rational design and pairing of single-domain antibodies for developing rapid detection methods for botulinum neurotoxins A and B. Anal Chim Acta 2025; 1354:343977. [PMID: 40253065 DOI: 10.1016/j.aca.2025.343977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/16/2025] [Accepted: 03/26/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Botulinum neurotoxin (BoNT) is a toxin produced by Clostridium botulinum that can cause neurological dysfunction in humans and animals, with BoNT/A and BoNT/B being responsible for the majority of poisoning cases. Due to its extremely high toxicity, BoNT is considered a potential biological warfare and bioterrorism agent. Currently, there is a lack of rapid and highly sensitive detection methods for botulinum toxin, making the development of fast and effective detection methods for BoNT essential. Here, we developed rapid detection methods for BoNT/A and BoNT/B based on nanobodies, including two ELISA methods and Time-resolved fluorescence immunochromatography assay (TRFICA). RESULTS By analyzing the binding epitopes of BoNT/A, BoNT/B, and nanobodies, we rationally designed and prepared six nanobodies, adding a Trx tag at the N-terminus, a 6 × His tag at the C-terminus, and fusing them with HRP, for use in developing two ELISA methods for BoNT/A and BoNT/B detection. Additionally, TRFICA was developed in combination with lanthanide microspheres. These three methods were validated using simulated samples containing BoNT in milk, sand, and human serum. The limits of detection for ELISA 1 and 2 were 0.17 and 4.5 ng/mL, respectively, while the TRFICA had a detection limit of 0.05 ng/mL and provided results in approximately 15 min. TRFICA also successfully detected clinical samples, with a sensitivity of 98 % and a specificity of 96.7 %. SIGNIFICANCE Overall, the TRFICA method we established has a short detection time, is easy to operate, and effectively addresses the challenge of rapid BoNT detection in clinical diagnostics, with significant clinical application value. Furthermore, based on the sequences and binding epitopes of nanobodies, we rationally designed six nanobodies and successfully applied them in the development of various BoNT detection methods. This approach and pipeline provide valuable guidance for the future development of rapid, low-cost detection methods.
Collapse
Affiliation(s)
- Ruomei Lv
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Jiaxin Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Xinyu Fang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Li Tang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Rui Shi
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Jin Wang
- Huayao Xin'an Biotechnology Co., Ltd, Beijing, China
| | - Wenjing Zhang
- Huayao Xin'an Biotechnology Co., Ltd, Beijing, China
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Jing Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Shan Gao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Xuefang Xu
- State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Lin Kang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China.
| | - Wenwen Xin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Prygiel M, Mosiej E, Wdowiak K, Zasada AA. Passive Immunisation in the Treatment of Infectious Diseases Related to Highly Potent Bacterial Toxins. Biomedicines 2024; 12:2920. [PMID: 39767826 PMCID: PMC11673946 DOI: 10.3390/biomedicines12122920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
The discovery of microbial toxins as the primary factors responsible for disease manifestations and the discovery that these toxins could be neutralised by antitoxins are linked to the birth of immunology. In the late 19th century, the serum or plasma of animals or patients who had recovered from infectious diseases or who had been immunised with a relevant antigen began to be used to treat or prevent infections. Before the advent of widespread vaccination campaigns, antitoxins played a key role in the treatment and prevention of diseases such as diphtheria and tetanus. A significant reduction in mortality following the introduction of antitoxins confirmed their efficacy. Serum therapy remains an important measure for post-exposure prophylaxis and for the treatment of unvaccinated or incompletely vaccinated patients. For the botulinum toxin, antitoxin therapy continues to be the sole available treatment. The manuscript contains a summary of the most important information on the passive immunoprophylaxis used in the treatment of diphtheria, tetanus, and botulism, all representing diseases in which symptoms are driven by the activity of highly potent bacterial toxins.
Collapse
Affiliation(s)
- Marta Prygiel
- National Institute of Public Health NIH—National Research Institute, Chocimska 24, 00-791 Warsaw, Poland; (E.M.); (K.W.); (A.A.Z.)
| | | | | | | |
Collapse
|
3
|
Grun CN, Jain R, Schniederberend M, Shoemaker CB, Nelson B, Kazmierczak BI. Bacterial cell surface characterization by phage display coupled to high-throughput sequencing. Nat Commun 2024; 15:7502. [PMID: 39209859 PMCID: PMC11362561 DOI: 10.1038/s41467-024-51912-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
The remarkable capacity of bacteria to adapt in response to selective pressures drives antimicrobial resistance. Pseudomonas aeruginosa illustrates this point, establishing chronic infections during which it evolves to survive antimicrobials and evade host defenses. Many adaptive changes occur on the P. aeruginosa cell surface but methods to identify these are limited. Here we combine phage display with high-throughput DNA sequencing to create a high throughput, multiplexed technology for surveying bacterial cell surfaces, Phage-seq. By applying phage display panning to hundreds of bacterial genotypes and analyzing the dynamics of the phage display selection process, we capture important biological information about cell surfaces. This approach also yields camelid single-domain antibodies that recognize key P. aeruginosa virulence factors on live cells. These antibodies have numerous potential applications in diagnostics and therapeutics. We propose that Phage-seq establishes a powerful paradigm for studying the bacterial cell surface by identifying and profiling many surface features in parallel.
Collapse
Affiliation(s)
- Casey N Grun
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Ruchi Jain
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
- Piton Therapeutics, Watertown, MA, USA
| | - Maren Schniederberend
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Charles B Shoemaker
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Bryce Nelson
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
- Orion Corporation, Turku, Finland
| | - Barbara I Kazmierczak
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
Guo C, Feng Q, Xie X, Li Y, Hu H, Hu J, Fang S, Shang L. Cross-reaction mediated by distinct key amino acid combinations in the complementary-determining region (CDR) of a monoclonal antibody. J Med Virol 2024; 96:e29430. [PMID: 38285507 DOI: 10.1002/jmv.29430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/27/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024]
Abstract
In immunology, cross-reaction between antigens and antibodies are commonly observed. Prior research has shown that various monoclonal antibodies (mAbs) can recognize a broad spectrum of epitopes related to influenza viruses. However, existing theories on cross-reactions fall short in explaining the phenomena observed. This study explored the interaction characteristics of H1-74 mAb with three peptides: two natural peptides, LVLWGIHHP and LPFQNI, derived from the hemagglutinin (HA) antigen of the H1N1 influenza virus, and one synthetic peptide, WPFQNY. Our findings indicate that the complementarity-determining region (CDR) of H1-74 mAb comprised five antigen-binding sites, containing eight key amino acid residues from the light chain variable region and 16 from the heavy chain variable region. These critical residues formed distinct hydrophobic or hydrophilic clusters and functional groups within the binding sites, facilitating interaction with antigen epitopes through hydrogen bonding, salt bridge formation, and π-π stacking. The study revealed that the formation of the antibody molecule led to the creation of binding groups and small units in the CDR, allowing the antibody to attach to a variety of antigen epitopes through diverse combinations of these small units and functional groups. This unique ability of the antibody to bind with antigen epitopes provides a new molecular basis for explaining the phenomenon of antibody cross-reaction.
Collapse
Affiliation(s)
- Chunyan Guo
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Xi'an, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, Shaanxi, China
| | - Qing Feng
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Xi'an, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, Shaanxi, China
| | - Xin Xie
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yan Li
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Xi'an, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, Shaanxi, China
| | - Hanyu Hu
- Shaanxi Ruiqi Biology Sci-Tech Co., Ltd., Xi'an, Shaanxi, China
| | - Jun Hu
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Xi'an, Shaanxi, China
| | - Senbiao Fang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lijun Shang
- School of Human Sciences, London Metropolitan University, London, UK
| |
Collapse
|
5
|
Leka O, Wu Y, Zanetti G, Furler S, Reinberg T, Marinho J, Schaefer JV, Plückthun A, Li X, Pirazzini M, Kammerer RA. A DARPin promotes faster onset of botulinum neurotoxin A1 action. Nat Commun 2023; 14:8317. [PMID: 38110403 PMCID: PMC10728214 DOI: 10.1038/s41467-023-44102-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 11/30/2023] [Indexed: 12/20/2023] Open
Abstract
In this study, we characterize Designed Ankyrin Repeat Proteins (DARPins) as investigative tools to probe botulinum neurotoxin A1 (BoNT/A1) structure and function. We identify DARPin-F5 that completely blocks SNAP25 substrate cleavage by BoNT/A1 in vitro. X-ray crystallography reveals that DARPin-F5 inhibits BoNT/A1 activity by interacting with a substrate-binding region between the α- and β-exosite. This DARPin does not block substrate cleavage of BoNT/A3, indicating that DARPin-F5 is a subtype-specific inhibitor. BoNT/A1 Glu-171 plays a critical role in the interaction with DARPin-F5 and its mutation to Asp, the residue found in BoNT/A3, results in a loss of inhibition of substrate cleavage. In contrast to the in vitro results, DARPin-F5 promotes faster substrate cleavage of BoNT/A1 in primary neurons and muscle tissue by increasing toxin translocation. Our findings could have important implications for the application of BoNT/A1 in therapeutic areas requiring faster onset of toxin action combined with long persistence.
Collapse
Affiliation(s)
- Oneda Leka
- Laboratory of Biomolecular Research, Division of Biology, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - Yufan Wu
- Laboratory of Biomolecular Research, Division of Biology, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - Giulia Zanetti
- Department of Biomedical Sciences, University of Padova, 35121, Padova, Italy
| | - Sven Furler
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Thomas Reinberg
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Joana Marinho
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Jonas V Schaefer
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Xiaodan Li
- Laboratory of Biomolecular Research, Division of Biology, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, 35121, Padova, Italy
| | - Richard A Kammerer
- Laboratory of Biomolecular Research, Division of Biology, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland.
| |
Collapse
|
6
|
Debatis M, Danz H, Tremblay JM, Gaspie K, Kudej RK, Vigdorovich V, Sather N, Jaskiewicz JJ, Tzipori S, Shoemaker CB. Enteric pharmacokinetics of monomeric and multimeric camelid nanobody single-domain antibodies. PLoS One 2023; 18:e0291937. [PMID: 38011121 PMCID: PMC10681176 DOI: 10.1371/journal.pone.0291937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/10/2023] [Indexed: 11/29/2023] Open
Abstract
Single-domain antibodies (sdAbs) derived from Camelidae heavy-chain-only antibodies (also called nanobodies or VHHs) have advantages over conventional antibodies in terms of their small size and stability to pH and temperature extremes, their ability to express well in microbial hosts, and to be functionally multimerized for enhanced properties. For these reasons, VHHs are showing promise as enteric disease therapeutics, yet little is known as to their pharmacokinetics (PK) within the digestive tract. To improve understanding of enteric VHH PK, we investigated the functional and structural stability of monomeric and multimeric camelid VHH-agents following in vitro incubation with intestinal extracts (chyme) from rabbits and pigs or fecal extracts from human sources, and in vivo in rabbits. The results showed that unstructured domains such as epitopic tags and flexible spacers composed of different amino acid sequences were rapidly degraded by enteric proteases while the functional core VHHs were much more stable to these treatments. Individual VHHs were widely variable in their functional stability to GI tract proteases. Some VHH-based agents which neutralize enteric Shiga toxin Stx2 displayed a functional stability to chyme incubations comparable to that of Stx2-neutralizing IgG and IgA mAbs, thus indicating that selected nanobodies can approach the functional stability of conventional immunoglobulins. Enteric PK data obtained from in vitro incubation studies were consistent with similar incubations performed in vivo in rabbit surgical gut loops. These findings have broad implications for enteric use of VHH-based agents, particularly VHH fusion proteins.
Collapse
Affiliation(s)
- Michelle Debatis
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States of America
| | - Hillary Danz
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States of America
| | - Jacqueline M. Tremblay
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States of America
| | - Kimberly Gaspie
- Division of Animal Resources, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States of America
| | - Raymond K. Kudej
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States of America
| | - Vladimir Vigdorovich
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States of America
| | - Noah Sather
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States of America
| | - Justyna J. Jaskiewicz
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States of America
| | - Saul Tzipori
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States of America
| | - Charles B. Shoemaker
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States of America
| |
Collapse
|
7
|
Gregory KS, Hall PR, Onuh JP, Mojanaga OO, Liu SM, Acharya KR. Crystal Structure of the Catalytic Domain of a Botulinum Neurotoxin Homologue from Enterococcus faecium: Potential Insights into Substrate Recognition. Int J Mol Sci 2023; 24:12721. [PMID: 37628902 PMCID: PMC10454453 DOI: 10.3390/ijms241612721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Clostridium botulinum neurotoxins (BoNTs) are the most potent toxins known, causing the deadly disease botulism. They function through Zn2+-dependent endopeptidase cleavage of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, preventing vesicular fusion and subsequent neurotransmitter release from motor neurons. Several serotypes of BoNTs produced by Clostridium botulinum (BoNT/A-/G and/X) have been well-characterised over the years. However, a BoNT-like gene (homologue of BoNT) was recently identified in the non-clostridial species, Enterococcus faecium, which is the leading cause of hospital-acquired multi-drug resistant infections. Here, we report the crystal structure of the catalytic domain of a BoNT homologue from Enterococcus faecium (LC/En) at 2.0 Å resolution. Detailed structural analysis in comparison with the full-length BoNT/En AlphaFold2-predicted structure, LC/A (from BoNT/A), and LC/F (from BoNT/F) revealed putative subsites and exosites (including loops 1-5) involved in recognition of LC/En substrates. LC/En also appears to possess a conserved autoproteolytic cleavage site whose function is yet to be established.
Collapse
Affiliation(s)
- Kyle S. Gregory
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (P.-R.H.); (J.P.O.); (O.O.M.)
| | - Peter-Rory Hall
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (P.-R.H.); (J.P.O.); (O.O.M.)
| | - Jude Prince Onuh
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (P.-R.H.); (J.P.O.); (O.O.M.)
| | - Otsile O. Mojanaga
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (P.-R.H.); (J.P.O.); (O.O.M.)
| | - Sai Man Liu
- Protein Sciences Department, Ipsen Bioinnovation Limited, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK;
| | - K. Ravi Acharya
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (P.-R.H.); (J.P.O.); (O.O.M.)
| |
Collapse
|
8
|
Liu Z, Lee PG, Krez N, Lam KH, Liu H, Przykopanski A, Chen P, Yao G, Zhang S, Tremblay JM, Perry K, Shoemaker CB, Rummel A, Dong M, Jin R. Structural basis for botulinum neurotoxin E recognition of synaptic vesicle protein 2. Nat Commun 2023; 14:2338. [PMID: 37095076 PMCID: PMC10125960 DOI: 10.1038/s41467-023-37860-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 04/03/2023] [Indexed: 04/26/2023] Open
Abstract
Botulinum neurotoxin E (BoNT/E) is one of the major causes of human botulism and paradoxically also a promising therapeutic agent. Here we determined the co-crystal structures of the receptor-binding domain of BoNT/E (HCE) in complex with its neuronal receptor synaptic vesicle glycoprotein 2A (SV2A) and a nanobody that serves as a ganglioside surrogate. These structures reveal that the protein-protein interactions between HCE and SV2 provide the crucial location and specificity information for HCE to recognize SV2A and SV2B, but not the closely related SV2C. At the same time, HCE exploits a separated sialic acid-binding pocket to mediate recognition of an N-glycan of SV2. Structure-based mutagenesis and functional studies demonstrate that both the protein-protein and protein-glycan associations are essential for SV2A-mediated cell entry of BoNT/E and for its potent neurotoxicity. Our studies establish the structural basis to understand the receptor-specificity of BoNT/E and to engineer BoNT/E variants for new clinical applications.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, 92697, USA
| | - Pyung-Gang Lee
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Nadja Krez
- Institute of Toxicology, Hannover Medical School, Hannover, 30623, Germany
| | - Kwok-Ho Lam
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, 92697, USA
| | - Hao Liu
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Adina Przykopanski
- Institute of Toxicology, Hannover Medical School, Hannover, 30623, Germany
| | - Peng Chen
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, 92697, USA
| | - Guorui Yao
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, 92697, USA
| | - Sicai Zhang
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL, 60439, USA
| | | | - Andreas Rummel
- Institute of Toxicology, Hannover Medical School, Hannover, 30623, Germany
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA.
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
9
|
Li Z, Li B, Lu J, Liu X, Tan X, Wang R, Du P, Yu S, Xu Q, Pang X, Yu Y, Yang Z. Biological and Immunological Characterization of a Functional L-HN Derivative of Botulinum Neurotoxin Serotype F. Toxins (Basel) 2023; 15:toxins15030200. [PMID: 36977091 PMCID: PMC10056376 DOI: 10.3390/toxins15030200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) can cause nerve paralysis syndrome in mammals and other vertebrates. BoNTs are the most toxic biotoxins known and are classified as Class A biological warfare agents. BoNTs are mainly divided into seven serotypes A-G and new neurotoxins BoNT/H and BoNT/X, which have similar functions. BoNT proteins are 150 kDa polypeptide consisting of two chains and three domains: the light chain (L, catalytic domain, 50 kDa) and the heavy chain (H, 100 kDa), which can be divided into an N-terminal membrane translocation domain (HN, 50 kDa) and a C-terminal receptor binding domain (Hc, 50 kDa). In current study, we explored the immunoprotective efficacy of each functional molecule of BoNT/F and the biological characteristics of the light chain-heavy N-terminal domain (FL-HN). The two structure forms of FL-HN (i.e., FL-HN-SC: single chain FL-HN and FL-HN-DC: di-chain FL-HN) were developed and identified. FL-HN-SC could cleave the vesicle associated membrane protein 2 (VAMP2) substrate protein in vitro as FL-HN-DC or FL. While only FL-HN-DC had neurotoxicity and could enter neuro-2a cells to cleave VAMP2. Our results showed that the FL-HN-SC had a better immune protection effect than the Hc of BoNT/F (FHc), which indicated that L-HN-SC, as an antigen, provided the strongest protective effects against BoNT/F among all the tested functional molecules. Further in-depth research on the different molecular forms of FL-HN suggested that there were some important antibody epitopes at the L-HN junction of BoNT/F. Thus, FL-HN-SC could be used as a subunit vaccine to replace the FHc subunit vaccine and/or toxoid vaccine, and to develop antibody immune molecules targeting L and HN domains rather than the FHc domain. FL-HN-DC could be used as a new functional molecule to evaluate and explore the structure and activity of toxin molecules. Further exploration of the biological activity and molecular mechanism of the functional FL-HN or BoNT/F is warranted.
Collapse
Affiliation(s)
- Zhiying Li
- Beijing Institute of Biotechnology, Beijing 100071, China
- Pharmaceutical College, Henan University, Kaifeng 475001, China
| | - Bolin Li
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Jiansheng Lu
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Xuyang Liu
- Beijing Institute of Biotechnology, Beijing 100071, China
- Pharmaceutical College, Henan University, Kaifeng 475001, China
| | - Xiao Tan
- Beijing Institute of Biotechnology, Beijing 100071, China
- Institute of Life Science and Biotechnology, Beijing Jiaotong University, Beijing 100044, China
| | - Rong Wang
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Peng Du
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Shuo Yu
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Qing Xu
- Institute of Life Science and Biotechnology, Beijing Jiaotong University, Beijing 100044, China
| | - Xiaobin Pang
- Pharmaceutical College, Henan University, Kaifeng 475001, China
| | - Yunzhou Yu
- Beijing Institute of Biotechnology, Beijing 100071, China
- Correspondence: (Y.Y.); (Z.Y.)
| | - Zhixin Yang
- Beijing Institute of Biotechnology, Beijing 100071, China
- Correspondence: (Y.Y.); (Z.Y.)
| |
Collapse
|
10
|
Alcala-Torano R, Islam M, Cika J, Ho Lam K, Jin R, Ichtchenko K, Shoemaker CB, Van Deventer JA. Yeast Display Enables Identification of Covalent Single-Domain Antibodies against Botulinum Neurotoxin Light Chain A. ACS Chem Biol 2022; 17:3435-3449. [PMID: 36459441 PMCID: PMC10065152 DOI: 10.1021/acschembio.2c00574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
While covalent drug discovery is reemerging as an important route to small-molecule therapeutic leads, strategies for the discovery and engineering of protein-based irreversible binding agents remain limited. Here, we describe the use of yeast display in combination with noncanonical amino acids (ncAAs) to identify irreversible variants of single-domain antibodies (sdAbs), also called VHHs and nanobodies, targeting botulinum neurotoxin light chain A (LC/A). Starting from a series of previously described, structurally characterized sdAbs, we evaluated the properties of antibodies substituted with reactive ncAAs capable of forming covalent bonds with nearby groups after UV irradiation (when using 4-azido-l-phenylalanine) or spontaneously (when using O-(2-bromoethyl)-l-tyrosine). Systematic evaluations in yeast display format of more than 40 ncAA-substituted variants revealed numerous clones that retain binding function while gaining either UV-mediated or spontaneous crosslinking capabilities. Solution-based analyses indicate that ncAA-substituted clones exhibit site-dependent target specificity and crosslinking capabilities uniquely conferred by ncAAs. Interestingly, not all ncAA substitution sites resulted in crosslinking events, and our data showed no apparent correlation between detected crosslinking levels and distances between sdAbs and LC/A residues. Our findings highlight the power of yeast display in combination with genetic code expansion in the discovery of binding agents that covalently engage their targets. This platform streamlines the discovery and characterization of antibodies with therapeutically relevant properties that cannot be accessed in the conventional genetic code.
Collapse
Affiliation(s)
- Rafael Alcala-Torano
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States of America
| | - Mariha Islam
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States of America
| | - Jaclyn Cika
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York 10016, United States of America
| | - Kwok Ho Lam
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, United States of America
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, United States of America
| | - Konstantin Ichtchenko
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York 10016, United States of America
| | - Charles B. Shoemaker
- Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts 01536, United States of America
| | - James A. Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States of America
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States of America
| |
Collapse
|
11
|
Qin Q, Liu H, He W, Guo Y, Zhang J, She J, Zheng F, Zhang S, Muyldermans S, Wen Y. Single Domain Antibody application in bacterial infection diagnosis and neutralization. Front Immunol 2022; 13:1014377. [PMID: 36248787 PMCID: PMC9558170 DOI: 10.3389/fimmu.2022.1014377] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022] Open
Abstract
Increasing antibiotic resistance to bacterial infections causes a serious threat to human health. Efficient detection and treatment strategies are the keys to preventing and reducing bacterial infections. Due to the high affinity and antigen specificity, antibodies have become an important tool for diagnosis and treatment of various human diseases. In addition to conventional antibodies, a unique class of “heavy-chain-only” antibodies (HCAbs) were found in the serum of camelids and sharks. HCAbs binds to the antigen through only one variable domain Referred to as VHH (variable domain of the heavy chain of HCAbs). The recombinant format of the VHH is also called single domain antibody (sdAb) or nanobody (Nb). Sharks might also have an ancestor HCAb from where SdAbs or V-NAR might be engineered. Compared with traditional Abs, Nbs have several outstanding properties such as small size, high stability, strong antigen-binding affinity, high solubility and low immunogenicity. Furthermore, they are expressed at low cost in microorganisms and amenable to engineering. These superior properties make Nbs a highly desired alternative to conventional antibodies, which are extensively employed in structural biology, unravelling biochemical mechanisms, molecular imaging, diagnosis and treatment of diseases. In this review, we summarized recent progress of nanobody-based approaches in diagnosis and neutralization of bacterial infection and further discussed the challenges of Nbs in these fields.
Collapse
Affiliation(s)
- Qian Qin
- Department of General Surgery, Center for Microbiome Research of Med-X Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Hao Liu
- Center for Biomedical Research, Institute of Future Agriculture, Northwest A&F University, Yangling, China
| | - Wenbo He
- Department of General Surgery, Center for Microbiome Research of Med-X Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yucheng Guo
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jiaxin Zhang
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Junjun She
- Department of General Surgery, Center for Microbiome Research of Med-X Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Fang Zheng
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Sicai Zhang
- Center for Biomedical Research, Institute of Future Agriculture, Northwest A&F University, Yangling, China
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yurong Wen
- Department of General Surgery, Center for Microbiome Research of Med-X Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
12
|
Feng Q, Huang XY, Feng YM, Sun LJ, Sun JY, Li Y, Xie X, Hu J, Guo CY. Identification and analysis of B cell epitopes of hemagglutinin of H1N1 influenza virus. Arch Microbiol 2022; 204:594. [PMID: 36053375 PMCID: PMC9438888 DOI: 10.1007/s00203-022-03133-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 11/27/2022]
Abstract
The frequent variation of influenza virus hemagglutinin (HA) antigen is the main cause of influenza pandemic. Therefore, the study of B cell epitopes of HA is of great significance in the prevention and control of influenza virus. In this study, the split vaccine of 2009 H1N1 influenza virus was used as immunogen, and the monoclonal antibodies (mAbs) were prepared by conventional hybridoma fusion and screening techniques. The characteristics of mAbs were identified by ELISA method, Western-blot test and hemagglutination inhibition test (HI). Using the obtained mAbs as a tool, the B cell epitopes of HA were predicted by ELISA blocking test, sandwich ELISA method and computer simulation method. Finally, four mAbs against HA antigen of H1N1 influenza virus were obtained. The results of ELISA and computer prediction showed that there were at least two types of epitopes on HA of influenza virus. The results of this study complemented the existing methods for predicting HA epitopes, and also provided a new method for predicting other pathogenic microorganisms.
Collapse
Affiliation(s)
- Qing Feng
- Central Laboratory, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, Shaanxi, China
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Xi'an, Shaanxi, China
| | - Xiao-Yan Huang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, Shaanxi, China
| | - Yang-Meng Feng
- Central Laboratory, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, Shaanxi, China
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Xi'an, Shaanxi, China
| | - Li-Jun Sun
- Central Laboratory, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, Shaanxi, China
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Xi'an, Shaanxi, China
| | - Jing-Ying Sun
- Central Laboratory, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, Shaanxi, China
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Xi'an, Shaanxi, China
| | - Yan Li
- Central Laboratory, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, Shaanxi, China
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Xi'an, Shaanxi, China
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Jun Hu
- Central Laboratory, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China.
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, Shaanxi, China.
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Xi'an, Shaanxi, China.
| | - Chun-Yan Guo
- Central Laboratory, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China.
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, Shaanxi, China.
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Xi'an, Shaanxi, China.
| |
Collapse
|