1
|
Wang C, Wang L, Zhao X, Hou L, Liu Q, Ren R, Lv A, Liu X, Xiong T, Guo P, Xu X, Ni Z, Liu C, Zhang J. Functional Analysis of FoCrpA in Fusarium oxysporum Causing Rice Seedling Blight. J Fungi (Basel) 2025; 11:317. [PMID: 40278137 PMCID: PMC12028882 DOI: 10.3390/jof11040317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/04/2025] [Accepted: 04/15/2025] [Indexed: 04/26/2025] Open
Abstract
Fusarium oxysporum is one of the main pathogens causing rice seedling blight disease. Revealing its pathogenic mechanism is of great significance for formulating prevention and control strategies for rice seedling blight disease. Copper transporting P-type ATPases (Cu-ATPase) is a large class of proteins located on the plasma membrane that utilize the energy provided by ATP hydrolysis phosphorylation to transport substrates across the membrane. It plays a crucial role in signal transduction, the maintenance of cell membrane stability, and material transport. The main function of Cu-ATPase is to maintain the homeostasis of copper in cells, which is essential for the normal growth and development of organisms. This study utilized the ATMT-mediated gene knockout method to obtain the knockout mutant ∆FoCrpA and the complementation strain ∆FoCrpA-C, which are highly homologous to the P-type heavy metal transport ATPase family in F. oxysporum. The results showed that, compared with the wild-type strain, the knockout mutant ∆FoCrpA had a lighter colony color; a reduced tolerance to copper ion, osmotic, and oxidative stress; a weakened ability to penetrate glass paper; and decreased pathogenicity. However, there was no significant difference in pathogenicity and other biological phenotypes between the complementation strain ∆FoCrpA-C and the wild-type strain. In summary, the FoCrpA gene is involved in osmotic and oxidative stress, affecting the invasion and penetration ability and pathogenicity of F. oxysporum, laying a theoretical foundation for understanding the development and pathogenic mechanism of F. oxysporum.
Collapse
Affiliation(s)
- Chun Wang
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China; (C.W.)
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Crop Pests in Harbin, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Liang Wang
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China; (C.W.)
| | - Xuanjie Zhao
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China; (C.W.)
| | - Lei Hou
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China; (C.W.)
| | - Qingran Liu
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China; (C.W.)
| | - Rui Ren
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China; (C.W.)
| | - Anqi Lv
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China; (C.W.)
| | - Xinyang Liu
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China; (C.W.)
| | - Tianliang Xiong
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China; (C.W.)
| | - Peng Guo
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China; (C.W.)
| | - Xiaofeng Xu
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China; (C.W.)
| | - Zhe Ni
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China; (C.W.)
| | - Chunlai Liu
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Crop Pests in Harbin, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Junhua Zhang
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China; (C.W.)
| |
Collapse
|
2
|
Anne S, McDonald MR, Lu Y, Peterson RL. Pseudogymnoascus destructans transcriptional response to chronic copper stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.646060. [PMID: 40236230 PMCID: PMC11996344 DOI: 10.1101/2025.03.28.646060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Copper (Cu) is an essential metal micronutrient, and a fungal pathogens' ability to thrive in diverse niches across a broad range of bioavailable copper levels is vital for host-colonization and fungal-propagation. Recent transcriptomic studies have implemented that trace metal acquisition is important for the propagation of the white nose syndrome (WNS) causing fungus, Pseudogymnoascus destructans , on bat hosts. This report characterizes the P. destructans transcriptional response to Cu-withholding and Cu-overload stress. We identify 583 differently expressed genes (DEGs) that respond to Cu-withholding stress and 667 DEGs that respond to Cu-overload stress. We find that the P. destructans Cu-transporter genes CTR 1a and CTR1 b, as well as two homologs to Cryptococcus neoformans Cbi1/BIM1 VC83_03095 (BLP2) and VC83_07867 (BLP3) are highly regulated by Cu-withholding stress. We identify a cluster of genes, VC83_01834 - VC83_01837, that are regulated by copper bioavailability, which we identify as the Cu Responsive gene Cluster (CRC). We find that chronic exposure to elevated copper levels leads to an increase in genes associated with DNA repair and DNA replication fidelity. A comparison of our transcriptomic data sets with P. destructans at WNS fungal infection sites reveals several putative fungal virulence factors that respond to environmental copper stress.
Collapse
|
3
|
Araújo Dos Santos DL, Santana de Curcio J, Novaes E, Maria de Almeida Soares C. miRNAs regulate the metabolic adaptation of Paracoccidioides brasiliensis during copper deprivation. Microbes Infect 2025; 27:105435. [PMID: 39528107 DOI: 10.1016/j.micinf.2024.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Copper is an essential metal for cellular processes such as detoxification of reactive oxygen species, oxidative phosphorylation, and iron uptake. However, during infection, the host restricts the bioavailability of this micronutrient to the pathogen as a strategy to combat infection. Recently, we have shown the involvement of miRNAs as an adaptive strategy of P. brasiliensis upon metal deprivation such as iron and zinc. However, their role in copper limitation still needs to be elucidated. Our objective was to characterize the expression profile of miRNAs regulated during copper deprivation in P. brasiliensis and the putative altered processes. Through RNAseq analysis and bioinformatics, we identified 14 differentially expressed miRNAs, two of which putatively regulated oxidative stress response, beta-oxidation, glyoxylate cycle, and cell wall remodeling. Our results suggest that metabolic adaptations carried out by P. brasiliensis in copper deprivation are regulated by miRNAs.
Collapse
Affiliation(s)
- Dener Lucas Araújo Dos Santos
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Juliana Santana de Curcio
- Laboratório de Genética Molecular e Citogenética, Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil
| | - Evandro Novaes
- Setor de Genética, Departamento de Biologia, Universidade Federal de Lavras, Lavras, 37203-202, Minas Gerais, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, 74690-900, Brazil.
| |
Collapse
|
4
|
Probst C, Denning-Jannace CA, du Plooy LM, Giamberardino C, Asfaw Y, Franz KJ, Alspaugh JA. A cysteine-rich domain of the Cuf1 transcription factor is required for high copper stress sensing and fungal virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628380. [PMID: 39713408 PMCID: PMC11661212 DOI: 10.1101/2024.12.13.628380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The ability to sense, import but also detoxify copper (Cu) has been shown to be crucial for microbial pathogens to survive within the host. Previous studies conducted with the opportunistic human fungal pathogen Cryptococcus neoformans ( Cn ) have revealed two extreme Cu environments encountered during infection: A high Cu environment within the lung and a low Cu environment within the brain. However, how Cn senses these different host Cu microenvironments, and the consequences of a blunted Cu stress adaption for pathogenesis, are not well understood. In contrast to other fungi, Cn has a single transcription factor, Cuf1, to regulate adaptive responses to both high- and low-Cu stress. Sequence analysis of Cn Cuf1 identified three conserved cysteine (Cys)-rich regions that may play a role in Cu sensing. We mutated the 1 st Cys-rich region within the CUF1 gene to investigate its role for Cn high Cu stress sensing. Subsequent analysis of Cuf1 transcriptional activity and target gene promoter binding demonstrated that the 1 st Cys-rich region is required for Cuf1 transcriptional activity in high Cu stress. We performed an inhalational murine infection to analyze the effects of a blunted high Cu stress response on pathogenesis. No significant differences in lung fungal burden were observed based on variable Cuf1 activity. However, strains with defective high Cu stress regulation induced a markedly altered immune response in mice. Based on these findings, we hypothesize that Cuf1-driven high Cu responses are not required for initial survival but instead modulate immune recognition and inflammation within the mouse lung. Importance Copper is an essential micronutrient required for survival in all kingdoms of life as it is used as a catalytic cofactor for many essential processes in the cell. In turn, this reactivity of copper ions makes elevated levels of free copper toxic for the cell. This dual nature of copper-essential for life but toxic at elevated levels- is used by our innate immune system in a process called nutritional immunity to combat and kill invading pathogens. In this work we explore how the fungal human pathogen Cryptococcus neoformans senses high copper stress, a copper microenvironment encountered within the host lung. We identified a specific cysteine-rich region within the copper responsive transcription factor Cuf1 to be essential for high copper stress sensing. Mutation of this region led to an impaired high copper stress adaptation, which did not affect fitness of the yeast but did impact immune recognition and inflammation inside the host lung.
Collapse
|
5
|
Garg R, David MS, Yang S, Culotta VC. Metals at the Host-Fungal Pathogen Battleground. Annu Rev Microbiol 2024; 78:23-38. [PMID: 38781605 PMCID: PMC12044431 DOI: 10.1146/annurev-micro-041222-023745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Fungal infections continue to represent a major threat to public health, particularly with the emergence of multidrug-resistant fungal pathogens. As part of the innate immune response, the host modulates the availability of metals as armament against pathogenic microbes, including fungi. The transition metals Fe, Cu, Zn, and Mn are essential micronutrients for all life forms, but when present in excess, these same metals are potent toxins. The host exploits the double-edged sword of these metals, and will either withhold metal micronutrients from pathogenic fungi or attack them with toxic doses. In response to these attacks, fungal pathogens cleverly adapt by modulating metal transport, metal storage, and usage of metals as cofactors for enzymes. Here we review the current state of understanding on Fe, Cu, Zn, and Mn at the host-fungal pathogen battleground and provide perspectives for future research, including a hope for new antifungals based on metals.
Collapse
Affiliation(s)
- Ritu Garg
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| | - Marika S David
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| | - Shuyi Yang
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| | - Valeria C Culotta
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| |
Collapse
|
6
|
du Plooy LM, Telzrow CL, Nichols CB, Probst C, Castro-Lopez N, Wormley FL, Alspaugh JA. A fungal ubiquitin ligase and arrestin binding partner contribute to pathogenesis and survival during cellular stress. mBio 2024; 15:e0098124. [PMID: 39235249 PMCID: PMC11481503 DOI: 10.1128/mbio.00981-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Cellular responses to external stress allow microorganisms to adapt to a vast array of environmental conditions, including infection sites. The molecular mechanisms behind these responses are studied to gain insight into microbial pathogenesis, which could lead to new antimicrobial therapies. Here, we explore a role for arrestin protein-mediated ubiquitination in stress response and pathogenesis in the pathogenic fungus Cryptococcus neoformans. In a previous study, we identified four arrestin-like proteins in C. neoformans and found that one of these is required for efficient membrane synthesis, likely by directing interaction between fatty acid synthases and the Rsp5 E3 ubiquitin ligase. Here, we further explore Cn Rsp5 function and determine that this single Ub ligase is absolutely required for pathogenesis and survival in the presence of cellular stress. Additionally, we show that a second arrestin-like protein, Ali2, similarly facilitates interaction between Rsp5 and some of its protein targets. Of the four postulated C. neoformans arrestin-like proteins, Ali2 appears to contribute the most to C. neoformans pathogenesis, likely by directing Rsp5 to pathogenesis-related ubiquitination targets. A proteomics-based differential ubiquitination screen revealed that several known cell surface proteins are ubiquitinated by Rsp5 and a subset also requires Ali2 for their ubiquitination. Rsp5-mediated ubiquitination alters the stability and the localization of these proteins. A loss of Rsp5-mediated ubiquitination results in cell wall defects that increase susceptibility to external stresses. These findings support a model in which arrestin-like proteins guide Rsp5 to ubiquitinate specific target proteins, some of which are required for survival during stress. IMPORTANCE Microbial proteins involved in human infectious diseases often need to be modified by specific chemical additions to be fully functional. Here, we explore the role of a particular protein modification, ubiquitination, in infections due to the human fungal pathogen Cryptococcus neoformans. We identified a complex of proteins responsible for adding ubiquitin groups to fungal proteins, and this complex is required for virulence. These proteins are fungal specific and might be targets for novel anti-infection therapy.
Collapse
Affiliation(s)
- Lukas M. du Plooy
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Calla L. Telzrow
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Connie B. Nichols
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Corinna Probst
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Natalia Castro-Lopez
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
- Department of Biology, Texas Christian University, Fort Worth, Texas, USA
| | - Floyd L. Wormley
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
- Department of Biology, Texas Christian University, Fort Worth, Texas, USA
| | - J. Andrew Alspaugh
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
7
|
Kleijburg FE, Safeer AA, Baldus M, Wösten HA. Binding of micro-nutrients to the cell wall of the fungus Schizophyllum commune. Cell Surf 2023; 10:100108. [PMID: 38156043 PMCID: PMC10753380 DOI: 10.1016/j.tcsw.2023.100108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 12/30/2023] Open
Abstract
The cell wall fulfils several functions in the biology of fungi. For instance, it provides mechanical strength, interacts with the (a)biotic environment, and acts as a molecular sieve. Recently, it was shown that proteins and β-glucans in the cell wall of Schizophyllum commune bind Cu2+. We here show that the cell wall of this mushroom forming fungus also binds other (micro-)nutrients. Ca2+, Mg2+, Mn2+, NO3-, PO43-, and SO42- bound at levels > 1 mg per gram dry weight cell wall, while binding of BO3-, Cu2+, Zn2+ and MoO42- was lower. Sorption of Ca2+, Mn2+, Zn2+ and PO43- was promoted at alkaline pH. These compounds as well as BO33-, Cu2+, Mg2+, NO3-, and SO42- that had bound at pH 4, 6, or 8 could be released from the cell wall at pH 4 with a maximum efficiency of 46-93 %. Solid-state NMR spectroscopy showed that the metals had the same binding sites as Cu2+ when a low concentration of this ion is used. Moreover, data indicate that anions bind to the cell wall as well as to the metal ions. Together, it is shown that the cell wall of S. commune binds various (micro-)nutrients and that this binding is higher than the uptake by hyphae. The binding to the cell wall may be used as a storage mechanism or may reduce availability of these molecules to competitors or prevent toxic influx in the cytoplasm.
Collapse
Affiliation(s)
- Fleur E.L. Kleijburg
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Adil A. Safeer
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Han A.B. Wösten
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
8
|
Xue P, Hu G, Jung WH, Kronstad JW. Metals and the cell surface of Cryptococcus neoformans. Curr Opin Microbiol 2023; 74:102331. [PMID: 37257400 PMCID: PMC10513164 DOI: 10.1016/j.mib.2023.102331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 06/02/2023]
Abstract
Recent studies in pathogenic yeasts reinforce our appreciation of the influence of metal homeostasis on the fungal cell surface. To illustrate this influence, we focus on recent studies on Cryptococcus neoformans, a fungal pathogen with a complex surface of a cell wall with embedded melanin and an attached polysaccharide capsule. Copper and iron are essential yet toxic metals, and current efforts demonstrate the importance of these metals for modulating the surface structure of C. neoformans cells in ways that contribute to fungal-host interactions during disease in vertebrate hosts. In this review, we briefly summarize mechanisms of acquisition and regulation for copper and iron, and then discuss recent insights into the connections between the metals and the cell surface.
Collapse
Affiliation(s)
- Peng Xue
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Guanggan Hu
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - James W Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|